

Table of Contents

		Page
1.	Well summary and overview	4
	- Well summary	4
	- Well data summary	6
	- Casing and cementing summary	
2.	Well operations	2
	- Rig mobilization	
	- Drilling 36" conductor hole/setting 30" x 20" casing	
	- Drilling 17.5m surface hole/setting 13.375" casing	
	- Drilling 12.25" hole	
	- logging 12.25" hole	
	- Well suspension & abandonment	12
	- Rig demobilization	
	- Mobilisation & drilling phases	14
	- Health, safety & environmental summary	15
	- Highlights	
	- Lowlights	17
3.	Time analyses	18
	- Summary	18
	- Non-productive time analysis	
	- Time-reconciliation by well phase	21
	- Time breakdown	22
	 Key observations & corrective actions – mobilization & drilling p 	hases23
4.	Drilling records and engineering	18
	- Drilling summary report	28
	- Final drilling, casing and cementing schematics	
	- Drilling and engineering	
	- Casing and cementing	
	- Cement plugs	36
	- Bit run summary	
	- Bit hydraulics summary	
	- Directional drilling summary	38

5.	Ge	eological report	43
	_	Summary of formation sampling & drill monitoring	43
	-	Monitoring logging and testing services	
	_	Directional surveys	
	-	Mudlogging	
	_	ROP and gas readings	
	_	Shows	
	_	Normalised gas calculation	
	_	Sampling summary and record distribution	
	_	Ditch cuttings	
	_	Sample destination	
	_	Formation loggings	
	_	Description of cuttings	
	_	Calcimetry measurements	
	_	Conventional cores	
	_	Rotary sidewall cores	
	_	Mechanical sidewal core drpths	
	_	Petrology	
	_	MDT sampling	
	_	Percussion sidewall cores	
	_	Biostratigraphy	
	_	Drill stem testing	
	_	Logging while drilling	
	_	Wireline operations and summary	

Figures

- Figure 1. Location of VIC/P57.
- Figure 2. Location of the West Seahorse 3 well.
- Figure 3. Aerial photo-view of the West Triton during the drilling of West Seahorse 3.
- Figure 4. Time Depth Curve.
- Figure 5. Programme, trouble and Un-programmed by phase.
- Figure 6. Lost time summary during drilling period.
- Figure 7. Summary of drilling schmatics and engineering.
- Figure 8. Summary of casing and cementing schematics by Time vs. Depth scale.
- Figure 9. Sketch showing 'S'-type directional drilling profile.
- Figure 10. Stratigraphic column and casing of the West Seahorse 3 well.

Attachments

Attachment 1: Well Montage

Attachment 2: Bit and BHA Record

Attachment 3: Mud Report
Attachment 4: Casing Report
Attachment 5: Cementing Report
Attachment 6: LOT/FIT Report

Attachment 7: Directional Drilling Report
Attachment 8: Activity Summary Reports
Well Cost Summary
Attachment 10: Description of cuttings
Attachment 11: Daily geological reports

Attachment 12: MSCT photography

Attachment 13: Validity checks and analyses of MDT samples

Attachment 14: Reservoir Fluid Study

List of Enclosures

Enclosure 1: Gas Log Plot Enclosure 2: Drilling Data Plot Enclosure 3: Mud Log Plot Enclosure 4: LWD Log Plot Enclosure 5: Wireline Log Plot

1. WELL SUMMARY & OVERVIEW

Well Summary

West Seahorse-3 was a deviated, appraisal/development well, located in Commonwealth waters within the Petroleum Permit Vic/P57, approximately 350 km east of Melbourne, 20km offshore and 5 km west of the producing Seahorse oil field (Figures 1, 2).

West Seahorse 3 was drilled from 23 April to 9 May 2008 using the Seadrill Jack-Up rig, *West Triton*. The objectives of the well were to appraise/develop the hydrocarbon-bearing target sandstones (N1, N2.6 and P1) of the Latrobe Group in the West Seahorse field, originally discovered by West Seahorse-1 (1981).

The well intersected the primary N1 sandstone at 1561 mRT (1400 mss) close to the prognosed depth and confirmed the presence of an oil column down to 1570 mRT (1409 mss) in high quality reservoir. Oil is also interpreted within an overlying interbedded interval of sandstones, coals and siltstones from 1552mRT to 1561mRT (1392 – 1400 mss). Deeper targets (N2.6 and P1) were intersected deep to prognosis and below the oil-water contacts. The West Seahorse-3 well was suspended as a future oil producer.

Australian Drilling Associates (ADA) managed the drilling operation and Baker Hughes INTEQ SLS provided sampling, formation evaluation and drill monitoring services. Schlumberger provided the LWD and Wireline services. Expro Group Australia Pty Ltd provided validation checks and analyses of MDT samples. ACS Laboratory Pty Ltd. undertook a petrological study of the sidewall core samples.

Note: All depths are measured depth below Rotary Table (mMDRT) referenced to Australian Height Datum (AHD) unless otherwise stated.

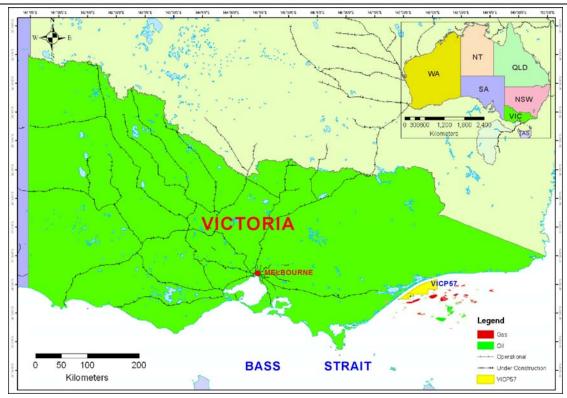


Figure 1. Location of VIC/P57.

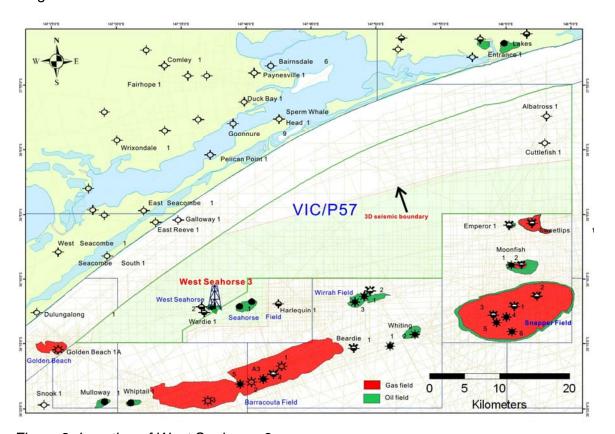


Figure 2. Location of West Seahorse 3.

Well data summary

Well Name	West Seahorse-3
Country	Australia
Designation	Appraisal / Development
Field Name	West Seahorse
License/Permit	VIC / P57
Rig Name/Type	West Triton / Jack Up MODU
Field Operator	3D Oil Ltd
Participants	3D Oil Ltd: 100%
Rig on Contract	22 nd April, 2008, 10:30hrs
Rig Arrived Location	22 nd April, 2008, 17:58hrs
Spud Date	24 th April, 2008, 04:15hrs
Reached TD	4 th May, 2008, 19:00hrs
Well Abandoned	9 th May, 2008, 01:00hrs
Rig Off Location	9 th May, 2008,16:30hrs
Rig Off Contract	22 nd May, 2008, 17:00hrs
Total Days on Operations	17.25 days
Total Days AFE (excluding Completions and Testing Phase)	17.25 days
Total Depth	1646.4mTVDSS / 1684.1mTVDRT / 1810.0mMDRT
Well Type	Directional 'S' profile
Maximum Deviation Angle	28.28°
Water Depth	39.5m MSL
RT above MSL	37.7m
Well Slot	1
Zone	55 GDA94
Surface Latitude	38° 12' 24.9422" S
Surface Longitude	147° 37' 09.8650" E
Surface Easting	554 229.358 E
Surface Northing	5 771 044.135 N
Bottom Hole Location: Latitude	38° 12' 16.166" S
Bottom Hole Location: Longitude	147° 37' 31.276" E
Bottom Hole Location: Easting	554 751.90 E
Bottom Hole Location: Northing	5771 311.15 N
36in Hole / 30in x 20in Conductor	125.0mMDRT/122.0mMDRT
17.5in Hole / 13.375in Surface Casing	1123.0mMDRT/1117.0mMDRT
12.25in Hole	1810.0mMDRT/1684.1mTVDRT

Casing and cementing summary

Casing data

Туре	Size (inches)	Weight(ppf)	Grade	Thread	Depth (mMDRT)
Conductor	30	309.7 (1" wall)	X-52	D60/MT	110.6
(30in x 20in tapered shoe joint)	20	169 (0.625" wall)	X-56	E.R.W	122
Surface Casing	13.375	68	N-80	BTC	1117

Cementing Data

String Cemented	Cement Type	Dry Cmt Vol (sks)	Cement Additives	Mix Water (gal/sk)	Slurry Vol (bbls)	Slurry Density (ppg)	Cement to /from(mM DRT)	Csg Test Pressure (psi)
30in X 20in	Class G	1660	1% CaCl NF-6 : as required	5.16	343	15.9	seafloor (77.5m) - 122m	NA
13.375in Lead	Class G	510	Econolite: 15gal/10bbl NF-6: as req	. 11.8	210	12.5	600m- 1000m	
13.375in Tail	Class G	290	CFR-3L: 3gal/10bbl NF-6: as req HR-6L: 2gal/10bbl	5.16	68	15.9	1000m- 1117m	500
Plug #1A	Class G	358	CFR-3L: 3.0gal/10bb SCR-100L: 1.0gal/10bbl NF-6: .25gal/10bbl	5.07	74	15.8	1633m- 1770m	NA
Plug #1B	Class G	377	CFR-3L: 3.0gal/10bb SCR-100L: 1.0gal/10bbl	5.07	78	15.8	1490m- 1633m	NA
Plug #2	Class G	315	CFR-3L: 3.0gal/10bb SCR-100L: 1.0gal/10bbl NF-6: .25gal/10bbl	5.07	65	15.8	1030m- 1149m	1500
Plug #3	Class G	183	CFR-3L: 3.0gal/10bb SCR-100L: 1.0gal/10bbl NF-6: .25gal/10bbl	5.20	38	15.8	130m- 207m	NA

2. WELL OPERATIONS

West Seahorse-3 was drilled to appraise/develop the hydrocarbon-bearing sandstones of the Latrobe Group in the West Seahorse field using the Seadrill Jack-Up rig, *West Triton* (Figure 3).

Figure 3. Aerial photo-view of the West Triton during the drilling of West Seahorse 3.

Rig mobilisation

The West Triton was handed over to 3D Oil on April 22nd 2008 at 10:30hrs, 1NM off Apache's Speke South (VIC/P42) location. The West Triton arrived at the West Seahorse-3 location at 17.58hrs, with the total distance of the voyage being approximately 18.6NM. Once in position the rig was jacked up to 38m above MSL with a rig heading of 137.21 deg. The short distance between wells allowed for some drill pipe to remain racked back in the derrick. The MV's Sirius Cove & Campbell Cove tugs used for the tow were released at 19.45 hrs.

Note: These tugs were originally employed to temporarily replace the Pacific Valkyrie AHTS when the vessel was returned to shore-base for repairs. In hindsight it actually was found an advantage to utilise tugs for the rig move, as opposed to one of the supply vessels, as it freed up a vessel for spud gear and allowed for greater accuracy while positioning the rig.

The final fix for West Seahorse 3 was:

 Surface Latitude
 38° 12' 24.9422" S

 Surface Longitude
 147° 37' 09.8650" E

 Surface Easting
 554 229.358 E

 Surface Northing
 5 771 044.135 N

Zone 55, GDA94

Drilling 36in conductor hole/setting 30in x 20in casing

This phase commenced with the preparation of the wellhead. 13.375in cement plugs were made up to the wellhead and 20in x 13.375in crossover installed to 20in pup joint below the wellhead. The 36in BHA was picked up and run, including 26in bit and 36in hole-opener, Anderdrift tool, float sub and 36in stabiliser. The ROV observed the tagging of seabed at 77.5m. At this point a deviation survey was taken at the seabed with the Anderdrift tool (0deg). West Seahorse-3 was spudded on April 24th 2008 at 04:15hrs. The 36in x 26in conductor hole was drilled riser-less using seawater and unweighted hi-vis sweeps from 77.5m to a section TD of 125m.

The 30in x 20in conductor casing was run without problems to 122m. The conductor included a Quick-Jay connector at 2m above seabed and a butt-weld sub at 9.4m below the seabed. The conductor was successfully cemented with 277.0bbls of 15.90ppg in single slurry, TOC @ mud line.

The butt-weld landing collar was tagged at 86.87m, this measurement was imperative for space out of landing string. Once the space out of the low pressure riser and diverter system was confirmed, the 30in conductor was cut at 19.2mRT (3.18m above CTU deck).

Note: Slower than expected rigging up of the Low Pressure riser was observed due to the rig having only one riser handling clamp.

Drilling 17.5in surface hole/setting 13.375in casing

The 17.5in mud motor assembly was made up with a Baker Hughes MXL-T1V roller cone rock bit and MWD directional tools and run in hole to tag the 20in shoe at 121m. The 20in shoe was drilled out to 125m and the well displaced to 15-20ppb flocculated gel mud. The 17.5in surface hole was directionally drilled in one run and without problems to a sectional TD of 1123m. The final TD of 17.5in hole was observed to be 2.5m to the right and 4.5m below the design line - 5.25m centre to centre. 450bbl of 1.15sg KCl polymer mud was spotted on bottom prior to POOH. The hole required back reaming through tight spots at 1082m, 1076m, 994m, 759m and 739m – 543m (up to 35k lbs over pull).

The 13.375in casing was RIH with a mud line hanger and wellhead to the setting depth of 1117m (the interval 1091m – 1117m required washing down). The mud line hanger was landed and the well circulated with 700bbls mud at 525gpm. The cement lines were pressure tested to 4000psi and a 60bbl seawater spacer pumped.

Cementing operations commenced but the SSR plug set did not work as designed; no

pressure increase was observed to indicate the release of the bottom plug. The casing was cemented with 180bbls of 12.5ppg Class G lead cement followed by 64bbls of 15.8ppg Class G tail slurry. The top plug was released and cement displaced with 12bbls of sea water and 525bbls (calculated volume + 50% shoe track) of 11.0ppg mud. The plug bump was not observed.

An attempt was made to breakout the wellhead running tool. The Dril-Quip Wellhead Running tool failed to release. In attempting to disengage the running tool, torque was applied down the landing string consequently backing out the 13.375in BTC connection at the bottom of the wellhead crossover. The wellhead was retrieved attached to the running tool. In addition, the landing string was found to have backed off below the wellhead. The landing string remaining down hole was successfully fished in two stages. The first two joints below the wellhead were recovered by screwing in with a water bushing. The remainder of the 13.375in casing was backed off from the mud line hanger and retrieved using a spear and bumper sub. After casing and the MLS running tool were recovered, the landing string was re-run along with the wellhead (the total non-productive time for this event being 1.46 days = \$1,365,000USD).

The BOPs, overshot and diverter system were made up. The BOPs were tested to 250/5000psi. The 13.375in casing was also pressure tested at this stage to 750psi.

Drilling 12.25in hole

The 12.25in Power Drive rotary steerable BHA was made up with a Reed Hycalog RSX616M-A16 PDC bit and RIH to 285m. Resistance was encountered at this depth and the assembly had to be washed and reamed to 1103m due to the presence of a sheath of cement left inside the casing when the SSR system failed during casing cementation. A total of 7.5 hours (approximately 2 hours longer than normal) was taken to reach the top of the plug at 1103m.

The cement plugs were drilled from 1103 to 1104m whilst displacing the hole to 9.8ppg 6% KCI/Polymer/clayseal mud. Very slow progress was made while drilling out cement plugs and it was suspected that plugs were spinning on the float collar. The shoe track and float shoe were drilled out to 1117m. The rat-hole was cleaned out from 1117m to 1123m and 3m of new formation was then drilled. A FIT was performed to 13.65ppg EMW without leak off and drilling then continued from 1126m to 1392m. Directional drilling continued from 1392m to top Latrobe at 1507m at which point control drilling commenced to 1559m at 30m/hr for recording LWD logs. At this point a 6bbl gain and a 0.27% gas peak were observed simultaneously by the driller. The well was then shut in to investigate the gain; no indication of pressure on the drill pipe or casing side was observed. The well was opened and flow checked with no flow found. The well was then circulated bottoms up, with a maximum gas peak of 0.13%. Drilling recommenced from 1559m to the well TD of 1810m once again at a controlled drilling rate of 30m/hr. The hole was circulated clean and the drill string POOH, wiping tight spots at 1610m, 1582m, 1572m and 1533m. The BHA was then POOH from 1533m to 30m and racked back.

Logging 12.25in hole

The Schlumberger LWD and steerable tools were then laid out and the wire line logging tools rigged up for the following logs:

Log #1 PEX-HRLA-BHC Log#2 MDT - GR (Pressure Sampling) Log#3 MSCT - GR (Rotary Sidewall Cores)

The tools for Log #1 were picked up, Radio Active sources loaded and RIH. Logging tools were unable to pass 1775m. The tools were pulled back and a repeat section recorded over the interval 1690m-1540m. Another attempt to continue to RIH past 1775m was made but hung up once more with full tool string weight. This was repeated 4 times without success, logging back up from 1775m to casing shoe and continued logging GR to seabed. Log #1 tools were then POOH, the Radio Active sources removed and rigged down.

The MDT tools for Log #2 were then picked up and RIH to 1585m; depths were correlated and 27 pre-tests were conducted. Three pump-out stations were obtained from which 4 samples were taken at 1567m. Five further pre-test positions were then attempted and the logging tool then POOH taking 800 lb over-pulls at three places inside the casing and between the shoe and 980m.

The MSCT tools for Log #3 were then picked up, RIH and depths were correlated from 1720m – 1640m. The tools were RIH to 1694m and cores were attempted to be taken at 1694m and 1686m. Tool failure occurred at both of these depths due to mechanical failure and the tool was POOH for checking (2 hours NPT recorded). The coring extend mechanism was found to be blocked with sticky cuttings. The MSCT tools were cleaned out and RIH. 14 cores were cut, and 12 successfully recovered to surface.

Note: Static losses of approximately 2-3bbls/hr were incurred whilst wire line logging.

Well suspension and abandonment

This phase commenced with RIH of the mule shoe on drill pipe to tag fill at 1770m. The TDS was made up and then commenced washing down from 1770m to 1771m but was unable to work past this point. The side entry sub and TIW valve were rigged up on the drill pipe with the mule shoe at 1770m where 5bbl of drill water was pumped and lines were pressure tested to 1000psi without problems. 74bbl of 15.8ppg cement slurry was then mixed and pumped and cement was displaced with 102bbl of mud to spot balanced plug #1A from 1770m to 1630m. The side entry sub was then rigged down and string was POOH from 1770m to 1633m.

The TDS was made up and circulated bottoms up, dumping cement contaminated returns at the surface. The side entry sub and TIW valve were rigged up for the second stage of the bottom cement plug (plug#1B). 5 bbl of drill water was pumped and lines were pressure tested to 1000psi without problems. 78 bbl of 15.8ppg slurry was then mixed and pumped and the cement was displaced with 92 bbl of mud for balanced plug #1B from 1633m to 1500m. The side entry sub was then rigged down and the string POOH from 1500m to 1416m.

The well was then circulated bottoms up with no cement being observed in returns to surface. The string was POOH to 1237m. Concurrently the Quick Jay anti-rotation pin was pulled from the 30in Quick Jay connector located 2m above the mud line. The string was then RIH from 1237m to 1416m and the TDS made up while washing down and tagging the top of plug #1B at 1490m. The string was then POOH to 1249m and a 50 bbl pill of high vis mud spotted from 1249m to 1149m.

The side entry sub and TIW valve were then rigged up in preparation for plug #2. 5bbl of drill water was pumped and lines were pressure tested to 1000psi without problems. 65bbl of 15.8ppg of cement slurry was then mixed and pumped and the cement displaced with 60bbl of mud for balanced plug #2 from 1149m to 1030m. The side entry sub was then rigged down and the string POOH from 1030m to 942m. The well was then circulated bottoms up with no cement returns observed at surface and continued to POOH to 325m. The circulating head and surface lines were then rigged up and plug #2 was pressure tested to 1500psi.

The string was then POOH and a 50bbl pill of high vis mud spotted from 325m to 307m. The side entry sub and TIW valve were then rigged up in preparation for plug #3. 5bbl of drill water was pumped and lines were pressure tested to 1000psi without problems followed by pumping of 6bbl of drill water. 38bbl of 15.8ppg of cement slurry was then mixed and pumped followed by 2bbl of drill water for balanced plug #3 from 207m to 130m. The excess cement was then reverse-circulated and the hole displaced with seawater.

The string was then POOH from 130m to 30m. The BOP and wellhead were jetted with seawater. The diverter, overshot and overshot riser were then picked up and laid out followed by the nippling down of the bell nipple and lower riser joints which were also laid out. The BOPs were then nippled down and skidded back. The nominal bore protector was retrieved and the valves on the wellhead removed. The wellhead running tool was then picked up and made up to the wellhead. The wellhead was pulled and broken off at the 20in crossover and laid out. The 20in x 13.375in wellhead crossover was cut and laid out followed by the cutting and laying out of the 13.375in casing landing string and MLS running tool.

The 13.375in temporary abandonment cap was then picked up and RIH but was unable to pass through the connector of the 30in conductor at 29m. The cap was then POOH and 2.25cm were ground off of each centraliser blade in an attempt to pass through the hang up point. This failed however as the cap was re-run in hole and once again was unable to pass below 29m. The T/A cap was POOH once more, and a further 3mm ground off of each centraliser blade and re-RIH without problems. The cap was then engaged and set into the 13.375in MLS casing hanger; the abandonment cap running tool was POOH.

The 30in casing spear was then picked up, made up and RIH to latch onto the 30in conductor taking the weight of the 30in conductor casing while releasing the tension on the CTU and removing the icon clamp and CTU insert.

The Quick-Jay connection was then backed out at the seabed with 6k ft-lb and the 30in conductor was pulled to surface. The 30in bushing was then installed and an unsuccessful attempt made to remove the 30in spear; instead the first 30in joint was laid out with spear still in place – this was subsequently retrieved by cutting the conductor. A further four joints of 30in conductor, including the joint with Quick-Jay pin connection, were pulled and laid down. The 30in handling equipment was then rigged down

Rig demobilisation

The CTU was then nippled down and secured, the 30in trash cap made up onto the running tool and RIH to 71m. The ROV failed and the trash cap was POOH; the running tool racked back while the ROV problems were being rectified. The BOP slings were then rigged up, equipment cleared from CTU work platform and mousehole removed. The work platform was transferred to the main deck and the CTU moved to storage position and the choke line removed from the CTU deck.

At this point preparation began for skidding the rig into position (slot #2) for the next well. The slings were picked up for the lifting of the CTU deck extension from the boat. The service lines were then rigged down and the rig skidded out into position for lift off the boat.

The 30in trash cap was installed after the ROV had been repaired.

***** 16.30hrs, 9th May 2008: END OF WELL: WEST SEAHORSE - 3 *****

The total time spent on the well was 17.25 days, including mobilisation.

Mobilisation and drilling phases

0	bservations by Phase	Comments / Corrective Action Taken or Proposed
Mob & rig up	Slower than expected rigging up of the Low Pressure riser was observed due to the rig having only one riser handling clamp.	Back up clamp is being arranged.
Drill 36in conductor hole		
Set 30in conductor		1. More
Drill 17.5in hole		
Set 13.375in casing	1. SSR plug set did not work as designed; no pressure increase was observed to indicate the release of bottom plug; Upon retrieval of the wellhead running tool the upper fin of the cement wiper plug release dart was found lodged in the crossover above. 2. In attempting to disengage the wellhead running tool, torque was applied down the landing string consequently backing out at the 13.375in BTC connection at the bottom of the wellhead crossover resulting in fishing operations.	 Following actions captured in cementing review- Omit bottom plug from future jobs Calliper ball/dart IDs and all running string ID's prior to job to ensure no shoulders present Limit ball/dart landing rate to 1bpm Preset on board computer sampling rate to 5 per second to enable capturing full data for future analysis Wellhead running procedures to be modified as below- Break connection between running tool and housing at rotary prior to running in hole Clutch type running tool to be run with blocks unlocked Modify drill pipe running adapter to include a 1in ball valve to allow any trapped pressure to be bled off
Drill 12.25in Hole		
Log 12.25in		
Suspend well		
Rig down & move out		

Health, safety & environmental summary

The West Seahorse-3 well was drilled with a satisfactory HSE performance having no lost-time or medical treatment incidents recorded and only one minor first aid incident. Two near-miss incidents occurred, the risks of which were minimised with the use of good planning and foresight, covering the hazards with the crew during Pre Tour meetings prior to commencing the jobs and heightening awareness of the correct procedures to follow.

The sound execution of this well is attributed to a combination of meticulous planning, the distribution of written procedures for each job highlighting possible HSE issues and covered in pre job safety meetings, teamed with the conscientious efforts of all management and crew.

The following is an overview of incidents, tests, and drills etc, which were evaluated and conducted during the time on West Seahorse-3:

Parameter	Units		Comment(s)
Man-hours	number	19332	
STOP Cards Generated	number	567	
Total MODU Proactive Safety Efforts	number	1006	Including Issued / Active Work Permits, JSA, Work Instructions, Pre Job safety Meetings, TOFS, Area Authority Audits & STOP
Audit			
Internal EP Compliance Audit	number	1	Done on MODU on 2nd – 5th May 08;
MODU Mini HSE Audits	number	3	By the Drilling HSE Advisors
Training			
ADA ERG Exercise	number	1	Emergency Response table top exercise Southern Stars for 3D Oil held on 2th May 08
Environmental Plan Training	number	1	Done for Pacific Battler on 30th May 08
MODU Emergency Drill	number	4	1) 2 Fire / Abandon / Muster (Weekly) Drills held on 27th Apr 08 and 4th May 08 2) 1 Medical Drill held on 3rd May 08 3) 1 Spill Drill held on 4th May 08
Reportable Incident			
Lost Time Injury (LTI)	number	0	
Alternate Duties Injury (ADI)	number	0	
Medical Treatment Injury (MTI)	number	0	
Non Reportable Incident			
First Aid Case	number	1	2/5/08 - Crew had laceration and bruise on nose when trying to catch a thrown lanyard.

Basic Data			
Parameter	Units		Comment(s)
Near Miss	number	2	1) 1/5/08 - Dislodged shipping plugs due to trapped pressure in running tool; 2) 2/5/08 - Slipped out wire out of snake during changing out of wire on air hoist, on rig floor.
Recordable incidents			
Spills - occurrence	number	0	
Spills - quantity	Litre	0	
Wastes			
Hazardous wastes	m^3	1	All wastes are properly packed, stored and
Non-hazardous wastes	m ³	57	sent onshore to GML and disposed accordingly through Corio Waste Management, an EPA - approved permit holder to transport various wastes including waste from offshore
Marine User Interaction			
Cetacean sightings	number	0	
Errant vessel interaction	number	0	
Impacts from Fishing Operations (interaction)	number	0	
Water Based Mud (WBM)			
Volume water based drilling fluid dispose into the ocean (m³)	m ³	734.8	
Volume of drill cuttings using WBM disposed to the seabed (m ³)	m^3	206.9	

Highlights

- No major HSE incident
- No spill or damage to environment
- Well completed within planned time and budget
- All geological drilling targets achieved
- Acquired almost all programmed LWD and wireline log data
- Deployed Powerdrive rotary steerable system successfully saving time and cost and improving wellbore quality. It is estimated half a day was saved by comparing the time taken to drill to a well drilled previously using a conventional mud motor.

Lowlights

- Fishing of 13.375in casing landing string resulting from inability to back-off wellhead running tool.
- Failure of SSR plug system leading to the presence of a cement sheath inside the 13.375in casing.
- Failure of the MSCT tool during log #3 caused 2 hours Non Productive Time (NPT).
- ROV failure caused 1 hour non productive time while running 13.375in TAC and 30in trash cap.
- There were delays delivering the Valkyrie vessel and so Apache sublet the Wrangler from Santos (ex Port Melbourne) to fill in the gap until the Valkyrie arrived. The Valkyrie failed after just one day after mobilisation from Singapore due to high vibration from pipework around the engines. Both the port and starboard engines gear box oil pump failed on the 28th of March and 10th April respectively causing further delays.

3. TIME ANALYSIS

Summary

The time from beginning to end of West Seahorse-3 well totalled 17.25 days, compared to the programmed total (normalised for the actual scope of work) of 17.25 days. The original AFE programmed total was 26.77days. The change from the original to the normalised AFE time breakdown is explained on the grounds of the following:

- Cancellation of the 9.625in casing phase (reduction of 1.92 days)
- Cancellation of well testing (reduction of 7.60 days)

Therefore the actual time on location equalled the normalised AFE planned time (i.e. ignoring the casing and testing phases).

Total Non-Productive Time (NPT) amounted to 2.06 days for West Seahorse-3

- 70.94% of all NPT occurred during the setting of the 13.375in casing. The Drill-Quip Wellhead Running tool failed to release and the wellhead was brought back to surface still attached to running tool. In attempting to disengage the running tool torque was applied down the landing string backing out at the 13.375in BTC connection at the bottom of the wellhead crossover, (costing 1.46 days). The landing string remaining down hole was successfully retrieved and re-run as per program.
- 17.15% of all NPT occurred during the drilling of the 12.25in hole. A 6bbl gain was observed by the driller at the same time as a 0.27% gas peak. Shut in well and checked flow – no flow (costing 0.042days)
- 3.89% of all NPT occurred whilst logging the 12.25in open hole. MSCT tool failure. (costing 0.08 days)
- 1.94% of all NPT was incurred during suspension, due to ROV problems. (costing 0.042days)
- Some time was lost in making up the wellhead assembly (to install an adjuster nut omitted initially) and nippling up of the diverter due to having only one riser handling clamp on the rig.

All of the non productive times incurred were offset by time savings elsewhere in the programme and overall the well was completed in time within the AFE. In total 11.93% of the time on well was incurred as non-productive time, which is in the order of the industry average.

Non-productive time analysis

Dhaca (in coguence)	NPT					NPT b	y Cause	9		
Phase (in sequence)	(days)	WOW		Hole Condition	Rig	g Equipment		Third Party	Do	wn hole Equipment
Mob & rig up	0.00									
Drill 36" conductor hole	0.00									
Set 30" conductor	.125								.125	3 hour was lost making up the wellhead assembly (to install an adjuster nut omitted initially)
Drill 17.5" hole	0.00									
Set 13.375" casing	1.46				0.04	Unable to break out TDS	0.17	Unable to break out wellhead running tool. Retrieved with wellhead still attached, backed out at the 13.375in BTC connection at the bottom of the wellhead crossover.	1.25	Fished out 13.375in landing string remaining down hole due to wellhead running tool malfunction Landing string re- run as per program.
Drill 12.25" hole	0.353		0.04	Well shut-in to investigate 6bbl gain at the same time as a 0.27% gas peak. Circulated bottoms up (Max gas 0.13%)					.313	It took longer than expected to wash and ream from 285m to 1103m MDRT.

Log 12.25" hole	0.08				0.08	Log#2: MSCT- mechanical tool failure when attempting to take cores. POOH hole, checked tool - coring mechanism blocked with sticky cuttings	
Suspend well	0.04				0.04	Troubleshoot ROV	
Rig down & move out	0.00						
TOTALS	2.058	0.00	0.04	0.04		0.29	1.688
Percentage of NPT	100.0%	0.0%	1.94%	1.94%		14.09%	82.02%
Percentage of Total Well Time	11.93%	0.0%	0.23%	0.23%		1.68%	9.79%

Time reconciliation by well phase

	·			Total NPT			Rig Repair			WOW		
OPERATION PHASE	Planned Time (days)	Actual Time (days)	days	% of Total Actual Time	% of Total NPT Time	days	% of Total Actual Time	% of Total Rig Repair Time	days	% of Total Actual Time	% of Total WOW Time	Delta
Mob & rig up	2.50	1.46	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	-1.04
Drill 36" conductor hole	0.67	0.50	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	-0.17
Set 30" conductor	1.44	1.81	.125	0.00%	6.07%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	+0.37
Drill 17.5" hole	3.38	2.17	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	-1.21
Set 13.375" casing	2.68	5.27	1.46	8.46%	70.94%	0.04	.23%	100.00%	0.00	0.00%	0.00%	+2.59
Drill 12.25" hole	2.57	1.60	0.353	0.23%	17.15%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	-0.97
Log 12.25" hole	1.75	1.60	0.08	0.46%	3.89%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	-0.15
Suspend well	2.13	2.71	0.04	0.23%	1.94%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	+0.58
Rig down & move out	0.13	0.13	0.00	0.00%	0.00%	0.00	0.00%	0.00%	0.00	0.00%	0.00%	-0.01
TOTALS	17.25	17.25	2.058	11.93%	100.00%	0.04	.23%	100.00%	0.00	0.00%	0.00%	-0.00

Time breakdown

			Time	(days)		
Operation Phase	Planned	Actual	Programmed	Unprogrammed	NPT Programmed	NPT Unprogrammed
Mob & rig up	2.50	1.46	1.46	0.00	0.00	0.00
Drill 36" conductor hole	0.67	0.50	0.50	0.00	0.00	0.00
Set 30" conductor	1.44	1.81	1.81	0.00	0.125	0.00
Drill 17.5" hole	3.38	2.17	2.17	0.00	0.00	0.00
Set 13.375" casing	2.68	5.27	5.27	0.00	1.46	0.00
Drill 12.25" hole	2.57	1.60	1.60	0.00	0.353	0.00
Log 12.25" hole	1.75	1.60	1.60	0.00	0.08	0.00
Suspend well	2.13	2.71	2.71	0.00	0.04	0.00
Rig down & move out	0.13	0.13	0.13	0.00	0.00	0.00
TOTALS	17.25	17.25	17.25	0	2.058	0

Key observations and corrective actions - mobilisation and drilling phases

Observations by Phase		Comments / Corrective Action Taken or Proposed
Mob & rig up	Slower than expected rigging up of the Low Pressure riser was observed due to the rig having only one riser handling clamp.	2. Back up clamp is being arranged.
Drill 36in conductor hole		
Set 30in conductor		2. More
Drill 17.5in hole		
Set 13.375in casing	 SSR plug set did not work as designed; no pressure increase was observed to indicate the release of bottom plug; Upon retrieval of the wellhead running tool the upper fin of the cement wiper plug release dart was found lodged in the crossover above. In attempting to disengage the wellhead running tool, torque was applied down the landing string consequently backing out at the 13.375in BTC connection at the bottom of the wellhead crossover resulting in fishing operations. 	 Following actions captured in cementing review- Omit bottom plug from future jobs Calliper ball/dart IDs and all running string ID's prior to job to ensure no shoulders present Limit ball/dart landing rate to 1bpm Preset on board computer sampling rate to 5 per second to enable capturing full data for future analysis Wellhead running procedures to be modified as below- Break connection between running tool and housing at rotary prior to running in hole Clutch type running tool to be run with blocks unlocked Modify drill pipe running adapter to include a 1in ball valve to allow any trapped pressure to be bled off
Drill 12.25in hole		

Observations by Phase		Comments / Corrective Action Taken or Proposed
Log 12.25in hole		
Suspend well		
Rig down & move out		

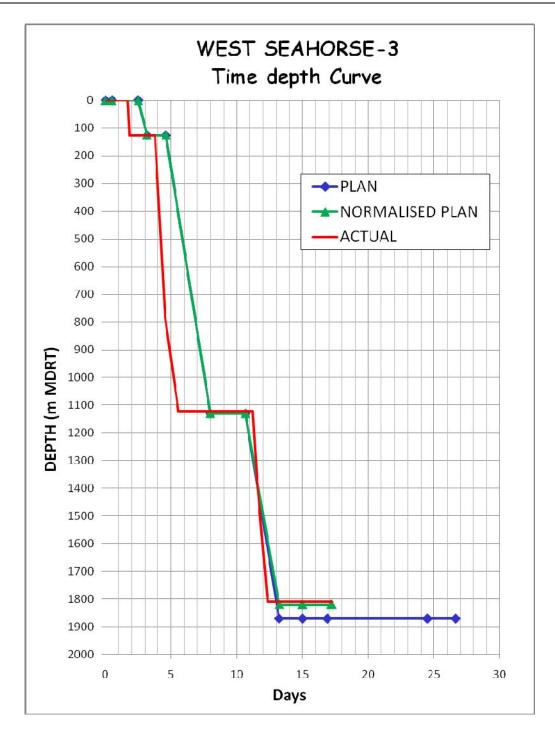
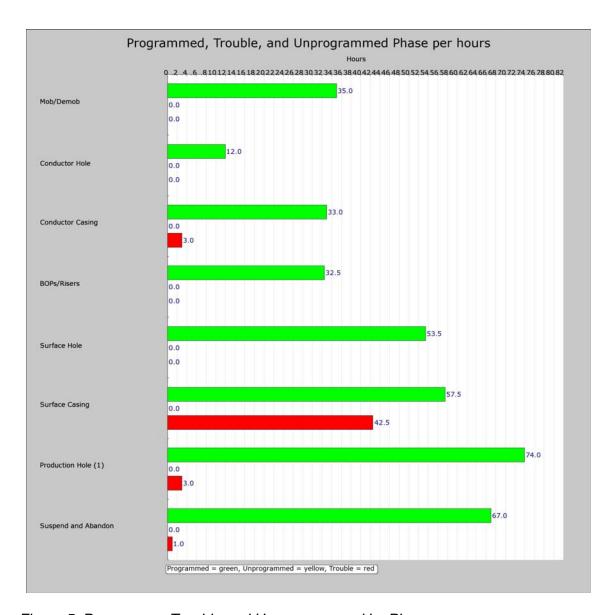
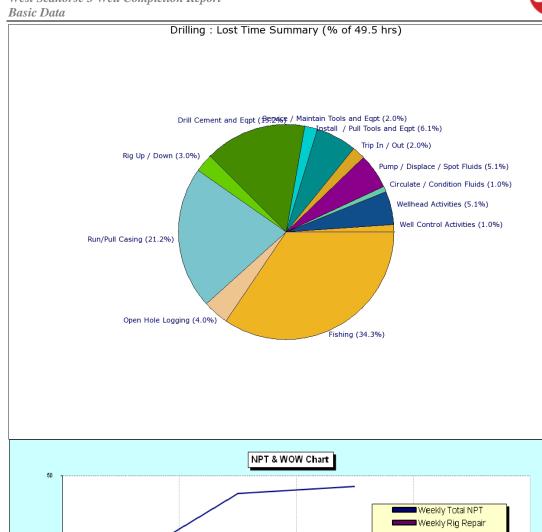


Figure 4. Time Depth Curve. Note: The normalized plan reflects the actual scope of work and excludes 9.625in casing and well testing operations.




Figure 5. Programme, Trouble and Un-programmed by Phase.

Total Time on Operations : 414 hrs Total Productive Time : 364.5 hrs

Total Lost Time: 49.5 hrs

Total Unprogrammed Time: 0 hrs

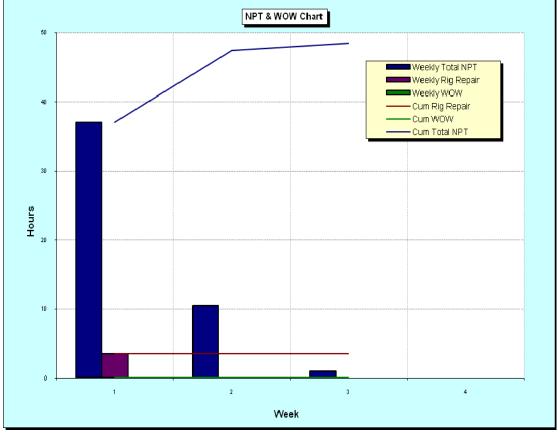


Figure 6. Lost time summary during drilling period.

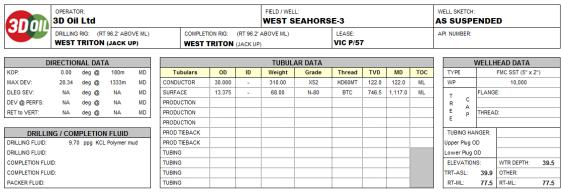
4. DRILLING RECORDS AND ENGINEERING

Drilling summary report

West Seahorse-3 was designed as an 'S' profile deviated well. The surface location was selected approximately midway between the sub-surface locations of Wardie-1 and West Seahorse-3. The West Seahorse-3 well was spud in at 04:15 hrs on 24 April 2008, using a 660mm (26") Reed Rock Y1 1C bit with a 914mm (36") Hole Opener. The hole was drilled from the seabed at 77.5 m to 125.0 mMDRT. This section was drilled using seawater and hi-vis gel sweeps, with cuttings returns to the seabed. The 762 mm x 508 mm (30" x 20") conductor string was run and cemented with the 508 mm casing shoe set at 122.0 mMDRT.

After cementing the conductor, the BOPs and marine riser were run. The BOPs were pressure-tested and the diverter installed. The 445mm (171/2") hole section was drilled using one tricone rock bit. A Hughes MXL-T1V bit (NB2) was made up to a directional drilling BHA with motor and MWD tools. The hole was directionally drilled using PHG mud. The bit drilled out the 508 mm (20") casing shoe from 121.0 to 122.0 mMDRT and then the well was directionally drilled a further 998.0 meters to section TD at 1123.0 mMDRT. The well was kicked off at a depth of 172mMDRT and angle built to approximately 27.4° by 682mMDRT and this angle was maintained for the tangent section. The 340 mm casing was run and cemented with the shoe set at 1117.0 mMDRT.

The 311 mm (121/4") hole section was drilled with a new Reed RSX61 6-MA1 6 PDC bit. The bit was made up to a directional drilling BHA with Powerdrive and LWD tools. After tagging the cement high at 285.0 mMDRT, the bit washed and reamed down to the top of float collar at 1103.0 mMDRT. Then the cement plugs, float collar, shoe track, float shoe were drilled out before deepening the hole by three meters to 1126.0 mMDRT. The PHG mud in the well was displaced to KCI-Polymer water-based mud system initially weighted to 1.13 sg while drilling out the cement and float collar. Pulling back into the shoe, a Formation Integrity Test (FIT) was performed with 1.13 sg mud yielding an Equivalent Mud Weight (EMW) of 1.64 sg (no leak-off). This PDC bit drilled the entire section to well TD at 1810.0 mMDRT. The hole angle and azimuth was maintained until the second kick-off point at ~1 420 mMDRT where it was steered down to a second tangent angle of approximately 8.75° through the Latrobe target interval. Total depth was reached at 19:00 hrs on 04 May 2008 and the bit was pulled out for wireline logging.


After the wireline logging was successfully completed, the West Seahorse-3 well was suspended with four cement plugs that were set on 07 and 08 May 2008. Cement plug 1A was set from a hold-up depth of 1770m to 1630 mMDRT and was followed immediately by cement plug 1B from 1630m to 1500 mMDRT. After WOC, the top of plug 1 B was tagged by the drill string at 1490 MDRT with 8 klbs weight. Cement plug 2 was then set across the 340 mm casing shoe from 1147m to 1030 mMDRT. Plug 2 was pressure tested to 1500 psi after the cement had hardened. The final suspension cement plug was set from 270m to 130 mMDRT. A temporary abandonment cap (or "trash" cap) was then installed on top of the 762mm (30") Quick-Jay box connector, 2m above the seabed.

The CTU deck extension was installed on the MODU West Triton and the cantilever was then skidded forward approximately 2.5m to the Wardie-1 slot. The rig was released to the Wardie-1 well at 16:30 hrs on 09 May 2008.

Final drilling, casing and cementing schematics

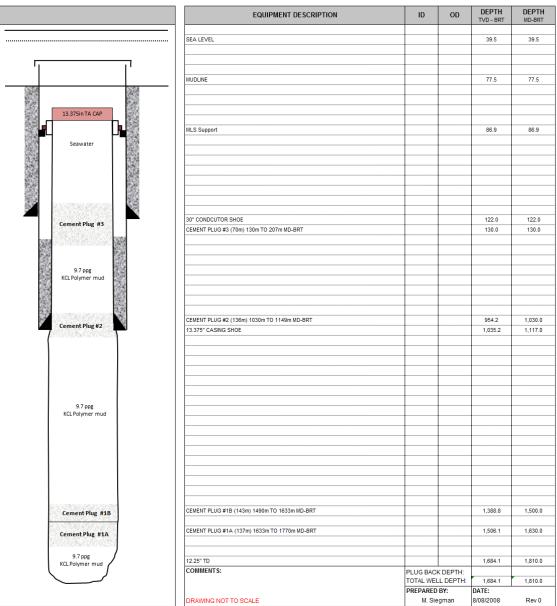


Figure 7. Summary of drilling schmatics and engineering.

Drilling and engineering

914 mm (36") Hole Section

24 April 2008

Bit Run No. 1 Summary

Bit No. NB1

Bit Size, mm 660 mm with 914 mm Hole

Opener

Bit Type Rock / Reed Y1 1 C

 Serial Number
 34406

 Jets
 3x22, 1x16

 Depth In, mMDRT
 77.5

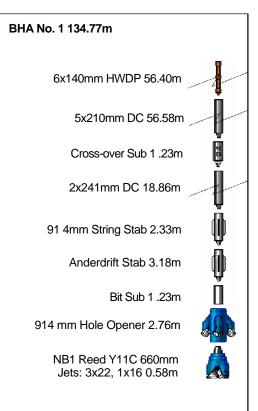
Depth Out, mMDRT 125.0

Bit Grading 0-0-RR-0-0-I-0-TD

Drilling Parameters

WOB, mt 0.2 – 5.2 RPM Surf 64 Pump Pressure, kPa 1613 – 6543 Flow In, Ipm 2244 – 4481 Torque, kNm 0.05 – 6.95

Mud


Seawater 1.06 sg High viscosity gel sweeps

Lithology

Returns to seabed.

Drilling Summary

This spud assembly was made up, run in, tagging the seabed at 77.5 mMDRT. West Seahorse-3 was spudded at 0415hrs on 24 April 2008, drilling 914 mm hole from seabed to 125.0 mMDRT. At TD, a PHG mud pill was pumped around the hole before displacing the hole to PHG mud.

445 mm (17.5") Hole Section

25 - 28 April 2008

Bit Run No. 2 Summary

Bit No. NB2 Bit Size 445 mm

Bit Type Rock / Hughes MXL-T1 V

 Serial Number
 60654689

 Jets
 3x20

 Depth In, mMDRT
 125.0

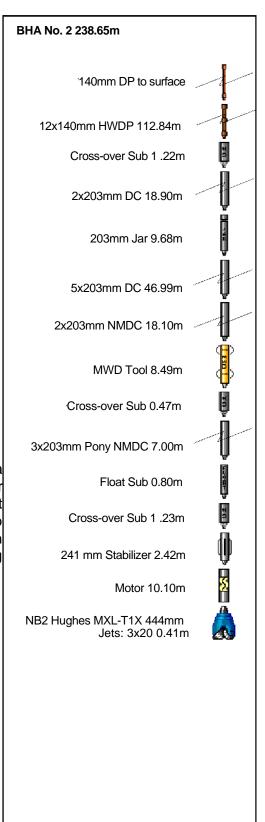
 Depth Out, mMDRT
 1123.0

Bit Grading 2-2-WT-A-E-I-BT-TD

Drilling Parameters

 $\begin{array}{lll} \text{WOB, mt} & 0.5-26.3 \\ \text{RPM Surf} & 0-100 \\ \text{Pump Pressure, kPa} & 8446-24386 \\ \text{Flow In, lpm} & 3081-4678 \\ \text{Torque, kNm} & 0-20.25 \end{array}$

Mud


PHG 1.10 – 1.14 sg

Lithology

Calcarenite, Calcilutite, Calcilutite, Sand, Marl & Claystone

Drilling Summary

A Hughes MXL-T1V bit was made up to a directional drilling BHA with MWD tools. After tagging the top of 508mm (20") shoe, the bit drilled out 508 mm shoe and rat hole to 125.0 mMDRT. The 445 mm hole section was directionally drilled with 1.10 – 1.14 sg PHG mud to TD of section at 1123.0 mMDRT.

311 mm (12.25") Hole Section

2 - 5 May 2008

Bit Run No. 3 Summary

Bit No. NB3

Bit Size 311 mm

Bit Type PDC / Reed RSX61 6 MA1 6

 Serial Number
 218662

 Jets
 3x15, 3x16

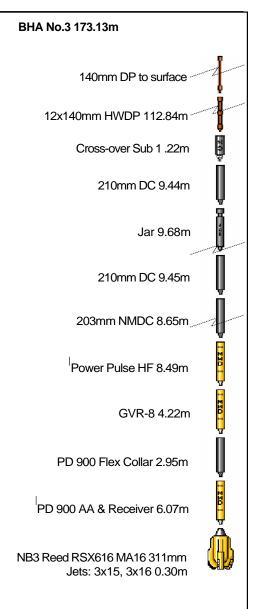
 Depth In, MDRT
 1123.0

 Depth Out, mMDRT
 1810.0

Bit Grading 2-1 -CT-A-X-I-WT-TD

Drilling Parameters

Mud


KCI-Polymer 1.13 – 1.16 sg

Lithology

Calcisiltite, Calcilutite, Calcareous Claystone, Siltstone, Coal, Sandstone

Drilling Summary

The bit was made up to a drilling BHA with MWD tools. After tagging the cement high at 285.0 mMDRT, the bit washed and reamed down to the top of float collar at 1103.0 mMDRT. Then the bit drilled out shoe track, float shoe and three meters of new formation to 1126.0 mMDRT. The hole was displaced to KCI-Polymer water-based mud system initially weighted to 1.13 sg when drilling out cement and float collar. Pulling back into the shoe, a Formation Integrity Test (FIT) was performed with 1.13 sg mud yielding an Equivalent Mud Weight (EMW) of 1.64 sg. This bit drilled to well TD at 1810.0 mMDRT.

Casing and cementing

762 x 508 mm (30" x 20") Casing

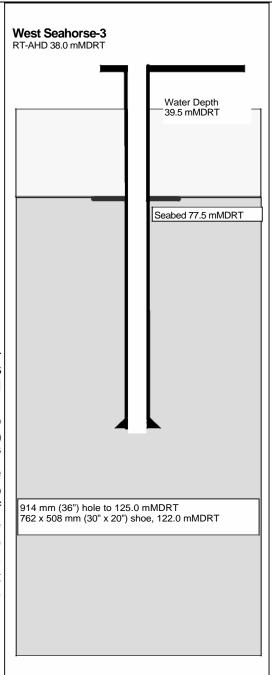
24 - 25 April 2008

Hole Size: 914 mm (36") Depth: 125.0 mMDRT

Casing Details

OD 762 mm (30")
Grade / Wt: X52 461 kg/m
Joints: 6 x 762 mm joint
1 x 508 mm shoe

Shoe: 122.0 mMDRT


Cement Details SLURRY:

Type: Class G

Weight: 1.9 sg (15.8 ppg) Slurry Volume: 54.5 m³ (343 bbls)

Summary

The 762 x 508 mm casing string was run on 24 April 2008. The 508 mm conductor shoe was set at 122.0 mMDRT (casing tally) and cemented as per the cementing program. The cement lines were pressure tested to 1200 psi. A pre-flush comprising 4.76 m³ (30 bbls) of seawater followed by a further 3.8 m³ (20 bbls) of seawater with fluoroscein dye was pumped ahead. The cement job consisted of pumping of 54.5 m³ (343 bbls) of 1 .9 sg (15.8 ppg) class "G" slurry. The cement was displaced with 1.27 m³ (8 bbls) of seawater. After the casing was hung off in the mudline suspension hanger, the cement stinger and the 140 mm drill pipe were pulled to surface.

340 mm (1 3.375") Casing

28 - 29 April 2008

Hole Size: 445 mm (17.5") Depth: 1123.0 mMDRT

Casing Details

OD 340 mm (1 3.375")
Grade / Wt: N80: 101 kg/m
Joints: 1 Shoe joint
1 Float joint

93 x Casing joints

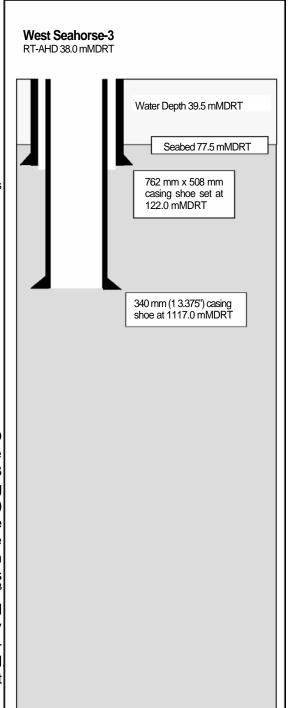
Shoe: 1117.0 m

Cement Details LEAD SLURRY:

LEAD SLUK

Type: Class G

Weight: 1.50 sg (12.5 ppg) Slurry Volume: 28.6 m³ (200 bbls)


TAIL SLURRY:

Type: Class G

Weight: 1.90 sg (15.8 ppg) Slurry Volume: 11.5 m³ (60 bbls)

Summary

The 340 mm casing was run in hole as per 3D Oil's casing program. Once landed, the casing was circulated at 525 gpm with 111 .3 m³ (700 bbls) of mud. After pressure testing the cement lines to 4000 psi, a 9.5 m³ (50 bbls) seawater spacer was pumped ahead before the lead and tail slurries were pumped down the casing. A problem was observed when shearing the wiper plug. The cement was displaced with the rig pumps, with 83.5 m³ (542 bbls) of mud. The plug was not bumped and so the cement was over-displaced by 50% of the shoetrack volume (3 bbls of overdisplacement) before the pumps were stopped The floats held. The casing shoe was set at 1117.0 mMDRT.

Cement plugs

7 - 8 May 2008

Hole Size: 311 mm (12.25") Depth: 1810.0 mMDRT

Cement Plug Details CEMENT PLUG #1A:

Туре:

Class G

Weight: 1.89 sg (1 5.7 ppg) Slurry Vol: 11.76 m³ (74 bbls)

CEMENT PLUG #1 B:

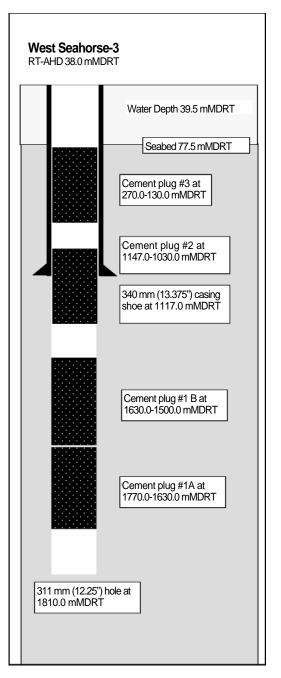
Type: Class G

Weight: 1.89 sg (1 5.7 ppg) Slurry Vol: 12.40 m³ (78 bbls)

CEMENT PLUG #2:

Type: Class G

Weight: 1.89 sg (1 5.7 ppg) Slurry Vol: 10.33 m³ (65 bbls)

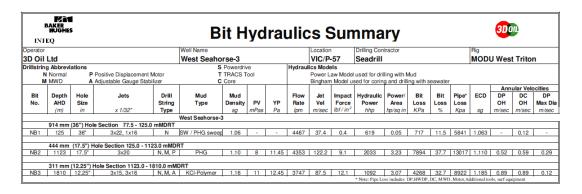

CEMENT PLUG #3:

Type: Class G

Weight: 1.90 sg (15.9 ppg) Slurry Vol: 6.04 m³ (38 bbls)

Summary

Four cement plugs were pumped to suspend the West Seahorse-3 well. A cement stinger consisting of a mule shoe on 140 mm drill pipe was run in hole and tagged up on fill at 1770 mMDRT. It was not possible to wash down past 1771 mMDRT, so cement plug #1A was set from 1770m to 1630 mMDRT. followed immediately by cement plug #1 B from 1630m to 1500 mMDRT. Plug 1B subsequently was tagged with the cementing string at 1490 mMDRT and weight tested to 8 klbs after cement had hardened. Cement plug #2 was set across the 340 mm casing shoe from 11 47m to 1030 mMDRT. This plug was later successfully pressure tested to 1500 psi. The final cement plug was set from 270m to 130.0 mMDRT. The cement lines were tested to 1000 psi prior to pumping all four cement plugs. The hole was circulated clean and contaminated mud dumped after plugs 1A, 1B and 2 while a reverse circulation of the 140 mm drill pipe volume was done after cement plug 3.



Bit run summary

_																												_
OPE	RATOR						WELL NAME					LOCATIO			CONTRAC									RX				
_			3D Oil Ltd					West Sea	ahorse-	3		VIC/P-	57			Seadrill								\perp	(MO	DU) W	est Triton	
				// 4		Mud Pump Dat	a					BITOUL	LCHARA	CTERISTICS	•								REA	SONS F	ULLED			
				BAKER HUGHES	Pumps 1, 2	2, and 3		BC - Braken Cone		CI - Core Interior	100	JD - Junk De	mage	PB - Pindred Bit		55-541-Shapining			-	SEASON SE		is-Miritag		100	Formation Change	12	Total Dig By B	
	13	nn	7)	DAREK	165 mm 6.	.5" Liners		OT-Order Teth		OR - David		LO-Lost Ca		PK-Plagged Nozale		TS - Tacking			DEP - Downs	a Make Labor		e equipment			SA PAGENTA	19	Torque	
	Y	~~	•	HUGHES	355 mm 1	4" Stroke		EU-Baketie		CT - Chipped Teel		DV-Cost No.	nde:	RG - Randed Garge		BO - Warhes Out B			DE CAR	gase.		r - Diversión	ne.	100	911	78	TelOf	
			INT	EO	97% Efficie	ency, 16.03 litreist	k	CO - Credied Con		FO-Mat Created I	Vene	LT- Lat Tre		NO - ResOut		WT - Warn Troth			DET O I NO	0.74		- Greine			September 1		Made College	
			1141	LQ	(0.	.1394 bbl/stk)		CO - Cone Drawn	a .	HD - Had Church		00-010e	ter Winner	50-SHEEDware		NO No Dalichana			err course			- Dilling			-		Market Dirthry	
вн	A	вп	MAKE	TYPE	TFA	JETS	SERIAL	DEPTH	METRES	HRSON	AV ROP	CIRC	WOB	RPM	TBR	SPP	FLOW	TQ		-	GRADE				M	N	REMARKS	3
		No.			sq.in.		No.	IN m	ON BIT	воттом	m/hr	HRS	tonne	Surf/Motor	krev	kPa	lpm	kNm	1 1	о в	L	В	G	0	3 9	3		
					West Seah	orse-3															-							
	914	4 mm (36") Hole Section	77.5 - 125.0 mMDRT																								
1		NB1	Reed	Y11C	1.3100	3x22, 1x16	34406	77.5	47.5	2.3	20.7	3.1	2.1	64/64	8.9	1613-6543	2244-4481	0.05-6.95	0 1	0 RR	0	0	1	0 T	D sw	1.06)	Spud	_
																					-							
г	44	4 mm (17.5") Hole Section	125.0 - 1123.0 mMDRT	r																							
2		NB2	Hughes	MXL-T1V	0.9204	3x20	60654689	125	998	27.8	35.9	36.9	10.1	0-100/89-231	301.7	8446-24386	3081-4678	0-20.25	2	2 WT	A	E	1 1	BT T	D 1.10	1,14	13.375" Casing	point
								•		•				•	•	•		•										
г	31	1 mm (12.25") Hole Sectio	n 1123.0 - 1810.0 mMDF	RT TD																							
3		NB3	Reed	RSX616 MA16	1.1068	3x15, 3x16	218662	1123	687	19	36.2	39.2	6.0	56-171/56-171	170.8	8590-13520	3520-3993	1.92-20.27	2	1 CT	A	X	1 1	VT T	D 1.13	1.16	TD	
								•						•	•	•		•							•			
г																												
ı						RT-AHD (m)			38.	D m																		
						RT - Seabed			77.	5 mMDRT																		
						Total Depth (m)			1810.	D mMDRT																		

Bit Hydraulics summary

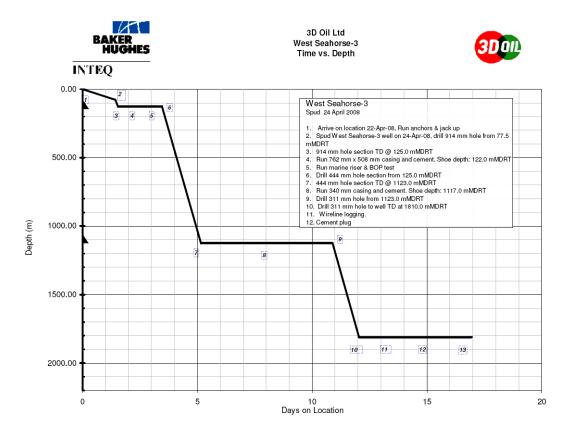


Figure 8. Summary of casing and cementing schematics by Time vs. Depth scale.

Directional drilling summary

Performance drilling report BHA 1 / Bit 2

17 1/2" (445 mm) Steerable Motor Assembly 125m – 1123m MD

BHA

17 1/2" Hughes MXL-T1V Tooth Bit (3 x 20 jets)
9 5/8 PowerPak Motor (5:6 lobe, 4.0 stage, 17 1/4 sleeve and 1.5° bend)
17" String Stab
Crossover Sub Float Sub
3 x 8" Pony NMDC
Crossover Sub
PowerPulse MWD (800-1200 gpm)
2 x 8" NMDC
8 1/4" Spiral Drill Collars (5 joints)
Hydraulic Jar
8 1/4" Spiral Drill Collar (2 joints)
Crossover Sub
5 1/2" HW Drill Pipe (12 joints)
5 1/2" Drill Pipe to Surface

Drilling Summary

Drilled cement and float equipment, cleaned out rat hole. Rotary drilled to kick off point at 1 72m. The kick off section was directionally drilled, mainly sliding (and rotating when required), building at 3°/30m to 27.4°.

At 386m, in the kick off section, a full stand was back reamed and reamed down once between 386m to 350m to smoothen and reduce a higher than expected dogleg severity. The dogleg severity was reduced from 5.3°/30m to 4.2°/30m and this process took about 1 hour of rig time which involved racking back a stand which was already made to drill ahead.

The tangent section was rotary drilled with minor slides (7-10m every 2-3 stands) to counter the general dropping tendency of 0.3° to 0.6°/30m and there was also a slight right hand walk.

From 0° - 8° the motor was able to build at 2.5 °/30m. From 8° - 27° the motor was able to build at 3.8 °/30m.

Reactive torque was about 30° with 25 klbs WOB

No hole problems were encountered or reported and all directional requirements were met. Trip out of the hole was uneventful. Hole was cased and cemented.

Drilling performance:

Interval	Distance (m)	Time (hrs)	ROP (m/hr)
Total Drilled	998	28.81	34.64
Total Drilled in rotary	668	20.88	31.99
Total Drilled in slide mode	330	7.93	41.61
Bit Graded	2 – 2 – W7	Г – A – E – In – E	BT - TD

Section Breakdown

Section	Rotary m (%)	Slide m (%)
Start of run to KOP (125-170m)	45 (100%)	-
KOP to EOC (170-465m)	48 (16%)	247 (84%)
EOC to section TD (465-1 123m)	575 (87%)	83 (13%)

BHA 2 / Bit 3

12 1/4" (311 mm) Rotary Steerable Assembly 1123m – 1810 m MD (687m)

BHA

2 1/4" Reed Hycalog RSX616 MA 16 PDC Bit (3 x 15 & 3 x 16 jets)
PowerDrive 900 X5 (without flow restrictor)
PowerDrive 900 Receiver (with ported float) and Flex Collar
8 1/4" GVR
PowerPulse MWD (600-1200 gpm)
1 x 8" NMDC
8 1/4" Spiral Drill Collar
Hydraulic Jar
8 1/4" Spiral Drill Collar
Crossover Sub
5 1/2" HW Drill Pipe (12 joints)
5 1/2" Drill Pipe to Surface

Drilling Summary

The cement was tagged early at 285m and drilled out, drilling the float equipment was difficult and time consuming. Three meters of new formation was drill out and a formation integrity test was performed.

Once out of the shoe the PowerDrive assembly had a slight dropping tendency in neutral steering mode. The rate of penetration was held to about 30 m/hr until the BHA was clear of the shoe and rat hole and then the drilling parameters were increased. A 50% steering ratio was required to hold the assembly in the tangent section. A rate of penetration of about 60 m/hr was achieved for most of the tangent section and the start of the drop section.

At the start of the drop section the tool was initially placed in a 25% drop with a right bias to counteract a left turn tendency. The drop rate was much lower than expected so steering ratio was increased to eventually 100% low side. Drop rates of only low 2 %30m was achieved in the Lakes Entrance formation. Once into the Latrobe Group formation drops rates increased to low 4 %30m and the required drop angle could be achieved. The rate of penetration was held back to 30 m/hr for logging purposes and this may have helped to improve the drop rate.

Once the drop was achieved the PowerDrive was placed in Inclination Hold mode for the remainder of the tangent section to TD at 1810m MDRT. Both geological targets were successfully penetrated within the allowed tollerance.

A moderate stick-slip was observed for most of the run but it did not affect the steering ability. Stick-slip was considerably lower in the Latrobe Group formation.

The bit was graded as 3-1-CT-A-X-I-WT-TD.

Drilling performance:

Interval	Distance (m)	Time (hrs)	ROP (m/hr)
Rotary mode	687	19.62	35.0

Deviated well, 'S'-type profile. Details see attachment 7

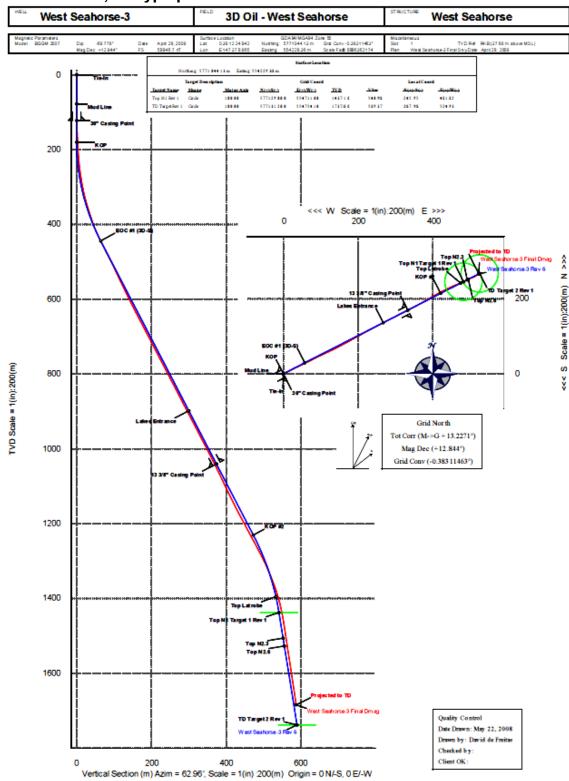


Figure 9. Sketch showing 'S'-type directional drilling profile.

Directional Dmag Geodetic Survey

Surwy J DLS Computation Method: Minimum Curvature / Lubri.

Vertic al Section Azimuth: 62 960°

Vertic al Section Azimuth: 62 960°

TVD Reference Datum: RKB

TVD Reference Elevition: 37 Jm rebtilve to MSL

Begulie Declination: 12 944°

Total Fried Strength: 59946 7 8 nT

Maynetic Dip: 68 778°

Declination Date: April 29, 2008

Magnetic Declination Media: BCGAL 2007

Magnetic Declination Media: Crick Morth

Total Corr Mag North - Orick North

Total Corr Mag North - Orick North

Total Corr Mag North - Orick North

Local Corr dantes: Reference at Te: Well Mead Survey / DLS Computation Method: Minimum Curvature / Lubinsk

Comments	Measured	Inclination	Azimuth	TVD	Vertical	NS	EW	DLS	Northing	Easting	Latitude	Longitude
Comments	Dupth (m)	(deg)	Grid (deg)	(m)	Section (m)	Grid North (m)	Grid North (m)	(deg/30 m)	(m)	(m)	Latence	Longiuse
Tie-In	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5771044.14	554229.36	S 38 12 24 942	E147379.865
Mud Line	77.50	0.00	0.00	77.50	0.00	0.00	0.00	0.00	5771044.14	554229.36	S 38 12 24 942	E 14737 9.865
	182.42	2.71	71.37	182.38	2.45	0.79	2.35	0.77	5771044.93	554231.71	S 38 12 24 916	
	210.69	4.37	68.61	210.60	4.19	1.40	3.99	1.77	5771045.53	554233.34	S 38 12 24 896	
	240.38	6.29	65.93	240.16	6.94	2.47	6.53	1.96	5771046.61	554235.88	S 38 12 24 861	E 147 37 10.132
	269.55	8.46	63.88	269.08	10.68	4.07	9.91	2.25	5771048.20	554239.27		E 147 37 10.271
	299.18 328.89	10.91 13.72	63.41 61.49	298.29 327.31	15.66 22.00	6.29 9.23	14.38	2.48 2.87	5771050.42	554243.73		E 147 37 10.454 E 147 37 10.684
					22.00		19.99		5771053.36	554249.34		
	358.27 388.46	17.82 17.83	63.61 64.35	355.58 384.32	39.22	12.89 16.94	27.08 35.38	4.23 0.23	5771057.02 5771061.07	554256.43 554264.73		E 147 37 10.974 E 147 37 11.315
	417.21	21.75	64.50	411.37	48.95	21.14	44.16	4.09	5771065.27	554273.51		E 147 37 11.674
	446.30	26.47	63.34	437.91	60.83	26.38	54.83	4.89	5771070.50	554284.17		E 147 37 11.074
	476.28	27.58	63.58	464.62	74.45	32.46	67.01	1.12	5771076.59	554296.35		E 147 37 12 111
	505.67	26.63	62.50	490.78	87.84	38.53	78.95	1.09	5771082.65	554308.28		E 147 37 13.099
	534.94	25.97	64.51	517.02	100.80	44.32	90.55	1.14	5771088.44	554319.88		E 147 37 13.575
	564.20	25.07	64.48	543.43	113.41	49.75	101.93	0.92	5771093.86	554331.25	C 20 42 22 207	E 147 37 14.041
	622.88	26.33	65.24	596.30	138.84	60.55	124.97	0.67	5771104.67	554354.28		E 147 37 14 985
	653.06	26.86	63.15	623.29	152.34	66.44	137.13	1.07	57711104.67	554366.44	S 38 12 22 758	
	682.20	27.68	61.89	649.19	165.69	72.60	148.97	1.03	5771116.71	554378.28		E 147 37 15.968
	711.65	27.35	62.23	675.31	179.30	78.97	160.99	0.37	5771123.08	554390.29		E 147 37 16.460
	740.00			704.05	400 70	05.00	470.00		F774400 40	FF 4400 40		E 447.07.40.047
	740.89	27.59	61.54	701.25	192.78	85.33	172.89	0.41	5771129.43	554402.18		E 147 37 16.947
	771.14	27.55	61.08	728.07	206.78	92.05	185.17	0.21	5771136.15	554414.46		E 147 37 17.450
	800.56	27.43	60.89	754.17	220.35	98.64	197.05	0.15	5771142.74	554426.33		E 147 37 17.937
	829.48 858.79	27.85 27.32	61.35 61.21	779.78 805.76	233.76 247.32	105.12 111.64	208.79 220.70	0.49 0.55	5771149.21 5771155.73	554438.08 554449.97		E 147 37 18.418 E 147 37 18.905
	888.16	27.56	61.54	831.83	260.85	118.12	232.58	0.29	5771162.21	554461.85		E 147 37 19 392
	917.34	27.23	62.29	857.74	274.28	124.44	244.42	0.49	5771168.53	554473.69		E 147 37 19.877
	947.31	27.18	62.67	884.39	287.98	130.77	256.57	0.18	5771174.86	554485.84		E 147 37 20 374
	975.78 1005.05	28.05 27.38	62.94 63.78	909.62 935.53	301.18 314.79	136.81 142.91	268.31 280.48	0.93 0.79	5771180.89 5771186.99	554497.57 554509.73		E 147 37 20.855 E 147 37 21.354
	1034.76	27.21	62.92	961.93	328.41	149.02	292.65	0.43	5771193.10	554521.91		E 147 37 21.852
	1064.70	27.86	61.70	988.48	342.25	155.45	304.91	0.86	5771199.53	554534.16		E 147 37 22 354
	1094.42	27.04	62.76	1014.85	355.95	161.84	317.03	0.96	5771205.91	554546.27	S 38 12 19.625	
	1143.32 1155.24	25.87 25.60	63.39 63.14	1058.63 1069.37	377.73 382.91	171.70 174.03	336.45 341.07	0.74	5771215.78 5771218.10	554565.69 554570.31		E 147 37 23.646 E 147 37 23.836
	1184.95	25.36	62.55	1096.19	395.69	179.87	352.45	0.35	5771223.93	554581.68		E 147 37 24 301
	1214.47	26.04	61.37	1122.79	408.49	185.88	363.74	0.86	5771229.95	554592.97		E 147 37 24 764
	1244.37	26.98	60.10	1149.55	421.82	192.41	375.38	1.10	5771236.48	554604.61	S 38 12 18 620	
	1273.71 1303.22	27.90 28.28	59.30 59.93	1175.59 1201.62	435.32 449.19	199.23 206.26	387.06 399.04	1.01 0.49	5771243.30 5771250.32	554616.27 554628.26		E 147 37 25.719 E 147 37 26.209
	1333.07	28.34	61.42	1227.90	463.34	213.19	411.38	0.71	5771257.25	554640.59		E 147 37 26.715
	1362.30	28.22 27.26	62.76	1253.64	477.18 491.22	219.68	423.62 436.16	0.66	5771263.73	554652.83 554665.36		E 147 37 27.216
	1392.46 1421.70	27.26 25.28	63.75 65.76	1280.33 1306.55	491.22 504.15	225.99 231.52	436.16 447.86	1.06 2.23	5771270.05 5771275.57	554665.36 554677.05		E 147 37 27.729 E 147 37 28.209
	1421.70	25.28	67.51	1333.89	516.29	231.52	459.02	2.67	5771280.40	554688.21		E 147 37 28 209
	1481.39	20.37	68.53 67.57	1361.58	527.18	240.45 244.04	469.15	2.39	5771284.50	554698.34		E 147 37 29 081
	1511.23 1540.81	17.28 13.06	67.57 64.38	1389.82 1418.36	536.77 544.49	244.04	478.08 485.16	3.12 4.36	5771288.09 5771291.21	554707.27 554714.34		E 147 37 29 447 E 147 37 29 737
				1418.36	550.57		485.16			554719.73		
	1570.48 1600.19	10.61 8.73	59.84 58.08	1447.40	550.57 555.55	249.99 252.55	490.55 494.83	2.65 1.92	5771294.03 5771296.60	554719.73 554724.00		E 147 37 29.958 E 147 37 30.133
	1629.88	8.74	67.66	1506.03	560.04	254.60	498.83	1.47	5771298.64	554728.00	S 38 12 16.576	E 147 37 30 297
	1658.96	8.56	72.15	1534.78	564.38	256.10	502.93	0.72	5771300.15	554732.10	5 38 12 16 527	E 147 37 30.465
	1688.35	8.90	69.06	1563.83	568.80	257.59	507.13	0.59	5771301.63	554736.31		E 147 37 30 638
	1717.96 1747.50	8.56 8.58	61.83 55.23	1593.10 1622.31	573.28 577.66	259.45 261.74	511.22 514.97	1.16 1.00	5771303.49 5771305.78	554740.39 554744.14		E 147 37 30.805 E 147 37 30.958
	1777.39	8.69	54.55	1651.86	582.11	264.32	518.64	0.15	5771308.36	554747.81		E 147 37 31.109
Designated to TD	1789.31	8.74	56.02	1663.64	583.90	265.35	520.12	0.57	5771309.39	554749.29		E 147 37 31.169 E 147 37 31.276
Projected to TD	1810.00	8.74	56.02	1684.09	587.02	267.11	522.73	0.00	5771311.15	554751.90	o 36 12 16.166	E 147 37 31.276

Survey Type: Definitive Survey

Survey Error Model: SLB ISCWSA version 24 *** 3-D 95.00% Confidence 2.7955 sig ma Surveying Prog:

| MD To (m) | FOU Free | Survey Tool Type | 77.18 | Act-Stre SLB_ZERO-Depth Only | 77.50 | Act-Stre SLB_ZERO | 1094 42 | Act-Stre SLB_MVD-tDMAG | 1789.31 | Act-Stre SLB_MVD-STD | Act-Stre SLB_BLIND+TREND | 1094.42 1789.31

Borehole → Survey
West Seahors → 3 → West Seahors → 3 Final Drag
West Seahors → 3 → West Seahors → 3 Final Drag
West Seahors → 3 → West Seahors → 3 Final Drag
West Seahors → 3 → West Seahors → 3 Final Drag
West Seahors → 3 → West Seahors → 3 Final Drag

5. GEOLOGICAL REPORT

Summary of formation sampling & drill monitoring

Geological formation sampling for West Seahorse-3 commenced from the 445 mm hole section at 125.0 mMDRT to the well's Total Depth at 1810.0 mMDRT. Cuttings, side wall cores and PVT samples were collected and analyzed. Baker Hughes INTEQ SLS provided formation evaluation, drill monitoring services for West Seahorse-3 between 22 April 2008 and 09 May 2008 from the spud depth at 77.5 mMDRT to total depth at 1810.0 mMDRT. Data was processed and stored using **Advantage version 2.10U2** software.

All gas monitoring equipment was calibrated before drilling and checked regularly. Ditch cuttings were continuously collected through the drilling and calcimetry analysis on cuttings samples was performed at the request of the Wellsite Geologists. Rotary Sidewall Cores and pressure samples were made with the Schlumberger MDT/MSCT coring tool. Four oil samples were collected from a depth of 1567mMDRT (1406.1m TDVSS).

Monitoring, logging and testings services

All gas monitoring equipment was calibrated before drilling each hole section and checked regularly. Calcimetry analysis on cuttings samples was performed at the request of the Wellsite Geologists.

Directional surveys

An Anderdrift inclination-only tool was run in the 914mm (36") section to ensure verticality prior to spudding the well. LWD surveys were then run towards the total depth. The resulting final definitive survey data report is included Attachment 7.

Mudlogging

Baker Hughes INTEQ provided mudlogging services for the drilling of West Seahorse 3 from spud to total depth at 1810.0mMD RT using a crew of two data engineers (Yeong Chen Wong, John Mancarella) and two mudloggers (Avadhut Gholap, Darshan Pingle). A fully pressurised and computerised Logging Unit was maintained throughout the drilling and wireline log evaluation phases. A fully computerised data acquisition service operated to total depth at 1810.0mMD RT).

The full mudlogging service included the continuous evaluation of pore pressure and drilling parameters as an aid to optimising drilling costs and ensuring that drilling continued with maximum safety to personnel, the well and equipment. The information obtained while drilling was visually displayed and stored both as hard copy printouts and on hard disc. Details of the services, together with printouts and plots of the results of these services, are contained in the Baker Hughes INTEQ Final Well Report (Enclosures 1-3). The Formation Evaluation Log (mudlog) displays the rate of penetration (ROP), total gas, chromatographic analyses and wellsite interpreted lithologies.

ROP and Gas readings

444 mm Section (125.0 - 1123.0 mMDRT)

Interval (m)	ROP range (m/hr)	ROP average (m/hr)	Total Gas range (%)	Total Gas average (%)
77.5 – 125	5.82 - 100	47.10		
125 – 960	7.1 – 163.6	62.4	0.0002 - 0.0019	0.0011
960 – 1123	7.0 – 69.3	10.2	0.0001 - 0.0076	0.0027

311 mm Section (1123.0 - 1810.0 mMDRT)

Interval (m)	ROP range (m/hr)	ROP average (m/hr)	Total Gas range (%)	Total Gas average (%)
1123 – 1510	12.3 – 91.9	50.2	0.0018 – 0.0150	0.0051
1510 – 1580	10.1- 33.4	26.9	0.0083 - 0.3001	0.0726
1580 – 1810	5.4 – 67.3	26.4	0.0083 - 0.1064	0.0237

Minimum – Maximum Chromatograph Readings

444 mm Section (125.0 - 1123.0 mMDRT)

Interval (m)	C1 (ppm)	C2 (ppm)	C3 (ppm)	iC4 (ppm)	nC4 (ppm)	iC5 (ppm)	nC5 (ppm)
125 – 960	0 – 8	0 – 4	0	0	0	0	0
960 – 1123	2 – 52	0 – 6	0 – 3	0 – 1	0	0	0

311 mm Section (1123.0 - 1810.0 mMDRT)

• • • • • • • • • • • • • • • • • • • •			/				
Interval	C1	C2	C3	iC4	nC4	iC5	nC5
(m)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1123 – 1510	7 – 129	0 – 7	0 – 2	0	0	0	0
1510 – 1580	64 – 1193	2 – 80	1 – 95	0 – 48	0 – 52	0 – 35	0 – 30
1580 – 1810	9 – 976	0 – 40	0 – 28	0 – 12	0 – 14	0 – 12	0 – 10

Formation Evaluation Log, Drilling Log, Pressure Log and Gas Ratio Log are included herein as Enclosures 1-3 respectively

Shows

The following shows were noted in cuttings from the Latrobe Group: (1554 - 1578m) Trace bright pale yellow fluorescence. Moderately fast streaming bright blue white cut. Moderately thick residual ring, becoming thin & spotty with depth.

(1596 – 1602m) Trace bright pale yellow fluorescence.

(1638 – 1644m) Trace bright pale yellow fluorescence.

(1656 – 1668) Trace bright pale yellow fluorescence. Very slow streaming bright bluish white cut. Thin residual ring.

(1674 – 1710m) Trace bright pale yellow fluorescence. Very slow streaming bright blue white cut. Thin patchy weak residual ring.

Gas Peak Table

Depth (mMDRT)	TG (%)	C1 (ppm)	C2 (ppm)	C3 (ppm)	iC4 (ppm)	nC4 (ppm)	iC5 (ppm)	nC5 (ppm)
1565.0	.3	1005	80	95	55	50	35	30
1578.5	.14	555	20	20	0	0	0	0
1590.5	.15	450	20	15	0	0	0	0
1623.0	.07	400	40	15	0	0	0	0
1651.0	.04	150	30	10	0	0	0	0
1671.0	.02	45	10	10	0	0	0	0
1749.0	.005	25	0	0	0	0	0	0

Normalised gas calculation

A "normalised" total gas curve has been plotted on the Gas Ratio Log (see Enclosure 1) for comparison with the regular total gas measurement. The normalised total gas is corrected for flow rate, drilling speed and hole size in an attempt to provide a consistent measure of "actual" mud gas per unit volume that can be compared across the various drilling intervals. The equation for normalised total gas is given below:

Normalised Gas = Total gas x (Total Flow / (ROP x Bit $Size^2$))

Sampling summary and record of distribution

Ditch cuttings were continuously collected through the drilling and Rotary Sidewall Cores were taken with the Schlumberger MSCT coring tool. Four segregated samples were also collected from a depth of 1567mMDRT (1406.1m TDVSS) using the Schlumberger MDT tool. No conventional and percussion sidewall cores were taken in West Seahorse 3.

Ditch cuttings

Cuttings samples were collected at the intervals tabulated below as advised by the Well site Geologists. Sampling Intervals:

125	– 140 m	15 m interval
140	– 1120 m	20 m interval
1120	– 1470 m	10 m interval
1470	– 1806 m	3 m interval
1806	– 1810 m	4 m interval

Samples (washed and unwashed) were missed from the following depths due to high ROP:

```
1473m, 1479m, 1485m, 1488m, 1494m, 1503m, 1509m, 1515m, 1521m, 1527m, 1533m, 1539m,
1548m, 1551m, 1557m, 1563m, 1566m, 1575m, 1581m, 1587m, 1593m, 1605m, 1611m, 1617m,
1623m, 1629m, 1635m, 1641m, 1647m, 1653m, 1659m, 1665m, 1671m, 1677m, 1683m, 1689m,
1695m, 1701m, 1707m, 171 3m, 1719m, 1725m, 1731m, 1737m, 1743m, 1749m, 1755m, 1761m,
1767m, 1770m, 1776m, 1782m, 1788m, 1794m, 1800m, 1806m
```

Six sets of washed and air dried sample splits each of 100g or 200g were collected at 10m, 5m or 3m intervals depending upon the stratigraphic section and rate of penetration (ROP) and retained in plastic bags. One set was dispatched to GeoScience Australia (GA), Core and Cuttings Repository, Symonston, ACT, another set was dispatched to the Victorian DPI Core Library South Road, Werribee, Vic 3030. 3D Oil Limited holds four sets of the cuttings.

Sample Destination

Set A (250g Unwashed Cuttings in Hubco bags) to be forwarded to:

3D Oil Limited Kensington Road Self Storage

180 Kensington Road West Melbourne, Vic. 3003

Set B (250g Washed & Dried Drill Cuttings in polythene bags) to be forwarded to:

3D Oil Limited Kensington Road Self Storage

> 180 Kensington Road West Melbourne, Vic. 3003

Set C (Samplex Tray) to be forwarded to:

3D Oil Limited Kensington Road Self Storage

> 180 Kensington Road West Melbourne, Vic, 3003

Set D (250g Washed & Dried Drill Cuttings in polythene bags) to be forwarded to:

Victorian Dept of Primary Industries

DPI Core Sample Library

18 South Road

(250 m south of Sneydes Road)

WERRIBEE 3030 (Melway Reference: 206 E8)

Set E (250g Washed & Dried Drill Cuttings in polythene bags) to be forwarded to:

Geoscience Australia Manager.

Geoscience Australia Data Repositories

Geoscience Australia

Cnr Jerrabomberra Avenue and Hindmarsh Drive,

Symonstonymonston, ACT, 2609

Set F (Mud Sample & Mud Filtrate) to be forwarded to:

3D Oil Limited Kensington Road Self Storage

180 Kensington Road

WEST MELBOURNE, ViC, 3003

	<u> </u>			INTERVA	<u>L</u>	
SAMPLE TYPE	Well	No. of Sets				PACKING DETAILS
		3612	Large	Small	Interval (m)	DETAILS
			Box No.	Box No.		
				1	125 – 340	
				2	340 – 580	
				3	580 – 820	
			1	4	820 – 1040	
				5	1040 – 1190	
DRILL CUTTINGS				6	1190 – 1300	
250g:				7	1300 – 1410	Packed in 2 boxes
				8	1410 – 1500	marked as Set B,D &
	West Seahorse-3	3		9	1500 – 1560	
Washed & Air Dried				10	1560 – 1608	E.
(polythene bags)			2	11	1608 – 1671	
Set B,D & E			_	12	1671 – 1731	
				13	1731 – 1785	
				14	1785 - 1810	
				1	125 – 240	
				2	240 – 340	
		1		3	340 – 460	
			1	4	460 – 580	
				5	580 – 700	
				6	700 – 820	
				7	820 – 920	
				8	920 – 1020	
				9	1020 – 1130	
UNWASHED	West Seahorse-3			10	1130 - 1180	
SAMPLES	West Seanoise-3			11	1180 – 1240	Max. 8 small boxes
(Hubco):			2	12	1240 - 1290	per large box.
				13	1290 – 1340	
Set A				14	1340 – 1390	Large boxes marked
				15	1390 – 1440	as Set A
				16	1440 –1482	
				17	1482 – 1512	
				18	1512 – 1542	
				19	1542 – 1572	
			3	20	1572 – 1599	
				21	1599 – 1626	
				22	1626 – 1656	
				23	1656 – 1686	
				24	1686 – 1716	
			4	25	1716 – 1746	
				26 27	1746 – 1779 1779 – 1810 (
						Packed in one
SAMPLEX TRAYS: Set C	West Seahorse-3	1	1	-	125 – 1810	wooden box marked
						as Set C

MUD SAMPLES & MUD FILTRATE: Set F West Seahorse-3	1	1	2 (1 L) 1 (50ml)	1810	Packed in one box marked as Set F	
--	---	---	---------------------	------	--------------------------------------	--

Formation Loggings

The lithologies encountered at West Seahorse-3 are described below. For a graphical display of the lithology, see Enclosure 3: Formation Evaluation Log. Note that the lithological descriptions on the Formation Evaluation Log were provided by the 3D Oil Wellsite Geologists, with input from the BHI mudloggers.

Description of Cuttings

914 mm Section (77.5 – 125.0 mMDRT) Returns to seabed. No samples.

445 mm Section (125.0 – 1123.0 mMDRT) 125.0 to 960.0 mMDRT.

Interbedded SANDSTONE and CALCARENITE

SANDSTONE (10- 80%): Light olive grey to olive grey, abundant translucent to transparent grains, friable, abundant very fine to fine, sub-angular to sub-rounded in part, sub-angular quartz and fine shell fragments, minor black lithics, common orange, yellow, rose, minor fine muscovite and biotite flakes, siliceous cement, no to good visible porosity.

CALCARENITE (Trace-90%): Yellowish grey to light olive grey to white in part, moderately hard to hard to recrystallised, very fine to fine and medium in part, angular to sub-angular, translucent, pale yellow to occasional orange, minor black lithics, minor microforaminifera with glauconite replaced cement, trace fine shell fragments, highly calcareous, well cemented, inferred calcite cement in part, and recrystallised grain to grain contacts, poor visible porosity.

960.0 to 1123.0 mMDRT.

Interbedded CALCI LUTITE, CALCARENITE, CLAYSTONE and SANDSTONE:

CALCILUTITE (10-80%): White to olive grey, soft, fine to medium, sub-angular quartz, common fine skeletal fragments, common foraminifera, trace medium green glauconite, highly calcareous, weak silty matrix.

CALCARENITE (10-60%): White to olive grey, moderately hard to recrystallized, very fine to fine and medium in part, angular to sub-angular, translucent, pale yellow to occasional orange, minor micoforaminifera with glauconite replaced cement, trace black lithics, trace fine skeletal fragments, highly calcareous, well cemented, inferred calcite cement in part and recrystallised grain to grain contacts, poor visible porosity.

CLAYSTONE (Trace-5%): Medium grey, soft, amorphous to firm in part, homogenous, flakey in part, occasional locally with glauconite infilled cement, highly calcareous.

SANDSTONE (0-5%): Translucent to white, very hard recrystallized, fine to medium in part, sub-angular quartz, slightly to moderately calcareous, fine white inferred calcite cement in part, poor visible porosity.

311 mm Section (1123.0 – 1810.0 mMDRT) 1123.0 to 1510.0 mMDRT.

Interbedded CALCI LUTITE, CALCARENITE, CALCISILTITE, CALCAREOUS CLAYSTONE AND CLAYSTONE

CALCILUTITE (0-100%): Greenish grey to olive grey in part, soft, trace loose fine skeletal fragments, trace very fine black biotite flecks, trace very loose coarse translucent angular calcite, trace argillaceous claystone, traces of carbonaceous material as streaks and specks, traces shell fragments, traces of micromicas, grading to Calcisiltite in part, grading locally silty.

CALCARENITE (Trace%): White to olive grey in part, moderately hard to hard, very fine to fine and occasionally medium, sub-angular, translucent calcite, trace black lithics, moderately to well cemented in part, inferred calcite cement, fair visible porosity.

CALCISILTITE (0-40%): Light olive grey to olive grey in part, soft to hard in part, common to very fine, dominantly silt sized, transparent to translucent, sub-angular quartz, trace black biotite flecks, trace silt sized mica specks, trace locally with argillaceous matrix.

CALCAREOUS CLAYSTONE (Trace-100%): Medium grey, medium dark grey, olive grey in part, soft to firm, sub- blocky, 20% calcareous clay, trace carbonaceous material, traces very fine pyrite, rare foraminifera.

CLAYSTONE (10-100%): Medium dark grey, dark greenish grey, medium grey in part, medium light grey, brownish grey, soft to firm, sub-blocky, 10% calcareous clay, 10% to 30% glauconite grains, traces micromicas, traces biotite flakes, traces foraminifera, trace very fine grained pyrite aggregates, rare coral fragments, grading to Siltstone in brownish grey fraction.

1510.0 to 1580.0 mMDRT.

Interbedded CLAYSTONE, SILTSTONE, COAL and SANDSTONE

CLAYSTONE (10-100%): Medium dark grey, dark greenish grey, medium grey in part, medium light grey, brownish grey, soft to firm, sub-blocky, 10% calcareous clay, 10% to 30% glauconite grains, traces micromicas, traces biotite flakes, traces foraminifera, trace very fine grained pyrite aggregates, rare coral fragments, grading to Siltstone in brownish grey fraction.

SANDSTONE (10-80%): Trace aggregate, pale yellow to yellowish grey, friable, very fine to fine, sub-angular to sub-rounded quartz, inferred silica cement, good visible porosity; **loose quartz grains**, clear and opaque, light grey, polished, fine to medium to coarse to very coarse grained, sub-angular to sub-rounded to rounded, poorly sorted, traces grey matrix on grain surfaces, poor visual and inferred porosity.

COAL (Trace-5%): Black, dark brownish black, blocky, predominantly bright, traces

very fine grained disseminated pyrite.

SILTSTONE (10-90%): Brownish grey, very soft to soft to moderately hard, subblocky, trace to 30% glauconite, trace to 10% calcareous clay, 5% very fine grained pyrite aggregates and trace locally with abundant cryptocrystalline pyrite.

1580.0 to 1810.0 mMDRT. Interbedded SANDSTONE, SILTSTONE and COAL.

SANDSTONE (0-100%): Trace aggregate, pale yellow to yellowish grey, friable, very fine to fine, sub-angular to sub-rounded quartz, inferred silica cement, good visible porosity; loose quartz grains, clear and opaque, translucent to transparent, light grey, polished, fine to medium to coarse to very coarse grained, sub-angular to sub-rounded to rounded, poorly sorted, traces grey matrix on grain surfaces, poor visual and inferred porosity. From 1722 to 1810: light grey, dark yellowish brown, predominantly opaque, in part clear, predominantly loose quartz, in part hard when recrystallised, coarse to granular, predominantly very coarse to granular, angular (shattered) to sub-rounded, moderately sorted, trace very fine grained pyrite as aggregates and cement, 5% siliceous cement, white clay matrix adhering to grains s

COAL (0-80%): Black, greenish black, brittle to moderately hard, platey, earthy to bright, in part with conchoidal fracture.

SILTSTONE (0-95%): Olive grey to dark olive grey, soft to firm in part, blocky to sub-blocky, abundant black carbonaceous material, trace to minor fine micaceous flecks, trace locally with cryptocrystalline pyrite, trace locally with well rounded fine glauconite, trace loose medium pyrite nodules.

Detailed description sees Attachment 10.

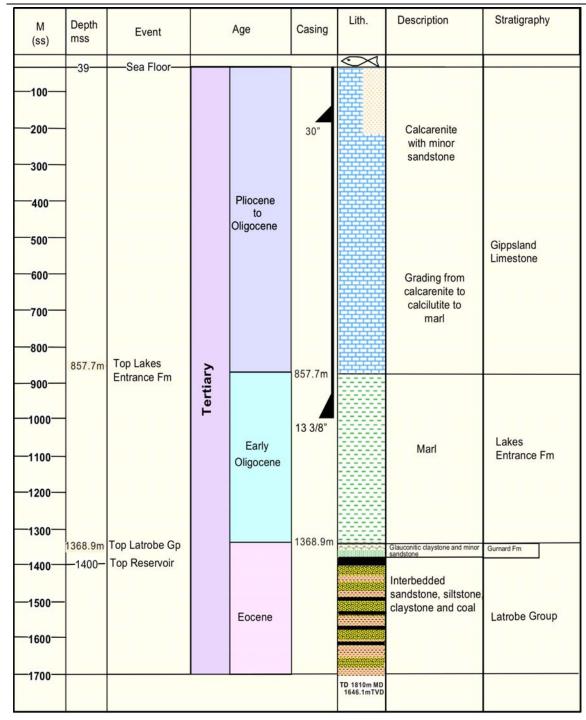


Figure 10. Stratigraphic column and casing of the West Seahorse 3 well.

Calcimetry measurements

Cal	lcim	Δtr.v	Data
1.0		HIIV	111111

	Calcimetry Data Carrela Danth Calcita (0) Dalamita (0) Tatal Carrela Danth Calcita (0) Dalamita (0) Tatal												
Sample Depth (mMDRT)	Calcite (%)	Dolomite (%)	Total Carbonate (%)	Sample Depth (mMDRT)	Calcite (%)	Dolomite (%)	Total Carbonate (%)						
120	0.0	0.0	0.0	840	71.1	3.8	74.8						
140	21.9	16.7	38.6	860	62.9	4.4	67.3						
160	48.5	16.5	64.9	880	66.3	4.5	70.8						
180	60.8	16.4	77.2	900	67.0	3.4	70.4						
200	82.2	0.2	82.4	920	68.4	6.8	75.2						
220	58.8	0.3	59.1	940	75.9	7.1	83.0						
240	55.0	6.0	61.0	960	45.5	8.2	53.7						
260	64.3	6.2	70.4	980	69.7	4.4	74.2						
280	56.0	0.5	56.5	1000	70.1	10.0	80.1						
300	57.4	0.5	58.0	1020	62.7	11.6	74.4						
320	75.8	0.8	76.6	1040	53.1	10.0	63.2						
340	71.7	7.3	79.0	1060	55.3	9.7	65.0						
360	64.3	5.9	70.3	1080	59.1	11.5	70.6						
380	84.9	12.8	97.7	1100	53.0	6.3	59.3						
400	86.7	5.7	92.3	1120	53.0	8.4	61.4						
420	78.8	9.8	88.7	1130	47.2	9.5	56.7						
440	88.5	4.4	93.0	1140	46.5	12.3	58.8						
460	85.2	5.8	91.0	1150	49.2	8.8	58.0						
480	82.5	5.5	88.0	1160	46.5	12.3	58.8						
500	87.3	7.7	94.9	1170	49.2	8.8	58.0						
520	88.9	3.9	92.8	1180	49.2	8.8	58.0						
540	92.3	0.6	93.0	1190	47.8	9.0	56.9						
560	88.9	6.8	95.7	1200	32.5	12.3	44.8						
580	88.9	6.9	95.8	1210	25.9	2.1	28.0						
600	85.1	6.5	91.6	1220	19.8	3.3	23.0						
620	75.3	5.5	80.7	1230	27.8	0.5	28.3						
640	76.9	6.2	83.0	1240	23.4	6.6	30.1						
660	82.5	7.5	90.0	1250	30.8	4.0	34.7						
680	81.0	8.2	89.2	1260	30.3	7.6	37.9						
700	81.3	9.6	90.9	1270	17.2	1.6	18.8						
720	82.6	13.6	96.2	1280	23.2	8.2	31.4						
740	64.1	9.9	74.0	1290	30.3	5.6	36.0						
760	63.2	5.5	68.7	1300	32.2	1.3	33.5						
780	67.3	6.2	73.5	1310	28.3	3.7	32.0						
800	69.0	4.8	73.8	1320	23.1	4.5	27.6						
820	68.4	5.8	74.2	1330	19.5	4.1	23.7						

Calcimetry Data

Sample Depth	Calaita (0/)	Dolomite (%)	Tatal	Camania Danth	Calaita (0/)	Delemite (0/)	Total
(mMDRT)	Calcite (%)	Dolomite (%)	Total Carbonate (%)	Sample Depth (mMDRT)	Calcite (%)	Dolomite (%)	Total Carbonate
1350	21.9	3.8	25.7	1584	2.9	0.7	3.6
1360	16.5	3.4	19.9	1587			0.0
1370	21.9	3.3	25.2	1590	2.1	1.0	3.0
1380	9.9	3.9	13.8	1593			0.0
1390	13.1	3.1	16.2	1596	0.7	0.5	1.2
1400	14.0	0.7	14.7	1599	0.7	0.5	1.2
1410	8.3	8.5	16.9	1602	0.7	0.5	1.2
1420	10.5	7.3	17.8	1605			0.0
1430	7.3	8.7	16.0	1608	0.7	0.5	1.2
1440	19.6	7.1	26.7	1611			0.0
1450	22.4	10.8	33.2	1614	0.7	0.6	1.3
1460	13.4	7.4	20.8	1617			0.0
1470	13.3	2.7	15.9	1620	0.7	0.6	1.3
1473			0.0	1623			0.0
1476	14.8	8.0	22.8	1626	0.7	0.6	1.3
1479			0.0	1629			0.0
1482	8.7	5.5	14.3	1632	0.7	0.6	1.3
1485			0.0	1635			0.0
1488			0.0	1638	0.7	0.6	1.3
1491	7.5	9.6	17.0	1641			0.0
1494	16.5	3.4	19.9	1644	0.7	0.1	0.8
1497			0.0	1647			0.0
1500	16.5	1.6	18.0	1650	0.7	0.1	0.8
1503			0.0	1653			0.0
1506	6.8	3.7	10.5	1656	0.7	0.1	0.8
1509			0.0	1659			0.0
1512	6.0	5.5	11.6	1662	0.7	0.1	0.8
1515			0.0	1665			0.0
1518	11.9	6.4	18.3	1668	0.7	0.1	0.8
1521			0.0	1671			0.0
1524	5.5	0.6	6.2	1674	0.7	0.1	0.8
1527			0.0	1677			0.0
1530	5.5	0.6	6.2	1680	0.7	0.1	0.8
1533			0.0	1683			0.0
1536	5.5	0.6	6.2	1686	0.7	0.1	0.8
1539			0.0	1689			0.0
1542	2.3	0.2	2.5	1692	0.7	0.1	0.8
1545	2.3	0.2	2.5	1695			0.0
1548			0.0	1698	0.7	0.1	0.8
1551	2.3	0.2	2.5	1701			0.0
1554	2.3	0.2	2.5	1704	0.7	0.1	0.8
1557			0.0	1707			0.0
1560	2.3	0.2	2.5	1710	0.7	0.1	0.8
1563			0.0	1713			0.0
1566			0.0	1716	0.7	0.1	0.8
1569	2.9	0.7	3.6	1719			0.0
1572	2.9	0.7	3.6	1722	0.7	0.1	0.8
1575	_	_	0.0	1725			0.0
1578	2.9	0.7	3.6	1728	0.7	0.1	0.8
1581			0.0	1731			0.0

	Calcimetry Data Sample Calcite (%) Dolomite Total Sample Calcite (%) Dolomite Total Carbonate (%)												
Sample Depth (mMDRT)	Calcite (%)	Dolomite (%)	Total Carbonate (%)	Sample Depth (mMDRT)	Calcite (%)	Dolomite (%)	Total Carbonate (%)						
1734	0.7	0.1	0.8										
1737			0.0										
1740	0.7	0.1	0.8										
1743			0.0										
1746	0.7	0.1	0.8										
1749			0.0										
1752	0.3	0.1	0.4										
1755			0.0										
1758	0.3	0.1	0.4										
1761			0.0										
1764	0.3	0.1	0.4										
1767			0.0										
1770			0.0										
1773	0.3	0.1	0.4										
1776			0.0										
1779	0.3	0.1	0.4										
1782			0.0										
1785	0.3	0.1	0.4										
1788			0.0										
1791	0.3	0.1	0.4										
1794			0.0										
1797	0.3	0.1	0.4										
1800			0.0										
1803	0.3	0.1	0.4										
1806			0.0										
1810	0.3	0.1	0.4	·									

Conventional Cores

No conventional cores were cut in West Seahorse 3.

Rotary sidewall cores (MSCT)

One mechanical sidewall coring run was made with the Schlumberger MSCT coring tool as planned. The purpose of the sampling was to acquire cores for reservoir evaluation in the primary reservoir and for petrographic evaluation. A total of 12 cores were recovered from the 14 attempted. A summary of MSCT depths and recoveries is included below:

Mechanical Sidewall Core Depths (MSCT)

Sample No.	Depth (mRT)	(includin move t station	Taken g time to to next n) Start ish	Brief Lithology Description	Initial comments following coring	Actually Recovere d? Y / N	Length (mm)	Condition of core
1	1561.5	12:43	12:47	No sample		N	-	Not recovered
2	1562.0	12:47	12:52	No sample		N	-	Not recovered
3	1564.0	12:52	12:58	SILTSTONE grading to a very fine SANDSTONE, trace dull yellow fluorescence		Y	50	Good
4	1566.5	12:58	13:05	SILTSTONE grading to a very fine SANDSTONE, trace dull yellow fluorescence		Y	50	Good
5	1568.0	13:05	13:12	SANDSTONE: very fine to fine 5% dull yellow fluorescence		Υ	45	Good
6	1568.9	13:12	13:23	CLAYSTONE: trace dull yellow fluorescence		Υ	55	Good
7	1570.0	13:23	13:30	Silty CLAYSTONE: nil fluorescence		Y	52	Good
8	1571.0	13:30	13:35	SILTSTONE: nil fluorescence	Temporarily ceased coring to run a correlation depth log	Y	70	Good
9	1634.0	13:44	13:50	COAL: black- brown , nil fluorescence		Y	2 x 15	Broken sample, 2 x 15 mm pieces and 2 x <10 mm fragments
10	1661.0	13:50	14:02	SANDSTONE: medium grained, nil fluorescence		Υ	45	Good
11	1668.5	14:02	14:16	SANDSTONE, fine grained, argillaceous, nil fluorescence.	Call made to Ops Geo to confirm the next depth at 1665 m was correct	Y	50	Good
12	1665.0	14:16	14:27	SANDSTONE: coarse		Υ	40	Fair
13	1686.0	14:27	14:39	CLAYSTONE, nil fluorescence		Y	50	Good
14	1694.0	14:39	14:53	SANDSTONE: fine grained, argillaceous, nil fluorescence		Y	48	Fair

The MSCT photographs are included herein as Attachment 12.

Petrology

Six MSCT samples were sent to ACS Laboratoryies Pty Ltd for petrological study. Their results, including descriptions and photographs of the thin sections are presented in the West Seahorse 3 Well Completion Report - Interpretative Data, issued separately.

Samples submitted for Petrology

MSCT No.	Depth (mMD RT)
Sample 3	1564.0
Sample 5	1568.0
Sample 7	1570.0
Sample 10	1661.0
Sample 11	1668.5
Sample 13	1686.0

MDT sampling (Pressure Sampling)

A total of four segregated samples were successfully recovered from a depth of 1567mMDRT (1406.1m TDVSS) using the Schlumberger MDT tool. Single-phase transfers were performed on three samples and the fourth sample was flashed for offshore analysis.

Reports on the Validity Checks and Analyses of MDT Samples are attached as Attachment 13 and the analyses performed by Petrotech PVT laboratory will be attached to Volume 1 (interpreted data).

MDT samples data

1 אוטוי	sampies data	1 ::::::::::::::::::::::::::::::::::::	0.040.044.0.00.0.0.0.0.0	a0+0+0a4a6+0+0a6+0+0+0+0+0+0	*1*1*1*1*1*1*1*1*1*1*1*1*1		
		In 010 .01	A. Sample I	dentification			
Run/seat		Run 2 / Seat 31	1 TV (D.0.0)				
Sample d		1567 mMDRT (1406	.1m (VDSS)		-	-	
Pretest vo		10 cc 450 cc	450 cc	450	450 cc	-	
Chamber Chamber	size serial number	#3452	#3453	450 cc #3353	#3358		
Probe typ		Xtra large	Xtra.large	Xtra large	Xtra.large		
Choke siz		N/A	Allalaige	Allalaige	Allalarge		
CHOKE SIZ			B Samplii	Are Editations			
Date	<u>:::::::::::::::::::::::::::::::::::::</u>	6-May-08	and the special print	ng i nswiy	<u> </u>	::::::::::::::::::::::::::::::::::::::	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
Date Initial hydr	rootetio	2439.19 psia			-		
Tool Set	TOSTALLE	01:23 hrs					
Pretest sta	ert	01:26 hrs					
	nation pressure (pre					 	
Pretest er		1:28					
Pretest de		1'40"					
Pumpout:		1:28					
Pumpout		2:30					
Pumpout		1:02					
Pumpout		51.971 litres					
OFA indic		Green					
	d fluid at OFA	Oil					
	resisitivity at probe					1	
Chamber		2:11	2:14	2:20	2:24		
	sampling pressure		1913.5psia	1924.3psia	1919.6psia		
	nation pressure	N/A	N/A	N/A	1968.3psia		
	sealing pressure	·	·	·	<u>'</u>		
Seal char		2:12	2:16	2:22	2:26		
Chamber		1'40"	1'40"	1'40"	2"		
Tool retra		N/A	N/A	N/A	2:31		
Final hydr	rostatic				2431.28 psia		
Total time					2hrs08'		
		C Sample I	ownhole Ten	perature And F	Resistivity		
Atsample	e depth (AMS)	66 degC			1		
	nple depth (AMS)	0.057ohm-m					
			Sample Reco	very At Surface			
Surface o	pening pressure	1624 psig	Not opened	1088 psig	1595 psig	1	
Volume q		cuft	rioroponoa	, add pang	, coo poig		
	il/condensate	0.38 litres	-	0.375 litres	0.39 litres	(Total volume of	all Fluids combined
	vater/filtrate	litres				(
			nle Propertie	s Measured On	Site		
Gas via cl	√ C1	Mole %		<u> </u>			
400 1100	C2	Mole %					
	C3	Mole %					
	C4	Mole %					
	C5	Mole %					
	C6+	Mole %					
	CO2	Mole %					
	H2S	Mole %				1	
Oil/Conde	API@degC	degrees				1	
,	Colour						
	Fluorescence						
	GOR or CGR	cuft/bbl or mmscf/bbl					
	Pour point	degC					
Water/Filt	t Rmud @ degC	ohm-m@degC					
	K+ ion calculated	ppm					
	Chlorides titrated	ppm					
	T.000	DPM					
	Tritium			1			
	pH						
	рН		F. Mud Filtrat	te Properties			
Rmud @	pH Type	0.113ohm-m@22.6c		e Properties			
	pH Type	0.113ohm-m@22.6c 40,000 mg/l		e Properties			
K+ion cal	pH Type degC lculated from KCI%			e Properties			
K+ ion cal Chlorides	pH Type degC lculated from KCI%	40,000 mg/l 36,000 mg/l 9		e Properties			
K+ ion cal Chlorides pH	pH Type degC lculated from KCI%	40,000 mg/l 36,000 mg/l	legC				
K+ ion cal Chlorides pH	pH Type degC lculated from KCI%	40,000 mg/l 36,000 mg/l 9					
K+ ion cal Chlorides pH Tritium	pH Type degC lculated from KCI%	40,000 mg/l 36,000 mg/l 9	legC				
K+ ion cal Chlorides pH Tritium Reported	pH Type degC culated from KCl%	40,000 mg/l 36,000 mg/l 9 N/A DPM 9.67 ppg	legC				
K+ ion cal Chlorides pH Tritium Reported	pH Type degC lculated from KCl% stitrated	40,000 mg/l 36,000 mg/l 9 N/A DPM 9,67 ppg 2382 4psia	legC G. General	Calibration			
K+ ion cal Chlorides pH Tritium Reported <i>Calculate</i>	pH Type degC lculated from KCl% stitrated	40,000 mg/l 36,000 mg/l 9 N/A DPM 9,67 ppg 2382 4psia	egC G. General H. Remarks a	Calibration: ind Comments: Sample Specific	Sample Specific	Sample Specific	Sample Specific
Chlorides pH Tritium Reported Calculate	pH Type degC	40,000 mg/l 36,000 mg/l 9 N/A DPM 9.67 ppg 2382 4psia	legC G. General	Calibration	Sangole Specific 280ppm H2S	Sample Specific	Sample Specific

MDT pressure and sample data

			West S	eahors	e-3 - MD1	PRES	SURE P	OINT &	SAMPI	ING PRO	OGRAN	<u>/IME</u>	
		aamalis	ng points		SAMPLE POINT								
		sampiii	ig points			IDMATION							
					LFA FLUID CONF	IRMATION							
		pressure	test point			CQG	CQG		CQG				
						UUG	CUG		CUG	FTA ?spherical			
	Actual	Actual	Actual		Time	Initial Hydrostati	Final		Final	method	Buildup		
Pressure	Depth	Depth	Depth	Depth	Pad	C	Hydrostatic	Drawdown	Buildup	Mobility	Time	Temp.	Remarks
Point #	mMDRT	mTVDRT	mTVDSS	ftTVDSS	Set	Pressure	Pressure	Volume	Pressure	md/cp	Secs	deg C	romano
T OHIL II	minubici	IIII V DICI	11117200	1117200	001	psia	psia	CC	psia	marcp	0000	ucg o	
1a	1553.5	1430.9	1392.9	4569.88	16:50	pera	P	#REF!	pera				Low perm
2	1562.5	1439.7	1401.7	4598.79	16:59			0.0					lost seal
3	1562.9	1439.8	1401.8	4599.08	17:04			0.0					lost seal
4	1564.0	1441.2	1403.2	4603.61	17:15	2427.44	2427.05	20.0	1966.06	184.3	170	59.6	Good Test
5	1566.0	1443.2	1405.2	4610.07	17:15	2430.87	2430.51	20.0	1967.90	94.7	160	59.8	Good test
6	1567.0	1444.1	1405.2	4613.29	17:40	2430.07	2430.51	20.0	1968.88	702.0	170	59.8	Good test
7	1568.5	1444.1	1406.1	4618.11	17:55	2432.20	2432.10	20.2	1970.11	692.0	200	60.0	Good test
- /	1000.0		1407.6	4010.11	17:55	2434.43		20.0	1970.11	692.0		00.0	
8	1570.0	1447.1	1409.1	4622.97	18:05	2436.90	2436.78	20.1	1971.71	7.5	300	59.9	Good test, but mobility calc is incorrect
9	1573.5	1450.5	1412.5	4634.25	18:25	2442.71	2442.57	19.9	1976.50	366.4	310	60.1	Good test
10	1577.0	1454.0	1416.0	4645.54	18:40	2449.01	2448.82	20.2	1981.66	654.4	370	60.6	Good test
11	1575.0	1452.0	1414.0	4639.07	18:53	2445.45	2445.41	40.0	1978.87	336.1	920	60.5	Good test, but noisy until 3rd drawdown
12	1588.0	1464.8	1426.8	4681.10	19:15	2467.00	2466.90	20.0	1993.96	1.2	970	61.1	Test under SLB town controlasked for recalc on
13	1600.5	1477.1	1439.1	4721.59	20:00	2407.90	2407.00	20.1	2009.23	1416.0	390	62.1	Good test
													Lost seal on first attempt, retract
14	1603.0	1479.6	1441.6	4729.66	20:15	2491.84	2491.96	20.1	2012.56	259.9	1010	61.8	reset, good test.
15	1605.0	1481.6	1443.6	4736.19	20:41	2495.43	2495.38	20.2	2015.40	111.5	370	61.9	Good test
16	1619.0	1495.4	1457.4	4781.59	20:56	2519.13	2519.01	20.2	2041.27	13.9	380	62.3	Good test
17	1636.0	1512.2	1474.2	4836,71	21:09	2547.83	2547.79	10.9			1440	63.2	low perm, 3 drawdowns.
18	1638.0	1514.2	1476.2	4843.21	21:43	2551.27	2551.28	20.2	2068.95	1249.6	200	63.2	Good test
19	1639.0	1515.2	1477.2	4846.46	22:00	2552.82	2552.86	20.1	2070.20	1009.0	230	63.4	Good test
20	1640.0	1516.2	1478.2	4849.70	22:10	2554.23	2554.30	20.2	2071.35	453.5	200	63.5	Good test
21	1643.0	1519.2	1481.2	4859.42	22:20	2559.48	2559.51	20.2	2075.71	1998.6	220	63.6	Good test
22	1661.0	1537.0	1499.0	4917.81	22:45	2589.13	2589.15	20.3	2102.98	2280.6	180	64.0	Good test
23	1664.0	1539.9	1501.9	4927.56	22:55	2594.34	2594.38	20.5	2107.26	3786.4	310	64.4	Good test
24	1667.0	1542.9	1504.9	4937.27	23:08	2599.31	2599.37	20.4	2111.23	2552.1	270	64.8	Good test
25	1685.0	1560.7	1522.7	4995.70	23:30	2629.70	2629.72	20.2	2136.36	120.2	310	65.5	Good test
26	1686.0	1561.7	1523.7	4998.95	23:43	2631.53	2631.56	20.4	2137.60	400.8	250	66.1	Good test
27	1700.0	1575.5	1537.5	5044.26	23:55	2655.40	2655.43	20.1	2157.10	1625.5	210	66.5	Good test
	7, 00.0	70, 0,0	,00,,0	5011.20	20.00		2000.10	20	2.01.70	.020.0	2.0		
1	1638.0	1514.2	1476.2	4843.21	0:12	2550.91		10.1			8'20"	66.4	Drawdown of 1000 psi2425 cc Pump out terminated.
2	1638.5	1514.6	1476.6	4844.49	0:40	2551.31	2551.4	10.3			20'40"	66.4	Pump out 20.17 litres.
3	1567.0	1444.1	1406.1	4613.29	1:23	2431.19	2431.28	10.0	1968.07	573.0	1hr2'	65.0	4 x 450 cc samples collected. Pump out volume 51.971 litres
28	1562.0	1439.0	1401.0	4596.46	2:39	2423.14	2423.29	10.0					lost seal, retract & reset, supercharged
29	1561.5	1438.5	1400.5	4594.82	2:55	2422.68	2422.65	10.1					lost seal
30	1561.0		1400.5				2422.65						
		1438.1		4593.50	3:05	2421.53		5.3					low permeability
31 32	1560.5 1556.5	1437.6 1433.7	1399.6 1395.7	4591.86 4579.07	3:20 3:36	2421.10 2414.29	2421.17 2414.32	1.0 15.1					low permeability supercharged

Percussion sidewall cores

No percussion sidewall cores were acquired in West Seahorse 3.

Biostratigraphy

No palynology samples were collected.

Drill stem testing

No drill stem tests were run in West Seahorse 3.

Logging while drilling (LWD)

MWD/LWD services were provided by Schlumberger and full details of their operation are recorded in their End of Well Report included herein as Enclosure 4. LWD operations are briefly tabled below.

LWD Run summary 1, 122-1123mMDRT.

To be filled in at the end of each run by the LWD Engineer and verified by the Well Site Geologist

General Data	General Data												
Well Name	West Seahorse-3	MWD Run#	1	Date	25-Apr-2008	to	28-Apr-2008						
Service Company	Schlumberger D&M	BHA#	2	Drilled Interval	125m MDRT	to	1123m MDRT						
UWI				Wiped Interval	N/A	to							
Engineers	Jun Ikeda, San Thid	a Aung											

Hole Data												
Hole Size 17	7.5 in Inc St	art	0.83°	Inc Er	nd	27.05°	Azi Sta	ırt	65.83°	Azi End	63.32°	
Mud Data												
Mud type	WBM (PHG)		Mud Weig	ght sg	1.13		PV / YP	5 /15		CI mg/I	16,000	
% HG Solids	3.1		K-	+ mg/l	-		Rmf	-		Rm	-	
Drilling Data												
Metres Drilled	998	Avg R	OP m/hr	60		Avg WC)B klb	22	Avg	Torque kftlb	4.83	
RPM	166	Flow R	ate GPM	1060		SI	P psi	2596		ВНСТ	-	
Bit Data												
Make	Baker Hughe	es	Type	Mill To	oth	De	pth In	125m		Depth Out	1123m	
Number Jets	3		Sizes	20/32"				Condition	n Out 2	2-2-WT-A-E-In-B	T-TD	

BHA D	BHA Data													
BHA Item	Bit	Mud Motor	String Stab	Cross Over	Float Sub	NM Pony Collars	Cross Over	MWD	NM Drill Collars	Drill Collars	Jar	Drill Collars	Cross Over	HWDP
OD (in)	17.5	17.25	17	9.5	8	8	8.5	8.25	8	8.25	8.19	8.25	8.25	7.25
ID (in)	N/A	N/A	2.81	3	2.88	2.88	2.81	N/A	2.88	2.88	3	2.88	2.81	3.25
Length (m)	0.41	10.10	2.42	1.23	0.80	7.0	0.47	8.49	18.1	46.99	9.68	18.9	1.22	112.84
Total (m)	0.41	10.51	12.93	14.16	14.96	21.96	22.43	30.92	49.02	96.01	105.69	124.59	125.81	238.65

	Tool Type		TeleSC	OPE									
	Sub Type	MWD											
	Tool OD / ID (in)	OD=8.25,											
		ID=N/A											
	Mem Sample Rate (sec)	N/A											
	Bit to Sensor Offset (m)	26.56											
	First Reading (m)	154.20											
	Flow Rate Range for Pulser Configuration 600-1200 GPM												
Data Acquisition													
•		Pressure	Gamma	Resistivity									
Interval Logged (m)		N/A	N/A	N/A									
Meters Logged, %													
Meters Logged, %													
Meters Logged, % Meters Bad Data / Interval, %	(Calibratio	n filename format = ADN,	Size, S/N, Date mmddyy,	Time hhmm)									
Meters Logged, % Meters Bad Data / Interval, % Meters No Data / % Interval (m)	(Calibratio	n filename format = ADN,	Size, S/N, Date mmddyy,	Time hhmm)									
Meters Logged, % Meters Bad Data / Interval, % Meters No Data / % Interval (m) Density Calibration	(Calibration		Size, S/N, Date mmddyy,	Time hhmm)									

MWD/LWD Time Ana	lysis				
Date & Time In	25/04/08 22:30 hrs	Drilling time	31.0 hrs	% Total	63.27
Date & Time Out	28/04/08 08:30 hrs	Wiping Time	N/A	% Total	0
Time In Hole (hrs)	58.0	Tripping Time	16.5 hrs	% Total	33.67
Pumping time (hrs)	37.3	Down Time	N/A	% Total	0
		Circ Time	1.5 hrs	% Total	3.06

Remarks: D&I run only. Objective was to kick the well off and stop in the tangent section to set protective casing above the target interval. No MWD GR or LWD tools run in the string. The run was successful. At the end of the run the actual well path was 2.50m to the right and 4.5m below the proposed line. Centre to centre was 5.25m at 1094.42 mMDRT (1014 mTVDRT).

LWD Run summary 2, 1123-1810mMDRT.

To be filled in at the end of each run by the LWD Engineer and verified by the Well Site Geologist

General Data							
Well Name	West SeaHorse-3	MWD Run#	2	Date	2-May-2008	to	5-May-2008
Service Company	Schlumberger D&M	BHA#	3	Drilled Interval	1123	to	1810
UWI				Wiped Interval	N/A	to	
Engineers	Jun Ikeda, San thida	a Aung		·			

Hole Data											
Hole Size 1	2.25 in Inc	Start	25.87°	Inc E	nd	8.74°	Azi Sta	art (63.39°	Azi End	56.02°
Mud Data											
Mud type	KCI Polyme WBM	er	Mud Wei	ght ppg	9.4-9.6+		PV / YP	10 / 25		CI mg/I	36,000
% HG Solids			K+ mg/l	40,000		Rmf	0.1086 d @ 22°C		Rm	0.1203 ohmm @ 22°C	
Drilling Data	i										
Metres Drilled	687	Av	vg ROP m/hi	3.3-10	07.4 (36.1)	Avg W	OB klb	1.8-38.2 (13.2)	Av	g Torque kftlb	1.4-14.9 (8.0)
RPM	56-171 (149)	Flo	w Rate GPM	930-1	055 (1012)	5	SPP psi	1246-1910 (1728)	Ma	aximum BHCT	58℃
Bit Data	· · · · ·							· · · ·			
Make	Reed Hyca	log	Туре	PDC		D	epth In	1123		Depth Out	1810
Number Jets	6		Sizes	15,15	,15,16,16,16			Condition	Out	3-1-CT-A-X-I-WT	-TD

BHA Da	ıta											
BHA Item	Bit	Power Drive	PD Receiver	Flex Collar	Resistivity Tool	MWD	NM Drill Collar	Drill Collar	Jar	Drill Collar	Cross Over	HWDP
OD (in)	12.25	9.25	9.50	8.25	8.25	8.25	8.00	8.00	8.00	8.00	8.00	5.50
ID (in)	3.00	3.00	6.00	5.00	3.90	N/A	2.81	2.81	3.00	2.81	2.81	3.25
Length (m)	0.30	4.20	1.87	2.95	4.22	8.49	8.65	9.45	9.68	9.44	1.22	112.84
Total (m)	0.30	4.50	6.37	9.32	13.54	22.03	30.68	40.13	49.81	59.25	60.47	173.31

MWD / LWD Tool Dat	а							
Tool Type	RAB 8	RAI	B 8	RAB 8	RAB 8	RA	B 8	TeleSCOPE
Sub Type	Gamma	Resis	tivity	Resistivity	Resistivity	Resis	stivity	MWD
Tool OD / ID (in)	OD=12.13,							OD=8.25,
	ID=3.90							ID=N/A
Mem Sample Rate (sec)	5 sec	5 s	ec	5 sec	5 sec	5 :	sec	N/A
Bit to Sensor Offset (m)	Gamma=10.49	Shallow	=11.26	Medium=11.13	Deep=10.96	Ring=	=10.75	Survey=17.67
First Reading (m)	1117	111	17	1117	1117	11	17	1143.3
	Flow F	late Range	e for Puls	ser Configuration	600-1200 GPM			
Data Acquisition								
	Pressure			Gamma	Resistivit	у		
Interval Logged (m)	N/A		11	117 – 1799.5	1117 – 1799.3	(Ring)		
Meters Logged / %			68	82.5 / 98.5%	682.3 / 98.5	%		
Interval								
Meters Bad Data / %				0	0			
Interval								
Meters No Data / %			1	10.5 / 1.5%	10.7 / 1.59	%		
Interval (m)								
Density Calibration			(Cal	libration filename format =	ADN, Size, S/N, Date mm	ddyy, Time hi	hmm)	
Pre Run Calibration file	N/A							
Post Run Calibration file	N/A							
Comments	Density tool not ru	n						

LWD Time Analysis					
Date & Time In	2 May 2008, 17:30hrs	Drilling time	26.5	% Total	42.7
Date & Time Out	5 May 2008, 06:00hrs	Wiping Time	0	% Total	0
Time In Hole (hrs)	60.5	Tripping Time	14.0	% Total	22.7
Pumping time (hrs)	41.48	Down Time / Other	0 / 18.0	% Total	0 / 29.0
		Circ Time	3.5	% Total	5.6

Remarks: The objective of this run was to continue the tangent section and drop angle through the target horizons to TD. At TD the actual well path was 6.2m left and 6.8m high to the planned trajectory. The quality of both real time and memory logs was good (ROP was controlled at 30m/hr maximum through the target to ensure good RT data was available). RT log quality was sufficient for well correlation and first indications of possible pay zones. No intervals of bad or missing data were present.

Wireline operations and summary

Wireline log services were provided by Schlumberger and the table below summarizes operation parameters. Full details of the operation are included in Enclosure 5.

Date			5/Ma	y/08						West 9	Seak	norse	-3		
Log Run Number ((Suite / Run):	1	7		1										
Surface Temperat	ture		28	"C											
Depth Driller:		1810	met	res											
Depth Logger:		1775	met	res			Log	ging too	ols ta	agged u	реа	rly -	could r	ot re	ach TD
Bottom Log Interva	al:	1775	met	res											
Top Log Interval:		110	met	res											
Casing Driller:		1117	met	res			Size:	13%	:"	Weigl	ht:	68	lbs/ft	ID:	12.415"
Casing Logger:		1117	met	res											
Bit Size		12.25"													
Type of Fluid in Ho	ole	KCI/PHP/	Δ,												
Density		9.7	pp	og			×	Barite		Hei	matit	е	×	Oth	er (Salt)
Viscosity		44					Titrated	Chlorid	es	36,00	00	Nit	rates		
рН		9					Titrated	Calciun	n	280)	Pote	assium	40	0000 ppm
Fluid Loss		8.3	НТ	HP			Barite			2.2	%	Oil /	Water	Ratio	
Source of Sample		Flowline					Us	se a ciro	culat	ed mud	sam	ple f	or eacl	n ana	lysis.
Rm		0.1127	œ	22.6	6 "0	;									
Rmf		0.1014	œ	22.2	2 "0	;	0.0	976	@ 2	3.9°C (7	75°F				
Rmc		0.166	œ	23	•0	;									
Log	Track	Sca	le Ra	ange				Co	mme	nts (uni	its, li	ne c	odes, e	tc.)	
GR	1	0			150										
SP											n/a				
Caliper	1	10			20					ppropri					
Bit Size	1	6			16				Д	ppropri	ate :	10" r	ange		
Resistivity	2	0.2			200										
Density	3	1.65			2.65										
Correction	3	-0.9			0.1										
Pe	3	0			20										
Neutron	3	60			0 40										
Sonic	3 Double	240													
Tension	Depth	10,000			0										

ATTACHMENTS

Attachment 1: Well Montage

Attachment 2: Bit and BHA Record

Attachment 3: Mud Report

Attachment 4: Casing Report

Attachment 5: Cementing Report

Attachment 6: LOT/FIT Report

Attachment 7: Directional Drilling Report

Attachment 8: Activity Summary Reports

Attachment 9: Well Cost Summary

Attachment 10: Description of cuttings

Attachment 11: Daily geological reports

Attachment 12: MSCT photography

Attachment 13: Validity checks and analyses of MDT samples

Attachment 14: Organic Geochemistry Report

LIST OF ENCLOSURES

Enclosure 1: Gas Log Plot

Enclosure 2: Drilling Data Plot

Enclosure 3: Mud Log Plot

Enclosure 4: LWD Log Plot

Enclosure 5: Wireline Log Plot

Attachment 1

Well Montage

			\	Nest S	eahorse-3 P	ost Well Su	ımmary					
3000	PROJECT: WELL: CLASSIFICATION: RIG:	Bass Strait Consortium West Seahorse-3 Appraisal Well West Triton	SURFACE Latitude 38° 12' 24. LOCATION: Longitude 147° 37' UTM: GDA94 Zone 55 5771044m N; 5542	09.865" E	DATUM: ELEVATION ABOV WATER DEPTH (m WELL SLOT:		Rotary Table 37.7 39.5	LICENSE: BASIN: STATE: OPERATOR:	VIC P57 Gippsland Victoria 3D Oil Ltd. PREPAR APPROV LAST UF	/ED BY:	Manelle Moussa Rajiv Tikkoo 16/06/2008 Australian Drilling Associate	s Pry Ltd ADA
DIRECTIONAL PROFILE	FORMATION DEPTH 10 ALL	CASING Casing	SHT DE	PORE PRESSURE GRADIENT (ppg)	FRACTURE GRADIENT (ppg)	BHST 0.04°C/m, 10°C at mudline (74m TVDrt)		CEMI Additives	ENTING PROGRAM Density TOC Excess	SURVEY PLAN	BITS AND BOTTOM HOLE ASSEMBLIES	FORMATION EVALUATION
30" at 122m KOP at 180m MD	Seabed 39.5 77.2	2 77.2 36" 2 122m	30" 1" wall X52 D60/MT	Normal 8.4ppg	12ppg @ 200m	20°C	Seawater & High Viscosity Bentonite Sweeps MW = 8.70ppg Funnel Viscosity >100 sec 6rpm >40 pH = 9-10 Gel 10sec >15lb/100sqft Gel 10min >40lb/100sqft	Single Slurry Class G + 1% Calcium Chloride + NF-6 Seawater Cement PLUG #3 Class G,+ CFR-3L + NF-6, + HR-6L Drill water	15.9ppg mudline 74m 200% MDrt 15.8ppg 130-207m	Anderdrift	Bit & Hole Opener 26" Reed Y11C Bit + 36" HO Float Sub Anderdrfit Pulser Stabilizer 2 x 9.5" Collar 9.5" Crossover 5x 8 1/4" Collar 8 1/4" Crossover 5 x 5.5" HWDP	NA
400 (300 HLd) HLd) HLd) HLd) HLd) HLd) HLd) HLd)	Gippsland Limestone 828.0 895.			Normal 8.4ppg	15ppg at		Seawater - Bentonite MW =15-20ppg (hihger that programmed 9-9.5ppg) Funnel Viscosity 30-50 sec pH = 8.0-9.5	+ NF-6 + HR-6L Freshwater Cement PLUG #2 Class G + CFR-3L + NF-6 + HR-6L	12.5ppg 600m 10% 15.8ppg 1000 10% 15.9ppg 1030-1149m	MWD-DIR every 30m	17.5" Motor BHA 17.5" Hughes MXL-T1V Bit Motor Schlumberger A962M7848GT Stabilizer Crossover Float Sub 8" Pony NMDC (3 joints) Crossover PowerPulse HF MWD 8" NMDC (2 joints) 3 x 8 1/4" Collar (5 joints) Drilling Jar 8" 2 x 8" Collar (2 joints) Crossover 5 1/2" HWDP (12 joints)	Cuttings Sampling: Every 20m
1000 1034m TVD 1200 1200 9° at 1600m MD, 1477m TVD 1600 TD at 1810m MD, 1684m	Lakes Entrance 1369.2 1406	1810m	Open Hole	Normal 8.4ppg	17ppg at 1700mTVDrt	80° at TD	KCI / PHPA / CLAYSEAL MW = 9.5-10ppg 6rpm = 13-16 API Flitrate <6 HTHP Filtrate <12 KCI = 6-8% by weight Excess PHPA >1ppb LGS <10% by vol ClaySeal = 2% by vol pH = 8.8-9.5 Residual Sulphite > 100mg/L Ca<400mg/I	Cement PLUG #16 Class G + CFR-3L + NF-6 + HR-6L Drill water Cement PLUG #16 Class G + CFR-3L + NF-6 + HR-6L Drill water	15.8ppg 1490-1633m A 15.8ppg 1633-1770m	MWD DIR-GR-RES	12 1/4" RSS/LWD BHA 12 .25" Reed RSX 616 PDC Bit PD 900 AA 12 1/4" Power Drive Unit PD 900 Receiver w/float PD 900 Flex Collar GVR-8 (Model RAB-8) PowerPulse HF 8" NMDC 8 1/4" Collar (1 joint) Hydraulic Jar HDL-100 8" Collar (1 joint) Crossover 7 1/4" HWDP (12 joints)	Wireline Logging 1. PEX-HRLA-BHC 2. MDT (Pressure & Sampling) 3. MSCT (Rotary Sidewall Cores) Cuttings Sampling: Every 10m above Latrobe Every 5m thereafter
1800 1684m TVD 0 200 400 600 800 100 VERTICAL SECTION (m)	TARC	TARGET: 5771286 N, 554690 E SET TOP: 1400m TVDss TARGET: 5771308 N, 554732 E TD: 1684m TVD SS	WELL PATH: Deviated MAX ANGLE: 27°			280ppm (separated re		E: INLINE 1532	KICK TOLERANCE 12.25": 136.9bbl* *Based on MW of 10	0.0ppg, and pore pre		West Seahorse-1 West Seahorse-2 Seahorse-1, 2 Harlequin-1

Attachment 2

Bit and BHA Record

Wellname : West Seahorse-3 Drilling Co. : Seadrill Rig : West Triton

DFE above MSL: 38.0m Lat: 38 Deg 12 Min 25.077 Sec

Spud Date : 24 Apr 2008

Release Date: 09 May 2008

Water Depth : 39.5m Long : 147 Deg 37 Min 9.810 Sec

Spud Time: 04.15

Release Time: 16.30

Bit Record

Well: West	Seahorse-3																										\Box
Date In	Date Out	IADC	Bit#	Size (in)	Ser #	Mfr	Туре	Jets	TFA	D.In (m)	D.Out (m)	Prog (m)	Hrs IADC	ROP (ft/hr)	SPP (psi)	Flow (gpm)	WOB (klb)	RPM	MW (sg)	I	01	D	L	В	G	02	R
24 Apr 2008	24 Apr 2008	111	1	26.00	34406	REED	Y11C	1 x 16 3 x 22	1.31	77.5	125.0	47.5	3	15.83	1300	1200	6.00	65	1.02	0	0	RR					ΓD
25 Apr 2008 02 May 2008	28 Apr 2008	115 M422	2 3	17.50 12.25	6064689 218662	HUGHES REED	MXL-T1V RSX 616M-A16	3 x 20 3 x 16 3 x 15	0.92 1.107	125.0 1123.0		998 687	41 26.5	24.34 25.92	3100 1900	1150 1000	35.00 10.00	100 150	1.08 1.11	2	2	WT CT	A A	E X			ΓD ΓD

Wellname: West Seahorse-3 Drilling Co.: Seadrill Rig: West Triton

 Water Depth : 39.5m
 Long : 147 Deg 37 Min 9.810 Sec
 Spud Time: 04.15
 Release Time: 16.30

Wellname: West Seahorse-3 Drilling Co. : Seadrill Rig: West Triton

DFE above MSL: 38.0m Lat: 38 Deg 12 Min 25.077 Sec Spud Date : 24 Apr 2008

Long: 147 Deg 37 Min 9.810 Sec Spud Time: 04.15 Release Time: 16.30

Release Date: 09 May 2008

BHA Record

Water Depth : 39.5m

#	Date-in	Length	Weight	Weight Blw/Jar	String Weight	Pick-Up Weight	Slack-Off Weight	Torque Max	Torque on Bottom	Torque off Bottom	Description
1	24 Apr 2008	125.0			42.00	42.00	42.00				26"bit, 36" H/O, Bit sub, Anderdrift, 36" Stab,2 x 9" DC's, x-over, 5 x 81/4" DC's, x-over, 5 x HWDP.
2	25 Apr 2008	238.7	82500.00		175.00	202.00	154.00	10000	8000	5000	17 1/2" bit, Mud Motor, 17" Stab, X/O, Float Sub, 3 x 8" Pony NMDC's, X/O, Powerpulse, 2 x 8" NMDC's, 5 x 8" DC's, 8" Drl Jars, 2 x 8" DC's, X/O, 12 x HWDP
3	02 May 2008	173.3	41.00		202.00	260.00	161.00	13000	9000	6000	12 1/4" Bit, PD900, PD Receiver, PD Flex Collar, GVR-8, Power Pulse, NMDC, DC, Jar, DC, x/o, 12 x HWDP.

PERFORMANCE UPDATE

17 1/2" MXL-T1V

Dependable Performance

*ast*Max[™]

Tertiary Pliocene (Gippsland Limestone)

SB - 850m. (UCS <= 5kpsi)

Early Oligocene (Lakes Entrance - Mudstone/Marl)

850m - 1345mTVD. (UCS <=11kpsi)

17 1/2" bit, Mud Motor (1.5° Bend), 17" Stab, X/O, Float Sub, 3 x 8" Pony NMDC's, X/O, Powerpulse, 2

BHA: x 8" NMDC's,

5 x 8" DC's, 8" Drl Jars, 2 x 8" DC's, X/O, 12 x

HWDP

MUD: WBM: 9.0 – 9.5 ppg

HYDRAULICS: 1150 GPM. Nozzles (3 x 20/32").

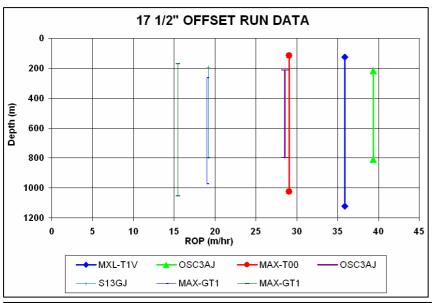
OBJECTIVES: Vertical Hole from 125mRT.

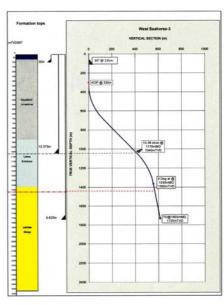
KOP 180mRT. Build to 27° and Hold to 1135mRT

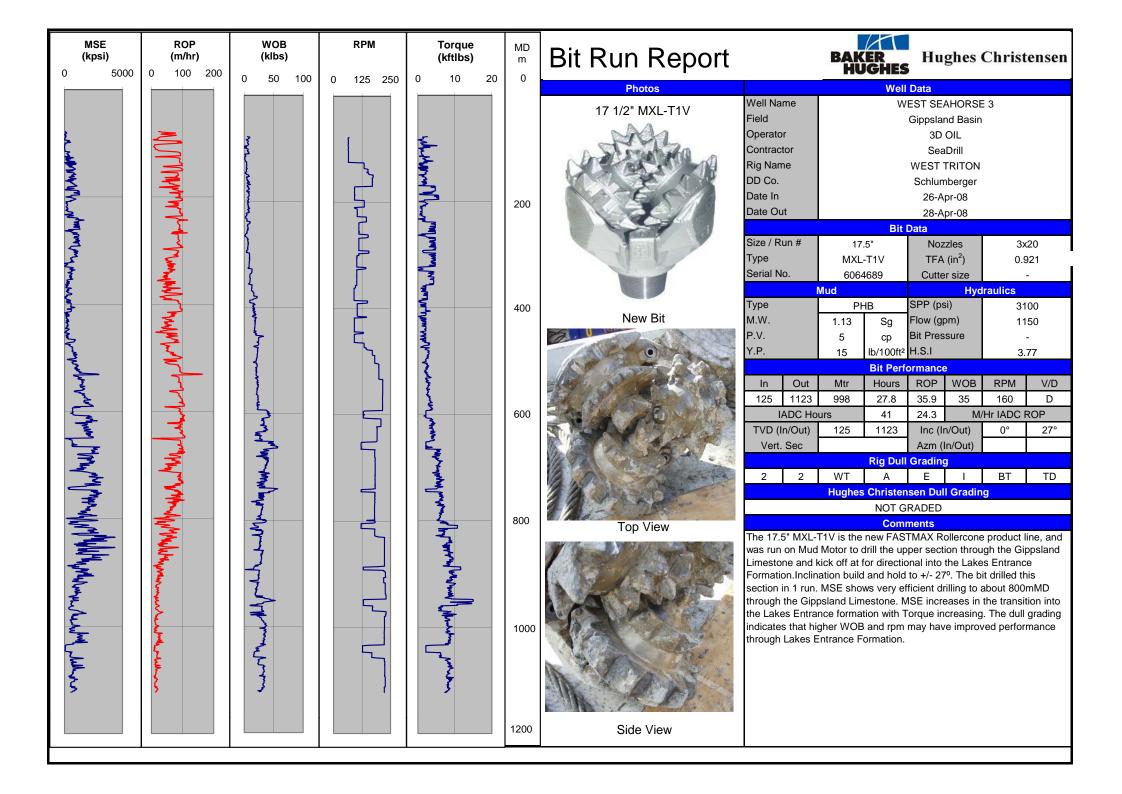
KOP#1 @ 172m.

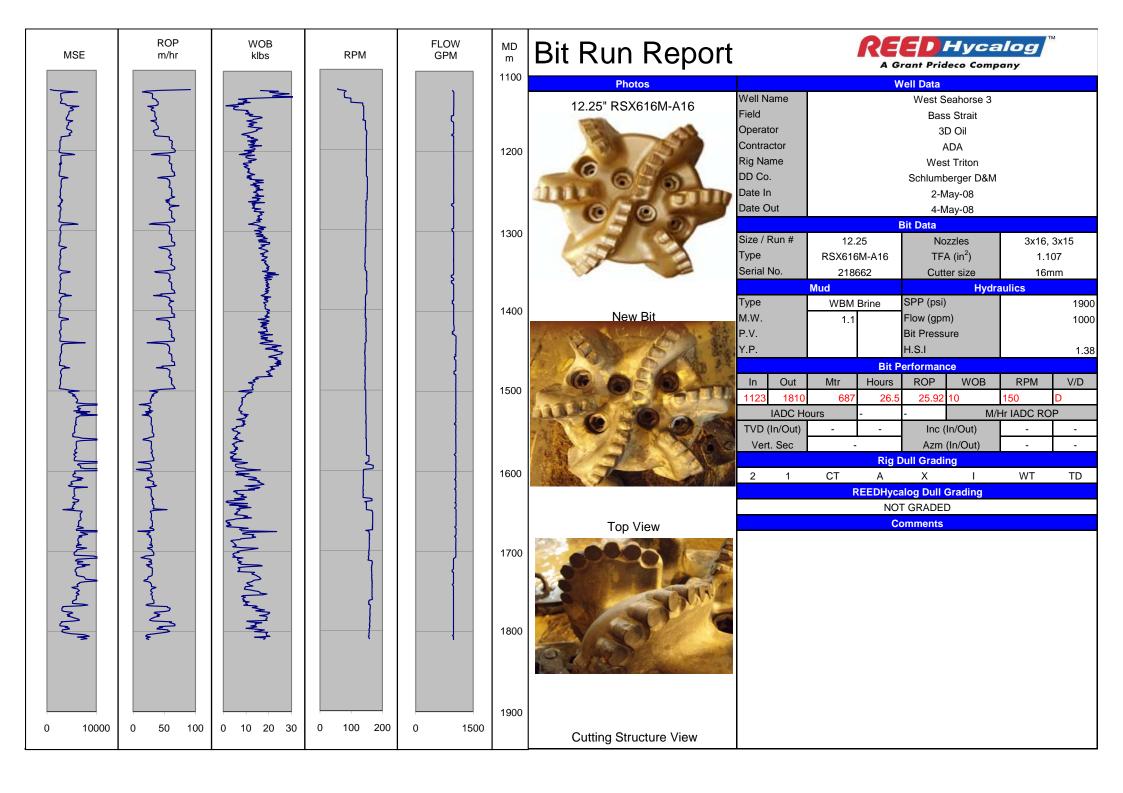
768mRT Incl = 27.5°. Az = 61°.

PERFORMANCE: In: 125m Out: 1123m (TD) Dist: 998m


Hrs: 27.8


ROP = 35.9 m/hr.


17 1/2" MXL-T1V


(H2085402)

				IADC	Depth	Depth	Depth	Drilling											
Well Name	Manufacturer	Bit Size	Bit Type	Code	ln	Out	Drilled	Hours	ROP (m/hr)	WOB	RPM	-	0	DC	L	В	G	0	RP
WEST SEAHORSE 2	HCC	17.5	MXL-T1V	117	125	1123	998	27.8	35.9	35	100	2	2	WT	Α	Е	IN	BT	TD
SUNFISH 2	HCC	17.5	OSC3AJ	111	218	809	591	15	39.4	10	150	1	1	WT	Α	Е	IN	NO	TD
LONGTOM 1	HCC	17.5	MAX-T00	415	116	1025	909	31.25	29.1	10	175	0	0	NO	Α	Е	IN	NO	TD
SNAPPER 4	HCC	17.5	OSC3AJ	111	215	800	585	20.5	28.5	20	150	2	2	WT	А	Е	IN	NO	TD
SWEETLIPS 1	ReedHycalog	17.5	S13GJ	135	195	795	600	31.25	19.2	15	125	1	3	WT	Н	Е	IN	NO	TD
FORTESCUE A16A	HCC	17.5	MAX-GT1	115	264	972	708	37.3	19.0	35	180	1	1	WT	Α	Е	IN	NO	PR
FORTESCUE A-22	нсс	17.5	MAX-GT1	115	173	1055	882	57	15.5	15	180	1	1	NO	G	Е	1/16"	NO	TD

Attachment 3

Mud Report

Wellname: West Seahorse-3 Drilling Co.: Seadrill Rig: West Triton

DFE above MSL: 38.0m Lat: 38 Deg 12 Min 25.077 Sec

Long: 147 Deg 37 Min 9.810 Sec

Spud Date : 24 Apr 2008

Spud Time: 04.15 Release Time: 16.30

Release Date: 09 May 2008

Mud Recap

Water Depth: 39.5m

Well: West Seahorse-3

WBM

R#	Date - Time	Туре	Depth m	Tmp C°	MW sg	VIS sec/qt	PV cp	YP lb/100ft²	Gel10s (lb/100ft²) / 10m (lb/100ft²)	F.L. API cc/30min	F.L. hthp cc/30min	Sols %	Sand	MBT	PH	CI mg/I	Hard mg/l	KCI %	Daily Cost US\$
3	24 Apr 2008 - 23:59	PHB	125.0	19	1.02	110	13	56	17 / 41	13.0		5		40	9				14061
4	25 Apr 2008 - 20:00	PHB	125.0	20	1.03	40	4	14	9 / 13	30.0		3		20	8	10000	700		4929
5	26 Apr 2008 - 23:59	PHB	768.0	38	1.10	48	8	24	10 / 12			5		14	8.5	18000	1600		2492
6	27 Apr 2008 - 20:00	PHB	1123.0	38	1.13	36	5	15	12 / 14			5	0.5	14	8	16000	1600		2076
7	28 Apr 2008 - 20:00	PHB	1123.0	23	1.13	40	5	15	12 / 14			5	0.4	14	8	16000	1600		
8	29 Apr 2008 - 20:00	PHB	1123.0	22	1.13	40	5	15	12 / 14			5	0.4	14	8	16000	1600		22323
9	30 Apr 2008 - 20:00	PHB	1123.0	22	1.13	40	5	15	12 / 14			5	0.4	14	8	16000	1600		22323
10	01 May 2008 - 20:00	PHB	1123.0	22	1.13	40	5	15	12 / 14			5	0.3	14	8	16000	1600		10457
11	02 May 2008 - 20:00	PHB	1123.0	22	1.13	40	5	15	12 / 14			5	0.3	14	8	16000	1600		3838
12	03 May 2008 - 23:59	KCI/Polymer	1400.0	37	1.13	48	11	26	10 / 14	5.8	8.3	3	0.1	2.5	8.5	41000	600	8	4450
13	04 May 2008 - 22:00	KCI/Polymer	1810.0	39	1.16	44	10	25	10 / 14	5.8	8.3	5	0.8	4	9	36000	280	8	19091
14	05 May 2008 - 20:00	KCI/Polymer	1810.0	26	1.16	45	10	25	10 / 14	5.8	8.3	5	0.8	4	9	36000	280	8	
15	06 May 2008 - 20:00	KCI/Polymer	1810.0	26	1.16	45	10	25	10 / 14	5.8	8.3	5	0.8	4	9	36000	280	8	
16	07 May 2008 - 23:59	KCI/Polymer	1810.0	23	1.16	46	10	25	10 / 14	5.8		5	.25	5	11	36000	960	8	
17	08 May 2008 - 23:59	KCI/Polymer	1810.0	26	1.16	46	10	25	10 / 14	5.8		5		5	11	36000	960	8	
18	09 May 2008 - 23:59	KCI/Polymer	1810.0	26	1.16	46	10	25	10 / 14	5.8		5		5	11	36000	960	8	

HALLIBURTON

Fluid Systems

BAROID FLUID SERVICES RECAP

3D OIL AUSTRALIA PTY LTD WEST TRITON BASS STRAIT, VICTORIA

West Seahorse-3

Prepared by: Eugene Edwards

Tim Waldhuter

Date: April/May, 2008

Table of Contents

- WELL SUMMARY
- 2. COST SUMMARY
- 3. PERFORMANCE SUMMARY
- 4. INTERVALS (36" x 17.5", 12.25" Hole and Plug & Abandon)
- 5. Evaluation
- 6. GRAPHS

Recap Mud Cost vs Depth Recap Mud Density, Viscosity and Solids content vs Depth Recap Mud Rheology and Gel Strengths vs Depth Recap Mud Filtrate and Chemistry vs Depth

7. POST WELL AUDIT

Well Summary
Total Cost Breakdown
Net Well Cost Breakdown
Interval Summary
Interval Cost Breakdown
Interval Chemical Concentrations
Fluid Property Recap
Operations Log Recap
Well Deviation (Per Well Design)

8. DAILY MUD REPORTS

1. <u>WELL SUMMARY</u>

1.1 Well Data

Well Name : West Seahorse 3

Operator : 3D Oil Australia Pty Ltd

Well Type : Vertical/Exploration

Bottom Hole Temperature : 58° C

Maximum Inclination : 28.5°

Location : VIC P57, Gippsland Basin, Victoria

 Contractor/Rig
 : West Triton

 Start Date (Rig)
 : 22/04/2008

 Baroid On Location
 : 22/04/2008

 Drill Out Date
 : 23/04/2008

RT to Mudline : 77.5 m

Total Depth : 1810m

Date TD Reached : 04/05/2008

Total Days Actual Drilling : 5

Date Released : 05/09/2008

Total Days on Well : 17

Drilling Cuttings Volume : 236m³

Formation Tops

Formation	MDRT (m)	TVDRT (m)	Length (m MD)
Gippsland	125	125	835
Lakes Entrance	1250	1050	1125
Gurnard Formation	1457	1357	207
Top N1	1600	1400	143
Top N2.3	1668	1468	68
Top N2.6	1689	1489	30
Top P1	1720	1520	31
Total Depth	1810	1610	1810

1.3 Casing Program

30	Conductor	@	122 m MDRT
13 ³ / ₈	Intermediate Casing	@	1117 m MDRT

1.4 Personnel

Drilling Supervisors	:	Bill Openshaw	Rocco Moussow
Baroid Field Service Reps.	:	Eugene Edwards Brian Auckram	Tim Waldhuter Gerald Lange

2. <u>COST SUMMARY</u>

2.1 Drilling Fluid Costs

	Drilling Fluid	Hole Size	MD From	MD To	Cost USD\$	
1&2	Seawater and Hi-Vis Sweeps	36"	77.5m (36")	125m (36")	23,102.77	
IQZ	Pad Mud / Displacement Mud	x 17.5"	125m (17.5")	1123 m (17.5")	23,102.77	
3.	KCL/POLYMER	1810 m	85,474.79			
Mud	Materials Used For Drilling		USD \$	108,577.57		
Mud	Materials Used For Cementing			USD \$	511.34	
Mud	Materials Used For Completion	า		USD \$	0	
Othe	r Materials Used (Cleaning Pits	s & Rig Clea	ning)	USD \$	0	
Prod	ucts Lost / Damaged			USD \$	13.10	
Solid	ls Control / Waste Managemen	USD \$	0			
Total	l Materials	Total USD \$	109,102.01			

2.2 Engineering Costs

Service Representatives	From (date)	To (date)	Days
Eugene Edwards	24/04/08	07/05/08	14
Tim Waldhuter	22/04/08	05/05/08	14
Brian Auckram	06/05/08	09/05/08	4
Gerald Lange	08/05/08	09/05/08	2
Total Days:			34
Service Cost	@ USD \$ 1250	USD \$	42,500.00
Total Cost of Materials & Engine	USD \$	151,602.01	

PERFORMANCE SUMMARY

3.1 Comments

3.

The Jack-up West Triton was moved from the Spekes -1 location to West Seahorse -3 location on the 22nd April. This exploration well was drilled to assess the Latrobe formations.

3.2 Performance Indicators

Interval 1. (77.5m-1123 m) - 36"x 17.5" Interval	Program	Actual	Achieved (+/- 10 %)
Drilled, m	1129	1123	`Yes´
Volume Built, bbl	5614	5917	Yes
 Consumption Rate, bbl/m 	4.31	5.2	Yes
Mud Cost / bbl, US\$	6.32	3.98	No
 Mud Cost / m, US\$ 	31.42	20.98	No
 Interval Mud Cost, US\$ ** 	35,478	23,558.83	No
Interval 2. (1123m - 1,810m) - 12.25 " Interval	Program	Actual	Achieved (+/- 10 %)
Drilled, m	743	693	Yes
Volume Built, bbl	2704	2283	No
Dilution Rate, bbl/m	1.75	1.28	No
Consumption Rate, bbl/m	3.64	3.29	Yes
 Mud Cost / bbl, US\$ 	46.31	36.13	No
 Mud Cost / m, US\$ 	168.54	119.02	No

3.3 Explanation of Non-Conformance

Interval 1: 36" and 17.5"

Interval Mud Cost, US\$ **

The volume of mud built was greater then programmed. However, this was due to greater water additions and not chemical additions. Enabling a \$11,919.17 reduction, from the programmed cost

125,222.76

82,481.56

No

Drilling the 17.5" section, the mud viscosity increased, while drilling the Lakes Entrance formation and sea water was used to control the increasing viscosity. The quantity of Bentonite used was 39 MT, compared to 45 MT in the program.

KCL / Polymer mud salvaged from the previous well was used as a displacement fluid, this fluid was 1.15 SG and allowed a reduction in the amount of Barite consumed from the programmed 24 MT programmed, to 4 MT actually used.

While drilling the 17 ½" section to 1123m, the cost was less than programmed. This was due to the fact that by running the non-inhibitive PHB mud system, we tended to "make" mud from the clay in the formation. This meant that less Gel had to be added to maintain viscosity and the majority of the dilution was carried out with seawater to maintain the mud weight and viscosity, both of which increased continually due to the lack of inhibition provided by the mud.

Interval 2: 12.5"

• This interval was characterized by a tendency to build mud viscosity from the native clays. This tendency did result in a cost savings due to less BARAZAN D+, the primary viscosifier being required. During the logging run logs bridged off at 1775 meters, coal and sand stringers along with swelling clays at this depth contributed. Indicating that an increased concentration of KCI during the final 100 meters may be in order. Spotting a high viscosity KCI laden pill over the bottom 200 meters may also be an alternative.

• 4.

INTERVAL - 1

4.1 SUMMARY

36" Hole From 77m To 125 m In 1 Day

Drilling Fluid Seawater and Viscous Sweeps, Pad mud

Formations Gippsland.

The 36" interval was drilled riser-less, using seawater and unweighted hi-vis spud mud sweeps from 77.5 m to 125 m. The spud mud used for sweeps was built from pre-hydrated bentonite at 40 ppb, cut back with seawater once hydrated and flocculated by the addition of lime prior to pumping. Initially the 36" hole sweeps were pumped from the undiluted 40ppb PHB, to ensure the correct viscosity, due to the less than adequate hydration time. The viscosity of the sweeps was further augmented by the addition of Barazan-D Plus. 75 bbl sweeps were pumped prior to connections to clean the hole.

After drilling to 125m, a 200bbl, 40ppb PHB sweep was pumped to ensure hole cleaning and the open hole was displaced with 200bbls, of 1.15sg inhibited KCL mud from the previous well. A wiper trip was made to 83m to ensure slick hole prior to running the 30" conductor. No fill was observed when running back to bottom for the wiper trip.

The 30" conductor was run to bottom without incident and cemented as per program.

Properties Programmed Actual (Typical Drilling)

	Min	Max	Min	Max	Conformance
Mud Weight, sg	ALAP	ALAP	1.02	1.02	Yes
6 rpm, lb/100 ft ²	>40		41	41	Yes
YP, lbs/100ft ²	>50		56	56	Yes
Viscosity, sec/qt	>100		110	110	Yes
рН	9	10	9	9	Yes
Plastic Viscosity, cp	ALAP		13	13	Yes

Maintenance

- 25 tons of Bentonite was used for the preparation of high viscosity sweeps for drilling the 30" conductor section. This was due to the amount of time for pre-hydrating the gel being inadequate for proper hydration. Extra Bentonite was used to increase the viscosity to within specifications.
- The Bentonite that was cut back to 20ppb with seawater was also diluted too much, due to a seawater valve being left open, into one of the pits. Barazan-D Plus was then used to further augment the viscosity before it was suitable for use.
- The remaining bentonite used was first prehydrated in drill water at a concentration of 35-40 ppb. This was then cut back to 20-30 ppb using seawater. Lime was added prior to use to enhance viscosity. Caustic soda was used to obtain required alkalinity.
- Guar Gum was not available on location to be used as an alternative to the pre-hydrated Bentonite. This is also a cheaper product than BARAZAN D+, that can be used to increase chloride contaminated PHB.
- Pit #7 was used for seawater for drilling. The hi-vis sweeps were contained in pits 4, 5, 6 and 8. All 1.15 sg weighted displacement mud, kept from the previous well was kept in pits 1 and 2.
- A total of 1900 bbls of spud mud was prepared for top hole at 30-40 ppb.

INTERVAL - 2

4.2 SUMMARY

17.5" Hole From 125 m To 1123 m In 3 Days

Drilling Fluid Flocculated Seawater/Bentonite **Formations** Gippsland Limestone/Lakes Entrance

The 17.5" section was drilled using flocculated seawater/pre-hydrated bentonite fluid. The shakers were dressed with 89mesh main screens and 20 mesh scalping screens. Pre-hydrated Bentonite at 30-40ppb was prepared and pre-hydrated. The PHB was then transferred to pit #5 and cut back with seawater to approximately 15-20ppb, depending on viscosity requirements. The active system was treated by additions of Caustic Soda to maintain the pH to within specified parameters when diluting with seawater.

The mud weight and viscosity increased continually and required constant dumping and dilution to attempt to maintain within programmed specifications. The shaker screens were upgraded to a minimum of 145mesh to aid in solids control. Solids and hence mud weight also increased due to shaker screens becoming damaged while drilling, with the mud weight increasing above that programmed, which required a more aggressive dump and dilution regime to bring the weight back to programmed specifications.

Due to the non-inhibitive properties of the PHB/seawater mud, while drilling we were "making" mud from the clay in the formation drilled. This allowed for dilution with clean seawater to maintain the viscosity with specifications and dilution of solids to control the mud weight. Dumping and dilution was required continuously, through to the section TD of 1123m, to maintain the mud properties.

Approximately 450bbl of 1.15sg KCl polymer inhibited mud, retained from the previous well was spotted on bottom prior to pulling out of the hole to run casing.

Properties Programmed Actual

	Min	Max	Min	Max	Conformance
Mud Weight, sg		<1.14	1.08	1.2	No
Viscosity, sec/qt	30	50	35	48	Yes
pH	8	9.5	8	8.5	Yes

Explanation of Non-Conformance

Controlling the mud weight was a continual problem throughout this section. This was
mainly due to the non-inhibitive properties of the drilling fluid and also due to damaged
shaker screens allowing solids ingress. Continuous dumping and dilution was required to
control both the mud weight and viscosity. The finest possible shaker screens were run to
try and improve the solids control performance with little benefit.

Maintenance

 The fluid for this interval consisted of prehydrated gel built at 35 ppb and blended with seawater once hydrated at approximately 50:50, depending on the funnel viscosity at the time of mixing dilution volume. Due to continual increase in viscosity from the formation drilled seawater was also used for dilution and Caustic Soda was added to maintain the pH to within the specified range.

INTERVAL - 3

4.3 SUMMARY

12.25 " Hole From 1117m To 1810m In 2 Days

Drilling Fluid KCL/Polymer/CLAYSEAL +

Formations Lakes Entrance/Latrobe Formations

Properties Programmed Actual (Typical Drilling)

	- 0				
	Min	Max	Min	Max	Conformance
Mud Weight, sg		1.2	1.12	1.16	Yes
PV, cp	ALAP		5	11	Yes
YP, lbs/100 ft ²	20	30	15	26	Yes
6 rpm, lbs/100 ft ²	12	16	9	12	Yes
pH	8.8	9.5	8.5	9.5	Partial
KCL, wt%	6	8	7.5	8	Yes
API WL, mL/30 min		6	5.8	5.8	Yes
LGS, % vol		10		2.9	Yes

Explanation of Non-Conformance

• The initial 6 rpm was deliberately less than programmed. Due to the low concentration of polymers added, to the initial mud built to ensure a smooth displacement. Additional PHPA and BARAZAN D+ were added to bring the mud into specification, once it was sheared.

Maintenance

- The initial 6rpm readings were below the programmed 12 -16. The new was built between 0.8 and 1ppb, to enable circulation over the shakers while un-sheared. The 6rpm was raised by gradual additions, of in total. 0.5ppb BARAZAN D+ and 0.75 ppb EZ-Mud, to 12 lbs/100 ft². The shaker screens run at displacement were 89 and 145 mesh.
- KCL depletion was only 0.5% from the initial 8% mixed.
- Calculated hole wash out was 2.7% and no large cuttings, coal or shale were observed at the shakers/ gumbo box. The largest coal fragment observed was 1'-2", indicating the use of Barablok and the mud weight was successful in controlling / balancing coal stringers encountered.
- The inhibition provided by 8% KCL and 2% CLAYSEAL + was sufficient to prevent any obvious signs of caving, with very few splintered cuttings observed over 1" long. The PHPA successfully encapsulated the cuttings observed at the shakers. With no clay cuttings sticking to each other or the shaker screens and with minimal water penetration, when the cuttings were broken open. There were a few larger coal cuttings retrieved from the shakers, while circulating, during the cement / suspension program. Ranging in size from 1" to 6" long.

Solids Control Equipment

- The 4 VSM 300 shakers were dressed with 89 and 145 mesh screens, for the initial displacement of un-sheared KCL /Polymer mud. Circulating rates were +/- 1000 gpm and the screens were fined up to 255's when possible.
- The scalper screens initially installed on the shakers were 20 mesh. During the drilling of the interval, with the addition of premix for volume and PHPA / Barazan D additions to the active, the mud was covering 80-90% of the four shakers scalper screens. Two shakers were redressed with 10 mesh scalper screens.
- The centrifuges were test run, but not required, as the mud weight held at 9.6 9.8ppg.

4.4 Plug and Abandon

Plug and Abandon.

The well was plugged back with cement plugs and capped. No 9 5/8" casing was set.

5.0 EVALUATION

Comments

Problems, Causes, Remedial Action Taken or Recommended

Solids Control and Mud Mixing Equipment

1) Problem Shaker and scalper screens blocking up or found with holes.

Cause Not being regularly washed down or changed out.

Action Regular supervision at shakers required.

Solids Control and Mud Mixing Equipment

2) Problem Desilter blocked up with cuttings

Cause Design of all sand traps allows cuttings build up in suction lines. Suction and dump

lines are the same.

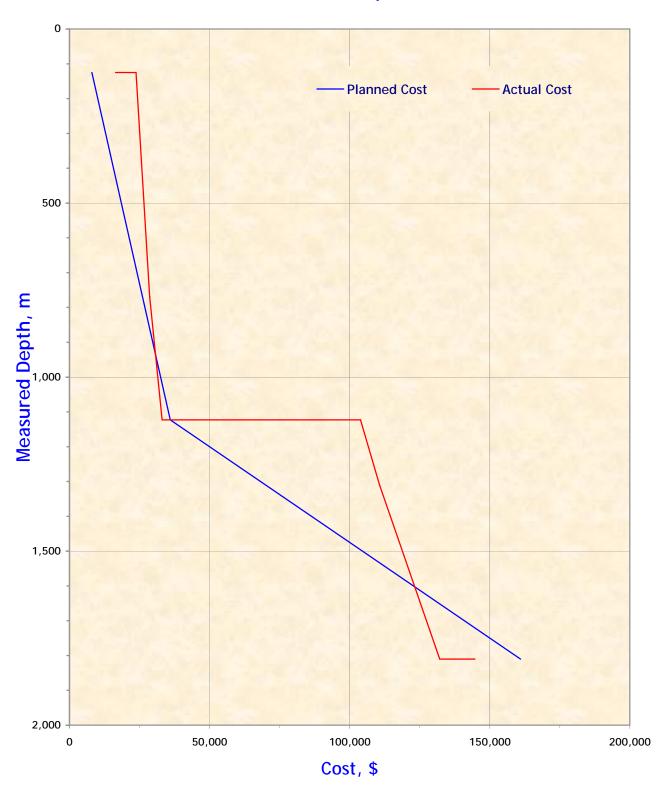
Action Prior to running any pumps/ centrifuge /degasser, the selected suction line must

be cleared by dumping at least 5 bbls.

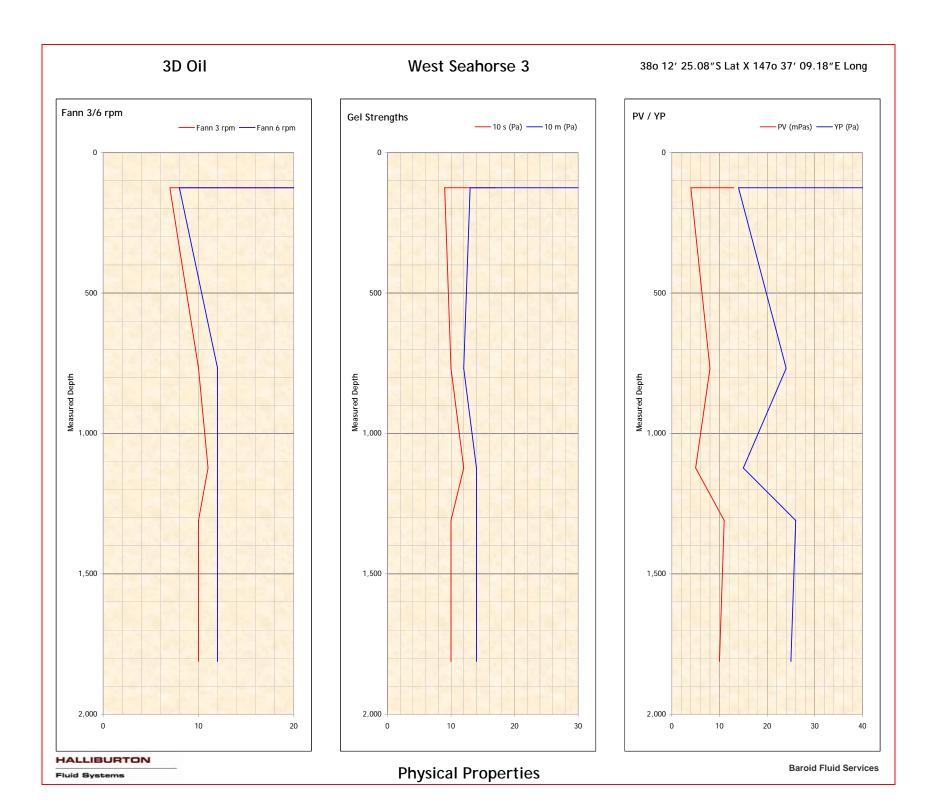
5.1 RECOMMENDATIONS FOR IMPROVEMENT

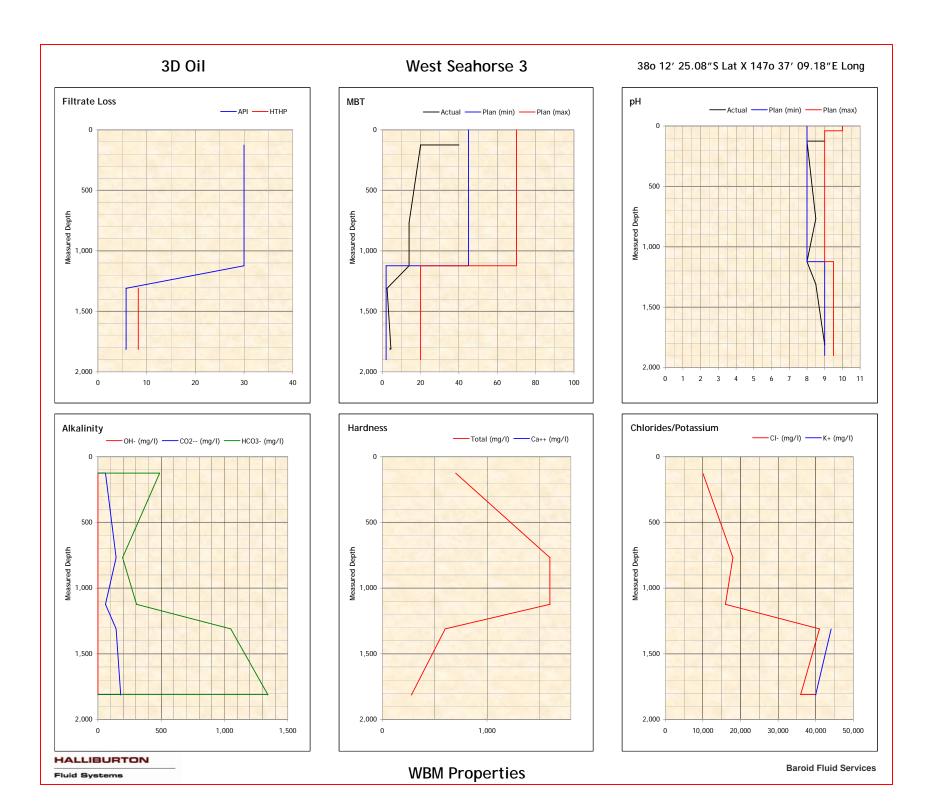
Hole Conditions

Drilling Fluid


- The initial mud made, did not include the 10ppb calcium carbonate, which was required to be added prior to drilling the Latrobe. There was a slight increase in mud weight once the calcium carbonate was added. This could be added straight away when the mud is initially built at 5ppb and slowly increased to 10ppb prior to drilling the Latrobe formation.
- At final TD, spotting a high viscosity KCl laden pill over the bottom 200 meters may help logs get to bottom by inhibiting any swelling clays and by helping to suspend coal cavings. Logs in this instance bridged at 1775 meters. The formation at this depth was variously described as coal and sand stringers with swelling clays interspaced.

Solids Control and Mud Mixing Equipment


- Rig crew unfamiliarity seemed to be the cause of some equipment issues. Being a new rig with new crews, this will be overcome in time, as rig crews become more familiar with the equipment and rig procedures. This was evident in shaker hands not recognizing damaged shaker screens.
- Some design faults exist that will require changing. i.e. desilter discharge line, deck hopper.


GRAPHS

Cost vs Depth

3D Oil West Seahorse 3 38o 12' 25.08"S Lat X 147o 37' 09.18"E Long HGS / LGS Viscosity Density ——% HGS ——% LGS 500 500 500 Measured Depth Measured Depth 1,000 Measured Depth 1,000 1,500 1,500 1,500 2,000 2,000 2,000 1,150 50 100 900 HALLIBURTON **Baroid Fluid Services Physical Properties** Fluid Systems

POSTWELL AUDIT

Well Name Operator Contractor Rig No

Unit System

West Seahorse 3

3D Oil Itd Seadrill West Triton Apache

Well Summary Report

Well Data

Spud Date		04/24/2008	Fluids/Products: Drilling Cost	\$	108,577.57
TD Date		05/04/2008	Fluids/Products: Completion Cost	\$	0.00
Project			Solids Control/Waste Management Cost	\$	0.00
Days on Well		15	Fluids/Products: Cementing Cost	\$	511.34
From Date		04/24/2008	Prod Lost/Damaged Cost	\$	13.10
To Date		05/08/2008	Engineer Services Cost	\$	0.00
Drilling Days		5	Equipment Cost	\$	0.00
Rotating / Drilling Hours		72.0/72.0	Transport/Packaging	\$	0.00
Average ROP	m/hr	14.5	Other Cost	\$	0.00
Maximum Density	SG	1.16	Total Well Cost	\$	109,102.01
Total Measured Depth	m	1,810	Planned Cost	\$	0.00
True Vertical Depth	m	1,810	Fluid Cost Per Fluid Volume	\$/bbl	12.25
Distance Drilled	m	1,042	Fluid Cost Per Length Drilled	\$/m	104.20
Maximum Deviation	deg	42.00	Fluid Cost/Vol of Hole Drilled	\$/bbl	147.32
Max. Horz. Displacement	m	595	Total Additions/Hole Drilled	bbl/bbl	12.031
Bottom Hole Temp			Total Additions/Length Drilled	bbl/m	8.510

Casing Design

Description	Set Date & Time	Top MD m	Top TVD n	End MD n	End TVD m	CSG OD in	CSG ID in	Max. Hole Size in	Hole MD m	Hole TVD m
30 X-52 157.5	04/24/2008 23:59	0		122	122	30.000	29.000	36.000	122	122
13.375 N-80 68.0	05/01/2008 23:59	22	2	2 1,117	1,034	13.375	12.415	17.500	1,123	1,040

Fluid Program

Int #	Fluid Type	Interval Days	BHT Deg C	Max. Dens SG	Whole fluid + Mix products	Other material charges	Other charges	Total Interval Cos		st \$
								Plan	Actual	Variance
1	Prehydrated Bentonite	2		1.03	18,534.39	456.06			18,990.45	
2	Old KCI/Polymer	3		1.15	4,568.38				4,568.38	
	Prehydrated Bentonite	3		1.10	4,000.00				4,000.00	
	Old KCI/Polymer									
3	Prehydrated Bentonite	10		1.16	85,474.79	68.38			85,543.17	
	KCI/Polymer/Clayseal									
Total V	Vell Cost \$				108,577.57	524.44			109,102.01	109,102.01

Australia Vic P57 Baroid Fluid Services Victoria

Page 1 of 1 Printed: 05/14/08

Well Name West Seahorse 3
Operator 3D Oil Itd

Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Total Cost Breakdown

Fluids/Products: Cementing Cost			
calcium chloride flake 77%	25 kg bag	37.00	511.34
		SubTotal	\$ 511.34
Fluid/Product: Lost Damage			
lime	20 kg bag	2.00	13.10
		SubTotal	\$ 13.10
Fluids/Products: Drilling Cost			
BARABLOK	50 lb bag	180.00	5,470.20
Baracide	25 kg can	7.00	611.59
BARACOR 100	25 kg sack	4.00	110.00
BARA-DEFOAM W300	5 gal can	1.00	616.88
BARAZAN D PLUS	25 kg bag	79.00	12,026.96
barite	1000 kg bulk	33.640	15,974.96
bentonite	1000 kg bulk	39.460	19,527.96
caustic soda	25 kg pail	38.00	1,679.22
Circal 60/16	25 kg sack	110.00	1,114.30
Circal Y	25 kg sack	54.00	691.20
CLAYSEAL PLUS	216 kg drum	26.00	24,872.64
DEXTRID LTE	25 kg sack	76.00	3,082.56
EZ-MUD	25 kg pail	56.00	4,806.48
lime	20 kg bag	5.00	32.75
Omyacarb 5	25 kg bulk	6.000	56.34
PAC-L	25 kg bag	43.00	3,520.41
potassium chloride	1000 kg bag	31.00	13,685.26
soda ash	25 kg bag	33.00	437.25
sodium bicarbonate	25 kg bag	12.00	150.60
sodium sulfite	25 kg bag	4.00	110.00
		SubTotal	\$ 108,577.57
		Total Well Cost:	\$ 109,102.01

Well
Operator
Contractor
Rig No
Unit System

West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Net Well Cost Breakdown

Cost Breakdown I \$	Interval 01	Interval 02	Interval 03	Total
Fluid/Product: Drilling	18,534.39	4,568.38	85,474.79	108,577.57
Fluid/Product: Comp/Filtration				
Solids Control/Waste Management Cost				
Fluids/Products: Cementing Cost	456.06		55.28	511.34
Engineering Services				
Fluid/Product: Lost Damage			13.10	13.10
Other Cost				
Equipment Cost				
Transport/Packaging Cost				
Total Cost	18,990.45	4,568.38	85,543.17	109,102.01

Cost Breakdown II \$	Interval 01	Interval 02	Interval 03	Total
Total Products Cost	18,990.45	4,568.38	85,543.17	109,102.01
Total Fluids Cost				
Total Charges Cost				
Allocated To / From Other Interval				
Total Cost	18,990.45	4,568.38	85,543.17	109,102.01
Planned Cost				
Variance				

Volume Breakdown bbl	Interval 01	Interval 02	Interval 03	Total
Total Base Fluids Addition				
Total Chemical Addition	89.5	12.1	201.1	302.7
Total Barite Addition		6.0	44.4	50.4
Total Water Addition	3,033.0	1,872.0	2,042.7	6,947.7
Total Fluid Built	3,122.5	1,890.1	2,288.2	7,300.8
Total Fluid Received	919.0		647.3	1,566.3
Total Influx Addition				
Not Used In Interval	-919.0	-293.0		
Total Fluid Volume	3,122.5	4,930.2	6,451.2	8,867.1

Australia Vic P57 Victoria

Baroid Fluid Services

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Interval Summary

Interval # 1	nterval # 1 Max Bit Size: 36.000 in		Hole Size Avg/Max		36.000 / 36.000 in		
Interval Start Date		04/24/2008	Planned Cost	\$	0.00		
Interval End Date		04/25/2008	Total Interval Cost	\$	18,990.45		
Interval TD Date		04/24/2008	Program Variance	\$	18,990.45		
Drilling Days		1.00	Other material charges	\$	456.06		
Rotating/Hours		3.00 / 3.00	Total Fluids Cost	\$	18,534.39		
Interval Top MD/TVD	m	125.0 / 125.0	Total Charges Cost	\$	0.00		
Interval End MD/TVD	m	125.0 / 125.0	Total Cementing Cost	\$	456.06		
Footage	m	0.0	Fluid Cost Per Vol Unit	\$/bbl	5.94		
Average ROP	m/hr	0.0	Fluid Cost/Hole Drilled	\$/m	0.00		
Max Hole Angle	degrees	0.00	Fluid Cost/Vol Drilled	\$/bbl	0.00		
Casing Size	in	30.000	Fluid Built	bbl	3,122.5		
Casing Shoe MD	m	122.0	Total Additions/Vol Drilled	bbl/bbl	0.00		
Casing Length	m	122.0	Total Additions/Hole Drilled	bbl/m	0.00		
Bottom Hole Temp			Fluid Loss/Vol Drilled	bbl/bbl	0.00		
Max Fluid Density	SG	1.030	Fluid Loss/Hole Drilled	bbl/m	0.00		

Interval Product and Base Fluids Usage and Cost

Product Function / Name	Drilling Fluid	Packaging	Quantity Used	Product Cost
Viscosifier/Suspension Agent				
BARAZAN D PLUS	AQUAGEL Mud	25 kg bag	6.000	913.44
bentonite	AQUAGEL Mud	1000 kg bulk	34.960	17,301.00
			Total	\$ 18,214.44
Alkalinity Control				
caustic soda	AQUAGEL Mud	25 kg pail	5.000	220.95
lime	AQUAGEL Mud	20 kg bag	5.000	32.75
soda ash	AQUAGEL Mud	25 kg bag	5.000	66.25
			Total	\$ 319.95
Weighting Material				
calcium chloride flake 77%	No Fluid	25 kg bag	33.000	456.06
			Total	\$ 456.06

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Interval Summary

Interval # 2	Max Bit	Size: 17.500 in	Hole Size Avg/Max		19.000 / 19.000 in		
Interval Start Date		04/26/2008	Planned Cost	\$	0.00		
Interval End Date		04/28/2008	Total Interval Cost	\$	4,568.38		
Interval TD Date		04/27/2008	Program Variance	\$	4,568.38		
Drilling Days		2.00	Other material charges				
Rotating/Hours		41.50 / 41.50	Total Fluids Cost	\$	4,568.38		
Interval Top MD/TVD	m	768.0 / 768.0	Total Charges Cost	\$	0.00		
Interval End MD/TVD	m	1,123.0 / 982.5	Total Cementing Cost	\$	0.00		
Footage	m	355.0	Fluid Cost Per Vol Unit	\$/bbl	0.93		
Average ROP	m/hr	8.6	Fluid Cost/Hole Drilled	\$/m	12.87		
Max Hole Angle	degrees	42.00	Fluid Cost/Vol Drilled	\$/bbl	11.18		
Casing Size	in	30.000	Fluid Built	bbl	1,890.1		
Casing Shoe MD	m	122.0	Total Additions/Vol Drilled	bbl/bbl	12.07		
Casing Length	m	122.0	Total Additions/Hole Drilled	bbl/m	13.89		
Bottom Hole Temp			Fluid Loss/Vol Drilled	bbl/bbl	4.18		
Max Fluid Density	SG	1.150	Fluid Loss/Hole Drilled	bbl/m	4.81		

Interval Product and Base Fluids Usage and Cost

Product Function / Name	Drilling Fluid	Packaging	Quantity Used	Product Cost
Weighting Material				
barite	AQUAGEL Mud	1000 kg bulk	4.000	1,899.52
			Total	\$ 1,899.52
Viscosifier/Suspension Agent				
bentonite	AQUAGEL Mud	1000 kg bulk	4.500	2,226.96
			Total	\$ 2,226.96
Alkalinity Control				
caustic soda	AQUAGEL Mud	25 kg pail	10.000	441.90
			Total	\$ 441.90

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Interval Summary

Interval # 3 Max Bit S		Size: 17.500 in	Hole Size Avg/Max		12.250 / 19.000 in
Interval Start Date		04/29/2008	Planned Cost	\$	0.00
Interval End Date		05/08/2008	Total Interval Cost	\$	85,543.17
Interval TD Date		05/04/2008	Program Variance	\$	85,543.17
Drilling Days		2.00	Other material charges	\$	68.38
Rotating/Hours		27.50 / 27.50	Total Fluids Cost	\$	85,474.79
Interval Top MD/TVD	m	1,123.0 / 982.5	Total Charges Cost	\$	0.00
Interval End MD/TVD	m	1,810.0 / 1,810.0	Total Cementing Cost	\$	55.28
Footage	m	687.0	Fluid Cost Per Vol Unit	\$/bbl	13.25
Average ROP	m/hr	25.0	Fluid Cost/Hole Drilled	\$/m	124.42
Max Hole Angle	degrees	15.00	Fluid Cost/Vol Drilled	\$/bbl	260.14
Casing Size	in	13.375	Fluid Built	bbl	2,288.2
Casing Shoe MD	m	1,117.0	Total Additions/Vol Drilled	bbl/bbl	19.63
Casing Length	m	1,117.0	Total Additions/Hole Drilled	bbl/m	9.39
Bottom Hole Temp			Fluid Loss/Vol Drilled	bbl/bbl	4.73
Max Fluid Density	SG	1.160	Fluid Loss/Hole Drilled	bbl/m	2.26

Interval Product and Base Fluids Usage and Cost

Product Function / Name	Drilling Fluid	Packaging	Quantity Used	Product Cost
Defoamer				
BARA-DEFOAM W300	KCI/Polymer	5 gal can	1.000	616.88
			Total	\$ 616.88
Filtration Control				
BARABLOK	KCI/Polymer	50 lb bag	180.000	5,470.20
DEXTRID LTE	KCI/Polymer	25 kg sack	76.000	3,082.56
PAC-L	KCI/Polymer	25 kg bag	43.000	3,520.41
			Total	\$ 12,073.17
Corrosion Inhibitor				
BARACOR 100	KCI/Polymer	25 kg sack	4.000	110.00
sodium sulfite	KCI/Polymer	25 kg bag	4.000	110.00
			Total	\$ 220.00
Weighting Material				
barite	KCI/Polymer	1000 kg bulk	29.640	14,075.44
calcium chloride flake 77%	No Fluid	25 kg bag	4.000	55.28
			Total	\$ 14,130.72
Bactericides				
Baracide	KCI/Polymer	25 kg can	7.000	611.59
			Total	\$ 611.59
Viscosifier/Suspension Agent				
BARAZAN D PLUS	KCI/Polymer	25 kg bag	73.000	11,113.52
			Total	\$ 11,113.52
Alkalinity Control				
caustic soda	KCI/Polymer	25 kg pail	23.000	1,016.37
lime	No Fluid	20 kg bag	2.000	13.10
soda ash	KCI/Polymer	25 kg bag	28.000	371.00
sodium bicarbonate	KCI/Polymer	25 kg bag	12.000	150.60
			Total	\$ 1,551.07

Australia Vic P57 Victoria

Baroid Fluid Services

Page 3 of 4 Printed: 05/14/08

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Interval Summary

Shale Control					
EZ-MUD	KCI/Polymer	25 kg pail	56.000	4,806.48	
potassium chloride	KCI/Polymer	1000 kg bag	31.000	13,685.26	
CLAYSEAL PLUS	KCI/Polymer	216 kg drum	26.000	24,872.64	
			Total	\$ 43,364.38	
Lost Circulation/Bridging Agent					
Circal Y	KCI/Polymer	25 kg sack	54.000	691.20	
Circal 60/16	KCI/Polymer	25 kg sack	110.000	1,114.30	
Omyacarb 5	KCI/Polymer	25 kg bulk	6.000	56.34	
			Total	\$ 1,861.84	

Australia Vic P57 Baroid Fluid Services Victoria

Page 4 of 4 Printed: 05/14/08

Well Name West Seahorse 3
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Cost Breakdown

Interval # 01		From Date	04/24/2008 Top of Interval	125.0 m
Max. Hole Size / Bit Size	36.000 / 36.000 in	To Date	04/25/2008 Bottom of Interval	125.0 m

Fluids/Products: Cementing Cost			
calcium chloride flake 77%	25 kg bag	33.00	456.06
		SubTotal	\$ 456.06
Fluids/Products: Drilling Cost			
BARAZAN D PLUS	25 kg bag	6.00	913.44
bentonite	1000 kg bulk	34.960	17301.00
caustic soda	25 kg pail	5.00	220.95
lime	20 kg bag	5.00	32.75
soda ash	25 kg bag	5.00	66.25
		SubTotal	\$ 18,534.39
		Interval Total Cost	\$ 18,990.45
	Charged To/From Other	Interval	\$
	Net Description Total Co	ost	\$ 18,990.45
	Programmed Cost		\$ 0.00
	Program Variance		\$ 18,990.45

Well Name West Seahorse 3
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

Interval Cost Breakdown

Interval # 02		From Date	04/26/2008 Top of Interval	768.0 m
Max. Hole Size / Bit Size	19.000 / 17.500 in	To Date	04/28/2008 Bottom of Interval	1,123.0 m

Fluids/Products: Drilling Cost			
barite	1000 kg bulk	4.000	1899.52
bentonite	1000 kg bulk	4.500	2226.96
caustic soda	25 kg pail	10.00	441.90
		SubTotal	\$ 4,568.38
	_	Interval Total Cost	\$ 4,568.38
	Charged To/From Other	Interval	\$ 0.00
	Net Description Total Co	ost	\$ 4,568.38
	Programmed Cost		\$ 0.00
	Program Variance		\$ 4,568.38

Interval # 03

PAC-L

soda ash

potassium chloride

sodium bicarbonate

sodium sulfite

Well Name West Seahorse 3
Operator 3D Oil Itd
Contractor Seadrill
Rig No West Triton
Unit System Apache

04/29/2008 Top of Interval

1,123.0 m

3520.41

13685.26

371.00

150.60

110.00 **85,474.79**

Q5 5/3 17

Interval Cost Breakdown

lax. Hole Size / Bit Size 19.000 / 17.500 in To Date		05/08/2008	Bottom of Interval	1,810.0 m
Fluids/Products: Cementing Cost				
calcium chloride flake 77%	25 kg bag	4.00		55.28
		SubTotal	\$	55.28
Fluid/Product: Lost Damage				
lime	20 kg bag	2.00		13.10
	•	SubTotal	\$	13.10
Fluids/Products: Drilling Cost				
BARABLOK	50 lb bag	180.00		5470.20
Baracide	25 kg can	7.00		611.59
BARACOR 100	25 kg sack	4.00		110.00
BARA-DEFOAM W300	5 gal can	1.00		616.88
BARAZAN D PLUS	25 kg bag	73.00		11113.52
barite	1000 kg bulk	29.640		14075.44
caustic soda	25 kg pai	23.00		1016.37
Circal 60/16	25 kg sack	110.00		1114.30
Circal Y	25 kg sack	54.00		691.20
CLAYSEAL PLUS	216 kg drum	26.00		24872.64
DEXTRID LTE	25 kg sack	76.00		3082.56
EZ-MUD	25 kg pai	56.00		4806.48
Omyacarb 5	25 kg bulk	6.000		56.34
-				

25 kg bag

25 kg bag

25 kg bag

25 kg bag

SubTotal

1000 kg bag

From Date

	interval rotal Cost	Ψ	05,545.17
Charged To/From Other	Interval	\$	
Net Description Total Co	ost	\$	85,543.17
Programmed Cost		\$	0.00
Program Variance		\$	85,543.17

43.00

31.00

28.00

12.00

4.00

Australia Vic P57 Baroid Fluid Services Victoria

Page 3 of 3 Printed: 05/14/08

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Interval Chemical Concentration

Interval # 01		From Report Date	04/24/2008	Top of Interval	125.0 m
Max. Hole Size / Bit Size 3	36.000 / 36.000 in	To Report Date	04/25/2008	Bottom of Interval	125.0 m

Fluid Name: Prehydrated Bentonite			
Material	Average ppb	Minimum ppb	Maximum ppb
BARAZAN D PLUS	0.13	0.09	0.17
bentonite	26.42	23.87	28.96
caustic soda	0.11	0.08	0.14
lime	0.09	0.06	0.12
soda ash	0.11	0.08	0.14

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Interval Chemical Concentration

Interval # 02		From Report Date	04/26/2008	Top of Interval	768.0 m
Max. Hole Size / Bit Size	19.000 / 17.500 in	To Report Date	04/28/2008	Bottom of Interval	1,123.0 m

Fluid Name: Old KCI/Polymer			
Material	Average ppb	Minimum ppb	Maximum ppb
BARAZAN D PLUS	0.03	0.03	0.03
barite	1.51	1.51	1.51
bentonite	10.09	10.09	10.09
caustic soda	0.11	0.11	0.11
lime	0.02	0.02	0.02
soda ash	0.03	0.03	0.03

Fluid Name: Prehydrated Bentonite			
Material	Average ppb	Minimum ppb	Maximum ppb
BARAZAN D PLUS	0.06	0.05	0.06
barite	2.33	2.20	2.46
bentonite	16.65	14.73	18.79
caustic soda	0.16	0.14	0.18
lime	0.04	0.03	0.04
soda ash	0.05	0.04	0.05

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Interval Chemical Concentration

Interval # 03		From Report Date	04/29/2008	Top of Interval	1,123.0 m
Max. Hole Size / Bit Size	14.000 / 17.25 in	To Report Date	05/08/2008	Bottom of Interval	1,810.0 m

Fluid Name: Old KCl/Polymer			
Material	Average ppb	Minimum ppb	Maximum ppb
BARAZAN D PLUS	0.03	0.03	0.03
barite	1.51	1.51	1.51
bentonite	10.09	10.09	10.09
caustic soda	0.11	0.11	0.11
lime	0.02	0.02	0.02
soda ash	0.03	0.03	0.03

Fluid Name: Prehydrated Bentonite			
Material	Average ppb	Minimum ppb	Maximum ppb
BARAZAN D PLUS	0.05	0.05	0.05
barite	2.10	2.10	2.10
bentonite	14.04	14.04	14.04
caustic soda	0.16	0.16	0.16
lime	0.03	0.03	0.03
soda ash	0.04	0.04	0.04

Fluid Name: KCI/Polymer/Clayseal			
Material	Average ppb	Minimum ppb	Maximum ppb
BARABLOK	3.49	3.12	3.97
Baracide	0.14	0.12	0.17
BARACOR 100	0.10	0.09	0.10
BARA-DEFOAM W300	0.02	0.01	0.02
BARAZAN D PLUS	1.40	0.86	1.60
barite	26.04	16.79	31.01
caustic soda	0.31	0.24	0.56
Circal 60/16	2.05	0.62	2.50
Circal Y	1.10	0.18	1.35
CLAYSEAL PLUS	5.15	4.81	5.43
DEXTRID LTE	1.78	1.61	1.88
EZ-MUD	1.05	0.49	1.36
Omyacarb 5	0.14	0.13	0.18
PAC-L	0.98	0.91	1.04
potassium chloride	28.82	26.34	30.15
soda ash	0.67	0.62	0.70

Australia Vic P57 Baroid Fluid Services Victoria

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Interval Chemical Concentration

sodium bicarbonate	0.28	0.25	0.30
sodium sulfite	0.11	0.11	0.11

Australia Vic P57 Baroid Fluid Services Victoria

Page 4 of 4 Printed: 05/14/08

Operator 3D Oil Itd

Well Name West Seahorse 3

Contractor Seadrill
Rig No West Triton
Unit System Apache

Fluid Property Recap: Water-Based Fluid

Date	Depth	FL Temp	Density	Funn Visc	R	heolo	gy	49 D	eg C		Fi	Itration					Filtrat	e Anal	ysis		MBT	Sand	F	Retort A	nalysis	Rheometer Dial Readings					
		тепір		VISC	PV		lbs/10	00 ft2		API	HTHP	Cake API	Cake HTHP	Temp	рН	Pm	Pf	Mf	CI	Total Hardness		% by		% by	vol	600	300	200	100	6	3
	m	Deg C	SG	sec/qt	сР	YP	10S	10M	30M	ml/30 min	ml/30 min		d in	Deg C		ml	ml	ml	mg/l	mg/l	ppb Eq.	vol	Corr		NAP Base Wate						
Interval # 0	1									From Dat	e	<u></u>		04/24/2	008	<u> </u>				Top of Ir	terval		Solid	125.0	m	<u> </u>					
Max. Hole Si	ze / Bit S	Size 3	6.000 / 36	6.000 in						To Date				04/25/2	800					Bottom (of Interv	al		125.0	m						
04/24/2008	125		1.020	110	13	56	17	41	52	13.0		1	2		9.00						40.0				95	82.0	69.0	61.0	56.0	42.0	41.0
04/24/2008	125		1.020	110	13	56	17	41	52	13.0		2			9.00						40.0				95	82.0	69.0	61.0	56.0	42.0	41.0
04/25/2008	125		1.020	110	13	56	14	41	52	13.0		2			9.00						40.0				9	82.0	69.0	61.0	56.0	42.0	41.0
04/25/2008	125		1.030	40	4	14	9	13	15	30.0		2			8.00	0.45	0.05	0.50	10,000	700	20.0		3.35	5.41	96	22.0	18.0	15.0	12.0	8.0	7.0
Interval # 0	2									From Dat	e			04/26/2	800					Top of Ir	terval			768.0	m						
Max. Hole Si	ze / Bit S	Size 1	9.000 / 17	7.500 in						To Date		,		04/28/2	800	,				Bottom	of Interv	al	_	1,123.0) m						
04/26/2008	125		1.030	39	4	14	9	13	15	30.0		2			8.00	0.45	0.05	0.50	10,000	700	20.0		3.35	5.41	96	22.0	18.0	15.0	12.0	8.0	7.0
04/26/2008	408		1.110	40	4	14	9	13	15	30.0		2			8.00	0.45	0.05	0.50	10,000	700	20.0		3.35	0.41	96	22.0	18.0	15.0	12.0	8.0	7.0
04/26/2008	593	36	1.140	41	8	24	10	12	15			2			8.00	0.45	0.10	0.50	12,000	1,200	14.0	0.50	4.27	0.501	95	40.0	32.0	27.0	25.0	12.0	10.0
04/26/2008	768	38	1.100	48	8	24	10	12	15			3			8.50	0.40	0.12	0.40	18,000	1,600	14.0	1.00	4.99	4.857	94	40.0	32.0	27.0	25.0	12.0	10.0
04/27/2008	840	39	1.100	47	8	24	10	12	15			3			8.50	0.40	0.12	0.40	18,000	1,600	14.0	1.00	4.99	4.857	94	40.0	32.0	27.0	25.0	12.0	10.0
04/27/2008	1,063	38	1.130	36	7	23	10	12	13			3			8.00	0.20	0.10	0.40	17,000	1,600	14.0	0.80	4.03	1.001				24.0			8.0
04/27/2008	1,123	38	1.130	36	5	15	12	14	17			3			8.00	0.10	0.05	0.35	16,000	1,600	14.0	0.50	4.08	1.028						12.0	
04/28/2008	1,123		1.130		5	15	12	14	17			3			8.00	0.10	0.05	0.35	16,000	1,600	14.0	0.50	4.08			_		$\boldsymbol{ o}$		12.0	
04/28/2008	0		1.150	49	12										8.50								4.78					31.0			
04/28/2008	1,123		1.130	40	5	15	12	14	17			3		0.4/00/0	8.00	0.10	0.05	0.35	16,000	1,600	14.0	0.40	4.08			25.0	20.0	18.0	15.0	12.0	11.0
Interval # 0		·: 4	4 000 / 44	0 OE im						From Dat	e			04/29/2		0				Top of Ir		-4- m - = 1		1,123.0							
Max. Hole Si			4.000 / 12	· ·	I _					To Date				05/0	08/200	ī					om of I			i i		n 		1			
04/29/2008	1,123		1.130		5	15		14	17			3			8.00	0.10	0.05	0.35	16,000	1,600	14.0	0.30		1.028						12.0	
04/29/2008	1,123		1.130		5	15		14	17			3			8.00		0.05		,	1,600	14.0			1.028		_		1		12.0	
04/30/2008	1,123		1.130		5	15	12	14	17			3			8.00	0.10	0.05	0.35	16,000	1,600	14.0	0.40		1.028						12.0	
04/30/2008	1,123		1.130	40	5	15		14	17 17			3			8.00	0.10		0.35	16,000	1,600	14.0	0.30		1.028		_		1		12.0	
05/01/2008 05/01/2008	1,123		1.130	40	5	15	12		17			3			8.00	0.10	0.05	0.35	16,000	1,600	14.0	0.30								12.0	
05/01/2008	1,123 1,126	26	1.130		11	15 17	12	14 9	9	6.0	8.5	1	2	121	9.00	0.10	0.05	1.00	16,000 40,000	1,600 400	14.0	0.30	4.08 2.71					24.0			
33,33,2330	.,.20		20		<u> </u>		,	J	J	0.0	0.0	'			0.00	J.2.T	0.20	00	.0,000					0.000	1 5		_5.5		. 5.5	3.5	0

Australia Vic P57 Baroid Fluid Services Victoria

Page 1 of 2 Printed: 05/14/08

Operator 3D Oil Itd

Well Name West Seahorse 3

Contractor Seadrill
Rig No West Triton
Unit System Apache

Fluid Property Recap: Water-Based Fluid

Date	Depth	FL	Density	Funn	R	heolog	gy	49 D	eg C		Filtration						Filtrate Analysis					Sand	Sand Retort Analysis		S	Rheometer Dial Readings								
		Temp		Visc	PV		lbs/10	00 ft2		API	HTHP	Cake API	Cake HTHP	Temp	рН	Pm	Pf	Mf	CI	Total Hardness	ppb Eq.	% by		% by	y vol		600	300	200	100	6	3		
	m	Deg C	SG	sec/qt	сР	YP	108	10M	30M	ml/30 min	ml/30 min	32n	d in	Deg C		ml	ml	ml	mg/l	mg/l	ррь ц	vol	Corr Solid	LGS	NAP Base	Water								
05/03/2008	1,310	37	1.130	48	11	26	10	14	16	5.8	8.3	1	2	121	8.50	0.10	0.12	1.10	40,000	600	2.5	0.10	2.71	0.361		94	48.0	37.0	32.0	25.0	12.0	10.0		
05/03/2008	0	37	1.130	48	11	26	10	14	16	5.8	8.3	1	2	121	8.50	0.10	0.12	1.10	41,000	600	2.5	0.10	2.62	0.27		94	48.0	37.0	32.0	25.0	12.0	10.0		
05/04/2008	1,533	39	1.160	46	11	26	10	14	16	5.8	8.3	1	2	121	9.00	0.15	0.14	0.90	39,000	800	2.5	0.50	4.86	2.649		92	48.0	37.0	32.0	25.0	12.0	10.0		
05/04/2008	1,694	38	1.150	49	11	26	11	15	17	6.0	8.5	1	2	121	8.80	0.20	0.15	1.50	36,000	260	4.5	1.00	5.11	3.537		92	48.0	37.0	33.0	25.0	13.0	11.0		
05/04/2008	1,810	39	1.160	44	10	25	10	14	16	5.8	8.3	1	2	121	9.00	0.20	0.15	1.40	36,000	280	4.5	1.00	5.11	2.912		92	45.0	35.0	30.0	23.0	12.0	10.0		
05/05/2008	1,810		1.160	45	10	25	10	14	16	5.8	8.3	1	2	121	9.00	0.20	0.15	1.40	36,000	280	4.0	0.80	5.11	2.912		92	45.0	35.0	30.0	23.0	12.0	10.0		
05/05/2008	1,810		1.160	45	10	25	10	14	16	5.8	8.3	1	2	121	9.00	0.20	0.15	1.40	36,000	280	4.0	0.80	5.11	2.912		92	45.0	35.0	32.0	23.0	12.0	10.0		
05/06/2008	1,810		1.160	46	10	25	10	14	16	5.8	8.3	1	2	121	9.00	0.20	0.15	1.40	36,000	280	4.0	0.80	5.11	2.912		92	45.0	35.0	32.0	23.0	12.0	10.0		
05/06/2008	1,810		1.160	46	10	24	10	14	16	5.8	8.3	1	2	121	9.00	0.20	0.15	1.40	36,000	280	4.0	0.75	5.11	2.912		92	44.0	34.0	32.0	23.0	12.0	10.0		
05/07/2008	1,810		1.160	46	10	25	10	14	16	5.8		1		121	11.00	1.20	0.20	1.40	36,000	960	5.0	0.25	5.11	2.912		92	45.0	35.0	32.0	23.0	12.0	10.0		
05/08/2008	1,810		1.160	46	10	25	10	14	16	5.8		1		121	11.00	1.20	0.20	1.40	36,000	960	5.0		5.11	2.912		92	45.0	35.0	32.0	23.0	12.0	10.0		

Operations Log Recap

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Interval		01			From Date	001	Top of Interval	125.0	m
Max. Hole Siz	e / Bit Size	36.000 /	36.000	in	To Date	002	Bottom of Interval	125.0	m
For Report	# 001	On	04/24/2	2008	Operation at Dep	oth	125.0 m		
Rig Activity					77.5m. Drill ahead with WBM. POOH up for running 30' tally to 122m. Inst cable whilst running clamp on top of C	d from 77.5m I F/ 125mto 8 ' conductor. I tall quick-jay ng conductor TU. Land ou	RIH. Tag sea level at 38m. Cont to 125m. Pump 200bbl high vis 83m wiper trip, no fill. POOH from Hold PJSM, P/up shoe and run 3 joints @46m. Install release cabl r. Install 30" guide plates in CTU, at conductor with 90K. Cut 30" conductor including cut-off. Rig down	sweep, displace n 125m to surfac 0" conductor as le to pivot cam a install Icon supp nductor 2m abou	hole e. Rig per nd run port
Activity					Run casing and c		<u> </u>		
Fluid Treatme	nt				with 0.3ppb lime p from undiluted PH Barazan-D. Pump 200bbl undiluted s Mix 250bbls calcii	orior to dilution to dilution to ensure to regular sweet sweep at TD turn chloride of the control of the contro	o PHB, cut back to 20ppb with sea on. Due to short hydration time, so adequate viscosity. Augmented re seps as programmed to ensure had and displace well to pad-mud. cement mix water. er mud from Ocean Battler.	ome sweeps pur rheology by addi	mped tion of
For Report	# 002	On	04/25/2	2008	Operation at Dep	oth	125.0 m		
Rig Activity							30" conductor as per program. Cu e up 17 1/2" BHA.	ut conductor and	install
Activity					Cement conducto				
Fluid Treatmen	nt				Prepare further 34 added 280 bbls so Dressed shakers	40bbl of 40ppea water in p	I lines of calcium chloride cement ob PHB in pit #8 and 347bbl of 25 preperation for displacement. 145 mesh screens. from Ocean Valkyrie		# 7 ,

Australia Bass Straight Vic P57 Victoria **Baroid Fluid Services**

Page 1 of 5 Printed: 05/14/2008

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Interval		02			From Date	003	Top of Interval	768.0	m
Max. Hole Siz	e / Bit Size	19.000 / 17	7.500	in	To Date	005	Bottom of Interval	1,123.0	m
For Report	# 003	On	04/26/20	800	Operation at Dept	h	768.0 m		
Rig Activity					displacing well to V every stand.	VBM. Drill	HA. RIH and tag @121m. Drill out ahead F/125m to 768m as per DD		
Activity					Make up 17.5" BH/	A and drill	17.5" hole		
Fluid Treatmer	nt				returns overboard. mud, running full s Initial cuttings at sh Fined up shaker so maintain mud weig	Pumped 5 ystem via s akers, coa reens to 1 ht at <9.5 eight. Desi	arse,unconsolidated sands and she 45 to 255mesh and dumped sand b ppg. Regular dumping and dilution lter unserviceable due to blockage	isplaced hole to II. trap to dilute ar continuously re	o PHG
For Report	# 004	On	04/27/20	800	Operation at Dept	h	1,123.0 m		
Rig Activity					stand. Circ hole cle	an. Spot o	m 768m-1123m as per DD instruct old KCl mud on bottom. Flow check 82m-1076m (35k overpull).		
Activity					POOH to run casin	g			
Fluid Treatmer	nt				Maintain viscosity I increase while drilli As expected with n screens and fine s Add caustic to acti	by diluting ng as we ' on-inhibitiv ands being ve to mair	o maintain mud weight. with PHB or Sea Water as required make' mud from clay formation. ve mud, some mushy, clay cuttings g removed from lower shaker scree tain pH. ded in inventory, except Baracor 12	sticking to sca	lper
For Report	# 005	On	04/28/20	800	Operation at Dept	h	1,123.0 m		
Rig Activity					casing to 862m at	ime of rep	ing. Lay out BHA. Hold PJSM. Rig ort.	up and run 13	3/8"
Activity					Run casing and ce	ment			
Fluid Treatmer	nt				Compiled remainin pits, commenced n		minimum number of pits, dumped ./Polymer mud.	and cleaned e	mpty

Australia Bass Straight Vic P57 Victoria **Baroid Fluid Services**

Page 2 of 5 Printed: 05/14/2008

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Interval		03		From Date	006	Top of Interval	1,123.0	m
Max. Hole Siz	e / Bit Size	19.000 /	17.500 in	To Date	015	Bottom of Interval	1,810.0	m
For Report	# 006	On	04/29/2008	Operation at Dep	oth	1,123.0 m		
Rig Activity				hole clean. Ceme to back out runnin tool, pull to surfac back out running t	nt casing as og tool with i e. First 13 3 ool at surfa	ing. Make up well head and RIH. sper program. Displace cement von success. Troubleshoot proble 8/8" connection below wellhead bece, no success. Lay out landing succe riser to seawater. Rig up BOF	with PHB mud. At m. Back out runn packed out. Attem string and wellhe	ttempt ing ipt to ad.
Activity				Run casing and co	ement			
Fluid Treatme	nt			Continue mixing + clean sand traps a		CI/Polymer. Displace cement with	h PHB mud. Dum	p and
For Report	# 007	On	04/30/2008	Operation at Dep		1,123.0 m		
Rig Activity				out. Make up 13 3 Prepare and make 3/8" casing at 48.	5/8" water bi e up 13 3/8" 19m, back c	oreak out running tool connection ushing on 5 1/2" drill pie and retri casing spear and bumper sub. I out landing ring at 89m. Pull to su ear from 13 3/8" casing, no succ	ieve landing string RIH same. latch o ırface, rack back	g. onto 13
Activity				Fishing 13 3/8" ca	sing			
Fluid Treatme	nt			Continue mixing for	urther +800	bbl KCl/Polymer/Clayseal mud fo	or next section.	
For Report	# 008	On	05/01/2008	Operation at Dep	oth	1,123.0 m		
Rig Activity				break out running tack weld joints. M casing. Prepare w	tool, layout lake up to N	anding string and layout same. P same. RIH with MLH R/tool and MLH as per Drill-Quip instructions d nipple up BOP.	13 3/8" landing s	string,
Activity				Nipple up B.O.P.				
Fluid Treatme	nt					CI/Polymer prior to recommencin t job/left behind casing.	g drilling.	
For Report	# 009	On	05/02/2008	Operation at Dep	oth	1,123.0 m		
Rig Activity				motor and MWD to pipe rams. Cont to	ools. Contir RIH from 2	essure test BOP. Make up 12 1/4 nue to RIH to 200m. Line up Halli 200m, took weight at 285m (25K) nfirm returns cement. Drill out ce	iburton and test lo), break circ. Was	ower sh and
Activity				Tripping				
Fluid Treatme	nt			in slug pit prior to	displacing t	Polymer mud with Barite. Prepare o KCI/Polymer mud. Drill out cenue to large amount of cement to	nent with seawate	
For Report	# 010	On	05/03/2008	Operation at Dep	oth	1,400.0 m		
Rig Activity				from 1103m to 11 3m new formation	04m. Displa to 1126m. ence drilling	rom 468m to 1103m. Drill out cer ace well to 9.4ppg WBM. Continu Perform FIT with 9.4ppg mud to 12 1/4" hole from 1126m to 139 nd.	ie to drill shoe tra 750psi @1035m,	ck and
Activity				Drilling				
Fluid Treatme	nt			Drill out cement w	ith seawate	r, dumping returns overboard.		
				Pre-treated KCL/F	Polymer mu	d, for cement contamination. Pur	nped 50bbls HIV	is and

Australia Bass Straight Vic P57 Victoria

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Interval		03			From Date	006	Top of Interval	1,123.0	m
Max. Hole Size	e / Bit Size	19.000 / 17	7.500	in	To Date	015	Bottom of Interval	1,810.0	m
					displaced hole with	550 bbls mu	ud, while drilling float.	,	
					Barazan D to main	tain rheology	zed calcium carbonate. Treated as PHPA sheared. Added Circon prior to entering the Latrobe G	al 60/16 and Cir	cal Y,
For Report	# 011	On	05/04/2	800	Operation at Dep	th	1,810.0 m		
Rig Activity					Continue to drill 12 condition mud. Flo		om 1392m to 1810m. Circulate h	ole clean and	
Activity					Drilling	woneck and	FOOTTIOL logging.		
Fluid Treatmen	nt				Continued to add s	ized calcium	carbonate to active, for minimiz	zed seepage los	ses.
							da Ash to reduce hardness, 1.3 kg Baracor 129 per 8 hrs.	ppb Barablok to	
					Prepared 400bbl K	Cl/Polymer p	premix to maintain volume and n	nud properties.	
For Report	# 012	On	05/05/2	800	Operation at Dep	th	1,810.0 m		
Rig Activity							Lay out 12 1/4" BHA. Hold JSA eline logs as per program.	meeting, rig up	
Activity					Wire Line logs				
Fluid Treatmen	nt				Losses on trip out	of hole 1 bbl.			
					Dump and clean s	and trap #1 a	and clean shaker trays.		
For Report	# 013	On	05/06/2	800	Operation at Dep	th	1,810.0 m		
Rig Activity					RIH with MFCT str Make up and RIH	and POOH t POOH and o ing re-run an			
Activity					Tripping				
Fluid Treatmen	nt				Continue cleaning	shaker beds	and first sand trap.		
For Report	# 014	On	05/07/2	800	Operation at Dep	th	1,810.0 m		
Rig Activity							make up top drive and wash to	1771m Digun	and
					circulate bottoms ulines and pump Plutimes bottoms up. 1490m. POOH to 1238m a	ip, dumping on the second of t	place and POOH to 1633m. Macement contaminated mud at susplace then POOH to to 1416m in 1417m to 1238m then RIH and 160bbl Hi Visc pill to 1149m. Set	ke up Top Drive rface. Rig up ce and circulate 1 1 I tag top of Plug Plug 2 from 114	e and ement 1/2 1B at
					circulate bottoms ulines and pump Plutimes bottoms up. 1490m. POOH to 1238m a 1030m and POOH continue POOH la	ip, dumping on the second spotting 5 to 942m the ying out side POOH to 201	cement contaminated mud at su splace then POOH to to 1416m i 1417m to 1238m then RIH and	ke up Top Drive rface. Rig up co and circulate 1 1 I tag top of Plug Plug 2 from 114 up. to 307 m and pu	e and ement 1/2 1B at 9m to
Activity					circulate bottoms ulines and pump Plutimes bottoms up. 1490m. POOH to 1238m a 1030m and POOH continue POOH la 50bbl Hi Visc pill.	ip, dumping on the second spotting 5 to 942m the ying out side POOH to 201	cement contaminated mud at su splace then POOH to to 1416m in 1417m to 1238m then RIH and 60bbl Hi Visc pill to 1149m. Set in circulate 1 1/2 times bottoms of ways to 325m and then POOH	ke up Top Drive rface. Rig up co and circulate 1 1 I tag top of Plug Plug 2 from 114 up. to 307 m and pu	e and ement 1/2 1B at 9m to
Activity Fluid Treatmen	nt				circulate bottoms usines and pump Plutimes bottoms up. 1490m. POOH to 1238m and 1030m and POOH Continue POOH la 50bbl Hi Visc pill. cement lines at minum Wait on cement Dump 200 bbls continues and poor pump 200 bbls continues at minum Poor pump Poor	p, dumping of a graph of the second of the s	cement contaminated mud at su splace then POOH to to 1416m in 1417m to 1238m then RIH and 60bbl Hi Visc pill to 1149m. Set in circulate 1 1/2 times bottoms of ways to 325m and then POOH	ke up Top Drive rface. Rig up ce and circulate 1 of tag top of Plug Plug 2 from 114 up. to 307 m and pu 130m and rig d	e and ement 1/2 1B at 9m to imp own

Australia Bass Straight Vic P57 Victoria **Baroid Fluid Services**

Page 4 of 5 Printed: 05/14/2008

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Interval		03			From Date	006	Top of Interval	1,123.0	m
Max. Hole Siz	e / Bit Size	19.000 /	17.500	in	To Date	015	Bottom of Interval	1,810.0	m
For Report	# 015	On	05/08/2	800	Operation at Dep	oth	1,810.0 m		
Rig Activity					dumping contami Choke Hose and	nated returns BOP. d retrieval to	d reverse circulate, displacing r s. Pick up and lay out diverter to ol, Run In and screw in then ret retrieve 30".	hen rig down Mar	ndrel,
Activity					P&A				
Fluid Treatme	nt				None. preparing	to move to no	ew well.		

Australia Bass Straight Vic P57 Victoria Baroid Fluid Services

Page 5 of 5 Printed: 05/14/2008

Well Name Operator Contractor Rig No Unit System West Seahorse 3 3D Oil Itd Seadrill West Triton Apache

Deviation Per Well Design

Survey Date	MD m	TVD m	Angle	Direction	Horiz Displ. m
04/26/2008	330	330	3.00		3.0
04/26/2008	450	448	15.00		20.0
04/26/2008	600	586	30.00		77.0
04/26/2008	720	683	42.00		147.0
04/27/2008	1,170	1,018	42.00		448.0
04/27/2008	1,290	1,115	30.00		519.0
05/02/2008	1,440	1,253	15.00		576.0
05/03/2008	1,590	1,401			595.0
05/12/2008	1,810	1,610			595.0

DAILY MUD REPORTS

ia Fiu	iiu sei	VICE	:5							Date		04/24/2008	Report No	0	001 125.0 m	
		Da	ily Drilli	ng Flu	uid Re	oort				Spud Date	9 04/24/200		Rig Activity		and cemen	
erator Oil Itd					Report For Bill Opens	haw				_	Well Name West Sea					
ntractor adrill					Report For Micheal B						Rig Name West Trito		Unit Syster Apache	n		
untry stralia			State/Province Victoria		WIIOTIOGI B	шту	Geographi Bass Stra	ic Area/Coun	ty		Field or BI Vic P57		F 4 2.2			
Bit Infor					g (in) / (m		in C	asing m			Cir	culation/Hyd			N	
i Size ake/Type ts rA ts Velocity t Impact Force t HHSI	1330.7 0.69	Y11C x16 sq-in m/sec lbf hhp/in2	Drill Pipe Drill Collar Drill Collar	5.500 8.250 9.500	3.250 2.875 3.125	Length 46.7 48.2 30.2	30.000	<u>Set MD</u> @ 122.	Bore i Stroke Eff(%) bbl/strl SPM gpm bl	s in < bl/min	6 14 0 556	14-P-220 .500 4.000 97 .139 95	Nat -14- 6.56 14.0 97 0.1; 95 556	00 000 7 39	Nat -14-F 6.50 14.00 97 0.13 0	0 00
ess Drop @ Bit t Depth CD @ Csg Shoe CD @ Bit	561 125.0 1.028	m SG	Open Hole	36.000		45.0			BU Tin	Circ Time ne , min	5 5	AV, Riser AV min DP AV max DC	11.1	Tot Pre Press D	s Loss Orop DP	1310
Properties	1.975 s	ŀ	lyd 1	2		3	4	Та	Total S rgets		gram 922	BU Strokes		reatme	nts	
V @ Deg C sec/qt 1 V @ Deg C cP 1 P lbs/100 ft2 ELS lbs/100 ft2 1 00/300 8 00/100 6 /3 4 PI Filit ml/30 min rake API/HTHP 32nd in rorr Solid % by Vol AP/Water % by Vol AP/Wat		1.02 111 13 17 82 61 42	Pit 8 8:00 125 20 @ 19 0 @ 19 3 @ 49 56 7/41/52 .0/69.0 .0/56.0 .0/41.0 13.0 1/2 /95.0 40.0 0 @ 19	Flow L 23:5 125 1.02 110 13 @ 56 17/41. 82.0/6 61.0/5 42.0/4 13.0 2//95. 40.0 @	55 00 01 49 752 99.0 16.0 11.0 0					1.000		Fluid Type Mixed up 15 20ppb with a lime prior to some sweet ensure adec by addition of as program 200bbl undi to pad-mud. Mix 250bbls water. Received 9 Battler. Rig up. Mak at 38m. Cor ahead from vis sweep, of 125mto 83m to surface. If Hold PJSM, per tally to 1 Install relea: whilst runnin in CTU, inst Land out co 2m above C	sea water a dilution. D ps pumped quate visco of Barazan med to ens luted swee . S calcium cl 19bbls KCL Rig ce up 36" B at RIH, tag 77.5m to 1 displace ho in wiper trip. Rig up for rip. P/up shoe 122m. Insta se cable to ng conduct riall Icon sugunductor wit CTU. Lay ou	-40 ppb and flocci ue to sh from un sisty. Aug -D. Pum ure hole p at TD hloride c Polyme Activity HA and seabed 25m. Pu le with V , no fill. I unning 3 and rur all quick- pivot ca or. Insta poport cla th 90K. C at 2 joint	culate with 0 ort hydration diluted PHE gmented rhe gmented rhe cleaning. Fand displace ement mix er mud from RIH. Tag se at 77.5m. Dump 200bbl WBM. POOHPOOH from 30" conductor 30" con	ack to .3ppb n time .3 to eology veeps 'ump e well Ocea aa leve rill high 1 F/ 125m or. ctor as 46m. cable gable for CTU ductor
	me		Jnits	Start	Rec	Used	End	Cost			Solids Con	including cu	ent		Time	е
ARAZAN D PLUS alcium chloride flah austic soda oda ash me ARABLOK arracide ARA-DEFOAM W3 arite	ke 77%		000 kg bulk 25 kg bag 25 kg pail 25 kg pail 25 kg bag 20 kg bag 50 lb bag 25 kg can 5 gal can 000 kg bulk		57.300 116 86 101 56 37 240 11 1 96.200	6 33 5 5 5	110 53 96 51 32 240 11 1 96.200	\$913.4 \$456.0 \$220.9	4 VSM-30 6 VSM-30 5 VSM-30 5 VSM-30 5 Hydr	0 0 0 0	Cones	Scre		Hrs	Drilling Circulating Trips Rig Surveys Fishing Run Casin Coring Reaming Testing	2.0
AROFIBRE FINE ircal 60/16 ircal Y LAYSEAL PLUS Z SPOT Z-MUD wikseal Fine -DRIL HT PLUS			25 lb bag 25 kg sack 25 kg sack 216 kg drum 55 gal drum 25 kg pail 40 lb bag 50 lb bag		50 170 96 29 8 38 38		50 170 96 29 8 38 38 55			ntrifuge	16 4	Feed		Hrs	Logging Dir Work Repair Other Total Rotating ROP Dil Rate	4.0 24.0 3.0
IO-SULF Omyacarb 5			17 kg pail 25 kg bulk		96.000		48 96.000			Volume B	reakdown bbl	Additions	Prehydra: bbl		tonite sses	bbl
AC-L otassium hydroxide app odium bicarbonate TEELSEAL LR-RATE			25 kg bag 25 kg bag 25 kg bag 25 kg bag 25 kg sack 55 gal drum		26 77 40 48 180		26 77 40 48 180		Annulu Pipe C Active Total F Total C Resen Prev V Net Ch	is ap Pits Hole Circ /e ol nange	124.7 3.8 128.5 128.5 1274.0 1405.6 1402.5	Base Drill Water Dewatering Sea Water Whole Mud Barite Chemicals Other Total	1838.4 64.5 1902.8	Fluid D Transfe SCE Evapora Trips Other Total Sa Downha Total La	umped erred ation urface ble	-497.2 -497.2
Daily Products Cost			\$14,061.45	Total Dail	ly Cost			\$14,061.4				Vol bbl 520.0	Survey MI)	morniation	m
		Rd Mell		rotal Cur	nulative C Tim Waldl			\$14,061.4 -9581-7555 66-881-445	0				Survey TV Angle Direction Horiz Disp			m Deg m

Warehouse

Baroid Flu	uid Se	rvice	95						Dete			0.4/05/0000	Report N	0	002	
		Da	ily Drilli	ng Flu	id Re	port			Date Spud	Date 04/2	4/20	04/25/2008	Rig Activity		125.0 m or and run d	
Operator					Report Fo	or				Well	Name	е	Comone	conduct	or and rain a	iiveite
3D Oil Itd Contractor					Bill Oper Report Fo					West		ahorse 3	Unit Syster	m		
Seadrill			lou in		Micheal		<u> </u>			West	t Trit	on	Apache			
Country Australia			State/Provine Victoria	ce/Region			Bass Stra	ic Area/County aight	1	Field Vic F		lock				
	ormation	ı in		Orill String				asing m	Model	1 1		culation/Hyd 14-P-220	draulics Da Nat -14		Not 14 I	D 220
Bit Size Make/Type	26.000 SMITH		Drill Pipe	OD 5.500	3.250	Length 46.7	30.000	Set MD @ 122.0	Model Bore in	ľ		14-P-220 6.500	6.5	00	Nat -14-I 6.50	0
Jets TFA	3x22	1x16 sq-in	Drill Collar Drill Collar	8.250 9.500	2.875 3.125	48.2 30.2			Strokes in Eff(%)		1-	4.000 97	14.0 97		14.00 97	
Jets Velocity	1.510	m/sec	Dilli Collai	9.500	0.120	30.2			bbl/strk		C	0.139	0.1	39	0.13	
Jet Impact Force Bit HHSI		lbf hhp/in2							SPM gpm bbl/min			0 I	0	l	0 I	
Press Drop @ Bit		psi							Total GPM			AV, Riser		Circ Pro		
Bit Depth ECD @ Csg Shoe	125.0) m SG	Open Hole	36.000		45.0			Total Circ Tir BU Time, m			AV min DP AV max DC		Tot Pre Press D		
ECD @ Bit		SG	<u> </u>			•	_		Total Strokes	3		BU Strokes	Finish	Press D	orop An	
Propertie Source	es		Pit 6	Pit 8		3	4	ıar	gets	Program		Fluid Type	Fluid	reatme Prehyd	nts Irated Bent	onite
Time Depth	m	2	20:00 125	3:00 125								Dumped an			lines of cald	cium
FL Temp	m Deg C											chloride cer	nent mix w	ater.		
Density @ Deg C FV @ Deg C	SG sec/qt		30 @ 20 0 @ 20	1.020 @ 110 @					1	.000 1	.100	Prepare furt	her 340bbl	of 40pp	b PHB in pi	t #8
PV @ Deg C	cP	4	@ 49	13 @								and 347bbl				
YP GELS	lbs/100 ft2 lbs/100 ft2		14 /13/15	56 14/41/	52							bbls sea wa	ter in prep	eration f	or displacen	nent.
600/300	120, 100 112	22	2.0/18.0	82.0/6	9.0							Dressed sha	akers with	89 and 1	145 mesh	
200/100 6/3			5.0/12.0 3.0/7.0	61.0/5 42.0/4								screens.				
API Filt	ml/30 min		30.0	13.0)							Loaded 24.	16MT of Be	entonite	from Ocean	ı
HTHP @ Deg C Cake API/HTHP	ml/30 min 32nd in		2/-	2/-								Valkyrie				
Corr Solid NAP/Water	% by Vol % by Vol		3.4 -/96.0	-/95.	0											
Sand	% by vol													Activity		
MBT pH @ Deg C	ppb Eq.		20.0 00 @ 19	9.00 @								RIH cement per program	•			
ALK Mud ALK Filt	Pm Pf/Mf		0.45 05/0.50									Hold PJSM				ortor.
Chlorides	mg/l		0,000													
Tot. Hardness LGS/HGS	mg/l % by Vol	5	700 .4/-2.1													
LGS/HGS	ppb	49.3	30/-30.29													
ASG	SG		1.618													
Additional Proper	ties															
Product N	ame		Units	Start	Rec	Used	End	Cost			Cor	ntrol Equipm			Tim	е
bentonite BARABLOK		1	1000 kg bulk 50 lb bag		24.16	9.960	46.500 240	\$4,929.00	VSM-300	aker		Scre 145	ens	Hrs	Drilling Circulating	,
Baracide			25 kg can	11			11		VSM-300			89			Trips	3.
BARA-DEFOAM W BARAZAN D PLUS			5 gal can 25 kg bag				110		VSM-300 VSM-300			89 89			Rig Surveys	
barite		1	1000 kg bulk	96.200			96.200								Fishing	
BAROFIBRE FINE calcium chloride fla			25 lb bag 25 kg bag				50 53								Run Casin Coring	ng 4.
caustic soda			25 kg pail	96			96		I ludro ou olo	na 0		Cana		Line	Reaming	
Circal 60/16 Circal Y			25 kg sack 25 kg sack				170 96		Hydrocyclo ATL-1600	ne Coi	nes	Scre	ens	Hrs	Testing Logging	
CLAYSEAL PLUS EZ SPOT			216 kg drum 55 gal drum				29								Dir Work Repair	
EZ-MUD			25 kg pail				38								Other	16.
Kwikseal Fine lime			40 lb bag 20 kg bag				38		Centrifug	e Spe	eed	Feed	Rate	Hrs	Total Rotating	24.
N-DRIL HT PLUS			50 lb bag	55			55								ROP	
NO-SULF Omyacarb 5			17 kg pail 25 kg bulk				96.000		Fluid Volum	a Braakd	own		Prehydra	tad Ran	Dil Rate	0.0
PAC-L			25 kg bag	26			26		Active	bl	bl	Additions	bbl	Lo	sses	bbl
potassium hydroxid sapp	de		25 kg bag 25 kg bag				77 40		Annulus Pipe Cap	1		Base Drill Water	751.0	Fluid D Transfe		
soda ash			25 kg bag	51			51		Active Pits		80.0	Dewatering		SCE		
sodium bicarbonat STEELSEAL	e		25 kg bag 25 kg sack				48 180		Total Hole Total Circ			Sea Water Whole Mud	248.5	Evapor Trips	ation	
XLR-RATE			55 gal drum	16			16		Reserve	18	26.0	Barite		Other		
				\vdash					Prev Vol Net Change			Chemicals Other	25.1	Total S Downh		
									Total Vol	24		Total		Total Lo	osses	,
Daily Products Cos			\$4,929.00						Old KCI/Poly	Types mer		Vol bbl 520.0	Survey M	D	Information	m
Cumulative Product Baroid Representa		Eugene	\$18,990.45 Edwards		nulative (Tim Wal			\$18,990.45					Survey T\ Angle	/D		m Deg
Office	90 Talinga	a Rd Mell	bourne		***	Telephon		9581-7555	,				Direction	.1		
Warehouse	c/o of Ess	υ Austra	iia Ltd			Telephon	e 61-3-5	6-881-445					Horiz Disp	JI.		m

Baroid Flu	110 5 e1	-vice	:5						Date		04/26/2008	Report No)	003 768.0 m	ı
		Dai	ily Drilli	ng Flu	id R	eport			Spud D	Date 04/24/20		Rig Activity		766.0 m	
Operator BD Oil Itd					Report F	or Corless				Well Name West Sea	Э	mano ap .	7.0 2.1.		.0
Contractor				R	Report F	or				Rig Name		Unit Syster	n		
Seadrill Country			State/Province		<u> Micheal</u>	Barry		c Area/Count	<i>y</i>	West Trit		Apache			
Australia Bit Info	rmation		Victoria D	Orill String	(in) / ((m)	Bass Stra in Ca	ight asing m		Vic P57	culation/Hy	draulics Da	ata		
Bit Size Make/Type	17.500 HUGHES/N			OD 5.500	1D 4.000	Length		Set MD	Model Bore in		14-P-220 6.500	Nat -14- 6.50		Nat -14-F 6.50	
Jets TFA	3x2 0.920	0	Drill Pipe	5.000	3.000	112.8			Strokes in Eff(%)		4.000 97	14.0 97	00	14.00 97	00
Jets Velocity	116.6	m/sec	Drill Collar Motor	8.125 17.250	0.000				bbl/strk	C).139	0.13	39	0.13	
Jet Impact Force Bit HHSI	2000.7 3.20	lbf hhp/in2							SPM gpm bbl/min		94 13.10	94 550	13.10	0	
Press Drop @ Bit Bit Depth	1200 768.0		Open Hole	19.000		646.0			Total GPM Total Circ Tim		AV, Riser AV min DP	10.1	Circ Pre		296 251
ECD @ Csg Shoe ECD @ Bit	1.104 1.112		·						BU Time , mir Total Strokes		AV max DC BU Strokes		Press D		82 1
Propertie			1 Dit 6	2 Flow Li	20	3 Flow Line	Hyd 4			Program			reatme	nts	
Source Fime			Pit 6 3:00	Flow Li 15:00)	Flow Line 20:00	23:59				Fluid Type Continue to	pre-hydrat		rated Bente nite. Drill cer	
Depth FL Temp	m Deg C		125	408		593 36	768 38				with seawat overboard.		,	•	at
Density @ Deg C V @ Deg C	SG sec/qt		30 @ 20 9 @ 20	1.110 @ 40 @ 2		1.140 @ 36 41 @ 36	1.100 @ 48 @ 3				shoe and di	splaced ho	le to PH		
PV @ Deg C YP	cP lbs/100 ft2		@ 49 14	4 @ 4 14		8 @ 49 24	8 @ 4 24				full system			se.unconso	lidate
GELS	lbs/100 ft2		/13/15	9/13/1		10/12/15	10/12/				sands and	shell.			
300/300 200/100		15	.0/18.0	22.0/18 15.0/12	2.0	40.0/32.0 27.0/25.0	40.0/32 27.0/25	5.0			Fined up sh dumped sar				
3/3 API Filt	ml/30 min		.0/7.0 30.0	8.0/7. 30.0		12.0/10.0	12.0/10	0.0			weight at <		_		
HTHP @ Deg C Cake API/HTHP	ml/30 min 32nd in		2/-	2/-		2/ -	3/-				Desilter uns	erviceable	due to b	lockage wit	h
Corr Solid NAP/Water	% by Vol % by Vol		3.4 /96.0	3.4 -/96.0)	4.3 -/95.0	5.0 -/94.0				cuttings, se	rvicing desi	lter at tir	me of report	t.
Sand	% by vol					0.50	1.00				0 11 1		Activity	A DIII 1	
MBT hH @ Deg C	ppb Eq.	8.0	20.0 0 @ 20	20.0 8.00 @	20	14.0 8.00 @ 20	14.0 8.50 @	20			Continue to @121m. Dr				-
ALK Mud ALK Filt	Pm Pf/Mf		0.45 05/0.50	0.45 0.05/0.		0.45 0.10/0.50	0.40 0.12/0.				well to WBN				as pe
Chlorides Fot. Hardness	mg/l mg/l	1	0,000 700	10,00 700		12,000 1,200	18,00 1,600				DD instructi	oris. Surve	y every s	stariu.	
GS/HGS GS/HGS	% by Vol		4/-2.1 0/-30.29	0.4/2. 3.73/43	9	0.5/3.8 4.56/55.45	4.9/0. 44.27/1	1							
ASG	ppb SG		1.618	4.004		4.012	2.643								
Additional Proper	ties														
Product Na	ame		Jnits	Start	Rec		End	Cost \$2,226,96	Cho		ntrol Equipm			Time	
pentonite caustic soda		1	000 kg bulk 25 kg pail	96		4.500 6	90		VSM-300	iker	145 215	ens		Drilling Circulating	
BARABLOK Baracide			50 lb bag 25 kg can	240			240		VSM-300 VSM-300		145 145			Trips Rig	4.
BARA-DEFOAM W BARAZAN D PLUS			5 gal can 25 kg bag	1			110		VSM-300		255		20.5	Surveys Fishing	
arite)	1	000 kg bulk	96.200			96.200							Run Casin	Ç
BAROFIBRE FINE calcium chloride fla	ake 77%		25 lb bag 25 kg bag				50 53							Coring Reaming	
Circal 60/16 Circal Y			25 kg sack 25 kg sack	170 96			170 96		Hydrocyclon ATL-1600	ne Cones	Scre	ens	Hrs	Testing Logging	
CLAYSEAL PLUS EZ SPOT			216 kg drum 55 gal drum	29			29]					Dir Work Repair	
EZ-MUD			25 kg pail	38			38		O a materife cons		- Faral	Data		Other	
(wikseal Fine ime			40 lb bag 20 kg bag			54	38 86		Centrifuge	Speed	Feed	Kate	Hrs	Total Rotating	24. 19.
N-DRIL HT PLUS NO-SULF			50 lb bag 17 kg pail	55 48			55 48							ROP Dil Rate	33.
Omyacarb 5 PAC-L			25 kg bulk 25 kg bag				96.000 26		Fluid Volume Active	Breakdown bbl	Additions	Prehydra:			bbl
otassium hydroxid	de		25 kg bag	77			77		Annulus	971.1	Base		Fluid D	umped	וטט
app oda ash			25 kg bag 25 kg bag				40 51		Pipe Cap Active Pits		Drill Water Dewatering	500.0	Transfe SCE	erred	-725.
odium bicarbonate	e		25 kg bag 25 kg sack				48 180		Total Hole Total Circ		Sea Water Whole Mud		Evapora Trips	ation	
(LR-RATE			55 gal drum	16			16		Reserve	1775.0	Barite		Other	urface	
									Prev Vol Net Change	708.1	Chemicals Other		Total So	ole	_
									Total Vol Fluid		Total Vol bbl		Total Loviation I	osses Information	-725.
aily Products Cos Cumulative Produc			\$2,492.10 \$21,482.55			Cost		\$2,492.10 \$21,482.55	Old KCI/Polym	ner		Survey MI Survey TV			m m
Baroid Representa Office			Edwards			Idhuter Telephon	<u>61-02</u>	9581-7555	1			Angle Direction			Deg
Warehouse	c/o of Esso					Telephon		6-881-445	1			Horiz Disp	ol.		m

Deg

Baroid Flu	uid Se	rvice	es									Report N	0	004	
		Da	ily Drilli	na Flu	id R	eport			Date Spud Da		04/27/2008	Rig Activity	y 1001145	1,123.0	
Operator			,	F	Report F	or				04/24/20 Well Name)	<u> </u>	OOH to	run casing	g
3D Oil Itd Contractor					Shaugn Report F	Corless or				West Sea Rig Name	ahorse 3	Unit Syster	m		
Seadrill Country			State/Province		Micheal	Barry	Geographi	ic Area/County	,	West Trit		Apache			
Australia	ormation		Victoria	Orill String	(in) //	(m)	Bass Stra			Vic P57	culation/Hy	draulias D	oto		
Bit Size	17.500			OD	İD	Length	OD	Set MD	Model	Nat -	14-P-220	Nat -14	-P-220		4-P-220
Make/Type Jets	3x2	20	Drill Pipe Drill Pipe	5.500 5.000	4.000 3.000	112.8		@ 122.0	Bore in Strokes in		5.500 4.000	6.5 14.0	000	14.	500 .000
TFA Jets Velocity		sq-in m/sec	Drill Collar Motor	8.125 17.250	3.000				Eff(%) bbl/strk	0	97).139	97 0.1			97 139
Jet Impact Force Bit HHSI	2491.6 4 39	lbf hhp/in2	,						SPM gpm bbl/min		104 14.49	10 603	3 14.35	(0
Press Drop @ Bit Bit Depth	1495 1,063.0	psi	Open Hole	19.000		941.0			Total GPM Total Circ Time	1,211	AV, Riser AV min DP		Circ Pre		315 392
ECD @ Csg Shoe	1.134	SG	Open noie	19.000		941.0			BU Time, min	44	AV max DC	30.7	Press D	rop DP	155
ECD @ Bit Propertion	1.140 es	SG	1	2		Hyd 3	4	Tar	Total Strokes gets Pr	13,030 ogram	BU Strokes		Press D		1
Source Time			ow Line 4:00	Pit 6 17:00		Flow Line 20:00					Fluid Type Continued			rated Ber	
Depth	m Deg C		840 39	1,063		1,123 38					weight.	·			
FL Temp Density @ Deg C	SG		00 @ 39	1.130 @		1.130 @ 36					Maintain vis Water as re	, ,	-		
FV @ Deg C PV @ Deg C	sec/qt cP	8	7 @ 39 3 @ 49	36 @ 3 7 @ 4		36 @ 36 5 @ 49					while drilling	•	,		
YP GELS	lbs/100 ft2 lbs/100 ft2		24 0/12/15	23 10/12/	13	15 12/14/17					formation. As expected	d with non-	inhibitive	e mud, sor	me
600/300 200/100		40	0.0/32.0 7.0/25.0	37.0/30 24.0/2	0.0	25.0/20.0 18.0/15.0					mushy, clay	•	-	•	
6/3	ml/30 min		2.0/10.0	10.0/8		12.0/11.0					and fine sar screens.	nds being i	emoved	IIOIII IOWE	ei Silake
API Filt HTHP @ Deg C	ml/30 min		0/	0/		0/					Add causti Unloaded c				ntory
Cake API/HTHP Corr Solid	32nd in % by Vol		3/- 5.0	3/- 4.0		3/ - 4.1					except Bara				inory,
NAP/Water Sand	% by Vol % by vol		-/94.0 1.00	-/95.0 0.80		-/95.0 0.50						Rig	Activity		
MBT pH @ Deg C	ppb Eq.		14.0 50 @ 22	14.0 8.00 @		14.0 8.00 @ 37					Continue dr				
ALK Mud ALK Filt	Pm Pf/Mf		0.40 12/0.40	0.20		0.10 0.05/0.35					per DD inst hole clean.			•	
Chlorides	mg/l	1	18,000	17,00	0	16,000					check. POC spots 1082		•		ork tigh
Tot. Hardness LGS/HGS	mg/l % by Vol	4	1,600 1.9/0.1	1,600 1.0/3.	0	1,600 1.0/3.1					0000 1002	1070(0011 0 101	puii).	
LGS/HGS ASG	ppb SG		.27/1.98 2.643	9.12/44 3.803		9.37/44.91 3.797									
Additional Proper	ties														
Product Na barite	ame		Units 1000 kg bulk	Start 96.200	Rec	Used 4.000	End 92.200	Cost \$1,899.52	Shak		trol Equipm Scre		Hrs	Tir Drilling	me 22.
caustic soda			25 kg pail	90		4.000	86		VSM-300	<u> </u>	145 215	70.10	22.0	Circulati	ng 1.
BARABLOK Baracide			50 lb bag 25 kg can				240		VSM-300 VSM-300		145 145		22.0	Trips Rig	1.0
BARA-DEFOAM W BARAZAN D PLUS			5 gal can 25 kg bag	110			110		VSM-300		255 280		22.0	Surveys Fishing	
BAROFIBRE FINE bentonite		1	25 lb bag 1000 kg bulk				42.000							Run Cas Coring	sinç
calcium chloride fla Circal 60/16	ake 77%		25 kg bag 25 kg sack	53			53 170		Hydrocyclone	Cones	Scre	ene	Hrs	Reaming Testing	g
Circal Y			25 kg sack	96			96		ATL-1600	16 4	3016	- C113	1115	Logging	
CLAYSEAL PLUS DEXTRID LTE		4	216 kg drum 25 kg sack	29		16 72	45 72		}					Dir Work Repair	`
EZ SPOT EZ-MUD			55 gal drum 25 kg pail			64	102		Centrifuge	Speed	Feed	Rate	Hrs	Other Total	24.
Kwikseal Fine lime			40 lb bag 20 kg bag				38 86				•			Rotating ROP	
N-DRIL HT PLUS			50 lb bag	55			55 48		Florid Walessa	D		Desterdes	to d Door	Dil Rate	
NO-SULF Omyacarb 5			17 kg pail 25 kg bulk	96.000			96.000		Fluid Volume E Active	bbl	Additions	Prehydra bbl	Lo	sses	bbl
PAC-L potassium chloride)		25 kg bag 1000 kg bag			72 40	98 40		Annulus Pipe Cap	1280.6 48.0	Base Drill Water		Fluid De Transfe		
potassium hydroxid sapp			25 kg bag 25 kg bag	77			77 40		Active Pits Total Hole	487.0	Dewatering Sea Water		SCE Evapora	ation	-618.
soda ash			25 kg bag	51			51		Total Circ	1815.6	Whole Mud	407.0	Trips		
sodium bicarbonate STEELSEAL	e		25 kg bag 25 kg sack	180			48 180		Reserve Prev Vol		Chemicals		Other Total S		
XLR-RATE			55 gal drum	16			16		Net Change Total Vol	244.3 3313.6	Other Total		Downho	osses	-618.
Daily Products Cos	st		\$2,076.28	Total Dails	/ Cost			\$2,076.28	Fluid Ty	/pes	Vol bbl		viation I	nformatio	
Cumulative Product Baroid Representa	cts Cost	Fugeno	\$23,558.83 Edwards	Total Cum	ulative	Cost Idhuter		\$23,558.83			7.0.0	Survey T\ Angle			m Deg
Office	90 Talinga	a Rd Mel	bourne		ını vva	Telephon		9581-7555	‡			Direction	al.		
Warehouse	c/o of Ess	o Austid	ιια Ειυ			Telephon	<u>e </u>	6-881-445				Horiz Disp	л.		m

	Do	ily Deilli	na Eluid I	Poport				Date Spud Date		04/28/2008	Depth Rig Activity	1,	123.0 m	
Owersten	Da	וווווט וווו	ng Fluid F	_					04/24/200 Well Name			asing and	d cement	t
Operator 3D Oil Itd			Report Shau	n Corless					Well Name					
Contractor			Report	For					Rig Name		Unit System			
Seadrill Country		State/Province		al Barry	Geographic A	rea/County	,		West Trite Field or BI		Apache			
Australia		Victoria			Bass Straigh	t			Vic P57					
Bit Information	i.e.	D	orill String (in)		in Casir OD Set	ng m MD	Model			culation/Hyd 14-P-220	raulics Data Nat -14-P-		Nat -14-F	220
Bit Size Make/Type	in		OD ID) Length	30.000 @		Bore in	1		.500	6.500		6.500	
Jets							Strokes	s in	14	4.000	14.000)	14.00	0
TFA Jets Velocity	sq-in m/sec						Eff(%) bbl/strk		0	97 .139	97 0.139	ı	97 0.139	9
Jet Impact Force	lbf						SPM	., .		0	0		0	
Bit HHSI Press Drop @ Bit	hhp/in2 psi						gpm bb Total G			AV. Riser	С	irc Press	psi	
Bit Depth	m	Open Hole	19.000	1,001.0			Total C	irc Time		AV min DP	T	ot Pres Lo	oss	
ECD @ Csg Shoe ECD @ Bit	SG SG						BU Tim Total S			AV max DC BU Strokes		ress Drop ress Drop		
Properties		1	2	3	4	Tar	gets		gram	DO CHOICO	Fluid Tre	eatments		
Source Time		Pit 2 0:01	Pit 6 3:30	Pit 6 20:00			\vdash			Fluid Type		rehydrate		
Depth m		0	1,123	1,123						of pits, dump	maining mud bed and clea			mber
FL Temp Deg C	1 11	50 @ 20	1.130 @ 27	1.130 @ 23							mixing KCL	•		
Density @ Deg C SG FV @ Deg C sec/qt		0 @ 20	38 @ 27	40 @ 23										
PV @ Deg C cP	12	2 @ 20	5 @ 49	5 @ 49										
YP lbs/100 ft2 GELS lbs/100 ft2		28	15 12/14/17	15 12/14/17										
600/300		.0/40.0	25.0/20.0	25.0/20.0										
200/100 6/3		.0/24.0 1.0/8.0	18.0/15.0 12.0/11.0	18.0/15.0 12.0/11.0			\vdash							
API Filt ml/30 min		.10,010	12.07 1.10	1210/1110										
HTHP @ Deg C ml/30 min Cake API/HTHP 32nd in			3/-	3/ -										
Corr Solid % by Vol		4.8	4.1	4.1										
NAP/Water % by Vol Sand % by vol	-	/95.0	-/95.0 0.50	-/95.0 0.40							Rig A	ctivity		
MBT ppb Eq.			14.0	14.0						Coninue to F	POOH to run		ay out Bl	HA.
pH @ Deg C ALK Mud Pm		8.50	8.00 @ 23 0.10	8.00 @ 23 0.10						Hold PJSM.	Rig up and r	un 13 3/8	" casing	to
ALK Filt Pf/Mf			0.05/0.35	0.05/0.35						862m at time	e of report.			
Chlorides mg/l			16,000 1,600	16,000 1,600										
Tot. Hardness mg/l LGS/HGS % by Vol	0	.1/4.7	1.0/3.1	1.0/3.1										
LGS/HGS ppb		4/69.38	9.37/44.91	9.37/44.91										
ASG SG		1.177	3.797	3.797										
Additional Properties														
KCL % % by vol		10.0												
Product Name	U	Jnits	Start Re	C Used	End	Cost		<u> </u>		trol Equipm		Lisa Dr	Time	•
BARABLOK Baracide		25 kg can	240 11		11		VSM-300	Shaker		145 215	2115	Hrs Dr 10.0 Ci	rculating	
BARA-DEFOAM W300		5 gal can	1		1		VSM-300			145		10.0 Tr		10.5
BARAZAN D PLUS barite	1	25 kg bag 000 kg bulk	110 92.200		110 92.200		VSM-300 VSM-300			145 255 280		10.0 Ri 10.0 Sເ		
BAROFIBRE FINE		25 lb bag	50		50							Fis	shing	
bentonite calcium chloride flake 77%	1	000 kg bulk 25 kg bag	42.000 53		42.000 53								un Casing oring	(13.5
caustic soda		25 kg pail	86		86							Re	eaming	
Circal 60/16 Circal Y		25 kg sack 25 kg sack	170 96		170 96		Hydro ATL-160	ocyclone	Cones 16 4	Scree	ens		esting ogging	
CLAYSEAL PLUS	2	25 kg sack 216 kg drum	45		45		A1L-100	U	10 4				r Work	
DEXTRID LTE		25 kg sack	72		72								epair	
EZ SPOT EZ-MUD		55 gal drum 25 kg pail	102		102		Cen	trifuge	Speed	Feed I	Rate		ther otal	24.0
Kwikseal Fine		40 lb bag	38		38			95	Opoca			Ro	otating	
lime N-DRIL HT PLUS		20 kg bag 50 lb bag	86 55		86 55								OP I Rate	0.00
NO-SULF		17 kg pail	48		48		Fluid V	olume Br	eakdown		Prehydrated			0.00
Omyacarb 5		25 kg bulk			96.000			ctive	bbl	Additions	bbl	Losse		bbl
PAC-L potassium chloride	1	25 kg bag 1000 kg bag	98 40		98		Annulu: Pipe Ca			Base Drill Water		luid Dump ransferre		-180.0
potassium hydroxide		25 kg bag	77		77		Active I	Pits		Dewatering	S	CE		-362.9
sapp soda ash		25 kg bag 25 kg bag	51 51		40 51		Total H Total C			Sea Water Whole Mud		vaporatio rips	n	
sodium bicarbonate		25 kg bag	48		48		Reserv	е	836.0	Barite	0	ther		
sodium sulfite		25 kg bag	100	32	32		Prev Vo			Chemicals		otal Surfa	ice	
STEELSEAL XLR-RATE		25 kg sack 55 gal drum	180 16		180 16		Net Char Total V		-542.9 2839.7			ownhole otal Loss	es	-542.9
		_		4		60.00		Fluid Typ		Vol bbl	Devia	ation Info		
Daily Products Cost Cumulative Products Cost		\$0.00 \$23,558.83	Total Daily Cos Total Cumulativ	τ /e Cost	\$2	\$0.00 3,558.83	Ola KC	I/Polymer		293.0	Survey MD Survey TVD			m m
Baroid Representatives	Eugene	Edwards		/aldhuter	•	•					Angle			Deg
Office 90 Talinga				Telephon							Direction Horiz Displ			m

Report No 005

Baroid Fluid Se	rvices	3										0.4/0.0/0.00	Report N	0	006	
	Daily	v Drilli	ng Fluid	Rer	ort					Date Spud Date		04/29/2008	Rig Activity		1,123.0 r	
Operator	- Jun	<i>y</i>		ort For							04/24/200 Well Name		Rui	n casing	and ceme	nt
3D Oil Itd Contractor			Sha	ugn Co	rless						West Sea	horse 3	Unit Syster	<u> </u>		
Seadrill			Mic	heal Ba	ırry						West Trito		Apache			
Country Australia		tate/Provinc ictoria	e/Region			Geograph Bass Stra		/County	'		Field or Bl	ock				
Bit Information	in	D	Orill String (in	n) / (m) ID	Languith	in C	asing	m MD	Model		Circ	culation/Hyd 14-P-220	Iraulics Da Nat -14		Nat -14-	D 220
Bit Size Make/Type	in		OD	טו	Length	30.000	Set @		Bore in		6	.500	6.5	00	6.50	00
Jets TFA	sq-in								Strokes Eff(%)	in		1.000 97	14.0 97		14.0 97	
Jets Velocity	m/sec								bbl/strk SPM			.139 0	0.1		0.13	39
Jet Impact Force Bit HHSI	lbf hhp/in2								gpm bbl							
Press Drop @ Bit Bit Depth 1,123.0	psi) m O	pen Hole	19.000		1,001.0				Total GF Total Cir			AV, Riser AV min DP		Circ Pre		
ECD @ Csg Shoe ECD @ Bit	SG SG								BU Time Total St			AV max DC BU Strokes		Press D Press D		
Properties		1	2		3	4		Tar	gets		gram		Fluid 1	reatmer	nts	
Source Time	Pit 20:	t 5 :00	Pit 6 3:00	+				-				Fluid Type Continue mi	xina +800		rated Ben Polymer.	tonite
Depth m FL Temp Deg C		123	1,123									Displace cer	ment with I	PHB mud	•	nd
Density @ Deg C SG		@ 22	1.130 @ 23	3								clean sand t	raps and p	oit #6.		
FV @ Deg C sec/qt PV @ Deg C cP		22 249	40 @ 23 5 @ 49	+				-								
YP lbs/100 ft2 GELS lbs/100 ft2		5 4/17	15 12/14/17													
600/300	25.0/	/20.0	25.0/20.0													
200/100 6/3	18.0/ 12.0/		18.0/15.0 12.0/11.0													
API Filt ml/30 mir HTHP @ Deg C ml/30 mir																
Cake API/HTHP 32nd in	3/		3/-													
Corr Solid % by Vol NAP/Water % by Vol		.1 5.0	4.1 -/95.0	_				-								
Sand % by vol MBT ppb Eq.	0.4	40 1.0	0.30 14.0									Continue rui		Activity /8" casing	n Make ur	well
pH @ Deg C	8.00		8.00 @ 23 0.10									head and RI	•			
ALK Mud Pm ALK Filt Pf/Mf	0.05/	/0.35	0.05/0.35									Cement cas with PHB m				
Chlorides mg/l Tot. Hardness mg/l		000 800	16,000 1,600	+				-				with no succ				•
LGS/HGS % by Vol		/3.1	1.0/3.1 9.37/44.91									running tool, connection b	•			ttemnt
LGS/HGS ppb ASG SG	3.7		3.797									to back out				
												Lay out land diverter bag				
Additional Properties												up BOP slin				i. rug
Product Name CLAYSEAL PLUS	Un 216	i its 6 kg drum	Start 45	Rec	Used 10	End 35		ost 566.40		Shaker		trol Equipm Scree		Hrs	Tin Drilling	ne
potassium chloride BARAZAN D PLUS		00 kg bag 25 kg bag	40 110		12 14	28 96			VSM-300 VSM-300						Circulatin Trips	g
BARABLOK		50 lb bag	240		58	182	\$1,	762.62	VSM-300						Rig	
PAC-L DEXTRID LTE		25 kg bag 5 kg sack	98 72		16 30	82 42		309.92 216.80	VSM-300						Surveys Fishing	
EZ-MUD		25 kg pail	102		8	94 82	\$(686.64							Run Casi	ng 24.0
caustic soda Baracide		25 kg pail 25 kg can	86 11		4	9		176.76 174.74							Coring Reaming	
BARACOR 100 BARA-DEFOAM W300		5 kg sack 5 gal can	1	32		32			Hydro ATL-1600	cyclone	Cones 16 4	Scre	ens	Hrs	Testing Logging	
barite	100	00 kg bulk	92.200			92.200					10 1				Dir Work	
BAROFIBRE FINE bentonite		25 lb bag 00 kg bulk	50 42.000			42.000									Repair Other	
calcium chloride flake 77% Circal 60/16		25 kg bag 5 kg sack	53 170			53 170			Cent	trifuge	Speed	Feed	Rate	Hrs	Total Rotating	24.0
Circal Y	2	5 kg sack	96			96									ROP	
EZ SPOT Kwikseal Fine		gal drum 40 lb bag	38			38			Fluid Vo	olume Br	eakdown		Prehydra	ted Bent	Dil Rate onite	0.00
lime N-DRIL HT PLUS		20 kg bag 50 lb bag	86 55			86 55				tive	bbl	Additions Base	bbl		sses	bbl
NO-SULF		17 kg pail	48			48			Pipe Ca	р		Drill Water		Transfe		
Omyacarb 5 potassium hydroxide		25 kg bulk 25 kg bag	96.000 77			96.000 77			Active P Total Ho			Dewatering Sea Water		SCE Evapora	ation	-786.0
sapp	2	25 kg bag	40			40 51			Total Cir	rc	416.0	Whole Mud	293.0	Trips Other		
soda ash sodium bicarbonate	2	25 kg bag 25 kg bag	51 48			48			Reserve Prev Vo	I	2839.7	Barite Chemicals		Total Su		
sodium sulfite STEELSEAL		25 kg bag 5 kg sack	32 180			32 180			Net Cha Total Vo			Other		Downho		-786.0
				1		.00	600	200 70	F	Fluid Typ	es	Vol bbl	De	viation l	nformatio	n
Daily Products Cost Cumulative Products Cost	\$4	45,881.59	Total Daily C Total Cumula	tive Co				322.76 881.59	KCI/Poly	/mer/Clay	/seal	897.0	Survey MI Survey T\			m m
Baroid Representatives Office 90 Talings	Eugene E a Rd Melbo		Tim	Waldh	uter Telephone	e 61-03-	-9581-	7555					Angle Direction			Deg
	o Australia				Tolophone		6 001		•				Horiz Disr	N.	1	

Baroid Fluid Se	rvices							0.4/0.0/0.000	Report No		007	
	Daily Dril	ling Fluid Re	port			Date Spud Date		04/30/2008	Rig Activity	/	1,123.0 m	
Operator	Daily Dill	Report Fo	•				04/24/20 Well Name		Fis	shing 13 3	/8" casing	
3D Oil Itd Contractor		Shaugn (Corless				West Sea	ahorse 3	Unit Syster	~		
Seadrill		Micheal E					West Trit		Apache	"		
Country Australia	State/Provi Victoria	ince/Region		Geographic Bass Strai	Area/County		Field or BI Vic P57	lock				
Bit Information	in	Drill String (in)/(n		in Ca	sing m	Model	Cir	culation/Hyd 14-P-220	draulics Da Nat -14-		Nat -14-F	2 220
Bit Size Make/Type	in	מו מט	Length	30.000 @		Bore in	6	5.500	6.50	00	6.50	0
Jets TFA	sq-in					Strokes in Eff(%)	14	4.000 97	14.0 97		14.00 97	
Jets Velocity	m/sec					bbl/strk SPM	C	0.139 0	0.13 0		0.139 0	
Jet Impact Force Bit HHSI	lbf hhp/in2					gpm bbl/min			U			
Press Drop @ Bit Bit Depth 1,123.0	psi m Open Hole	e 19.000	1,001.0	ŀ		Total GPM Total Circ Time		AV, Riser AV min DP		Circ Pres Tot Pres		
ECD @ Csg Shoe ECD @ Bit	SG SG					BU Time , min Total Strokes		AV max DC BU Strokes		Press Dr Press Dr		
Properties	1	2	3	4	Tar		gram		Fluid T	reatment	ts	
Source Time	Pit 5 3:00	Pit 5 20:00						Fluid Type Continue mi	xina furthe		ated Bento	onite
Depth m FL Temp Deg C	1,123	1,123						KCI/Polyme				1.
Density @ Deg C SG	1.130 @ 22	1.130 @ 22										
FV @ Deg C sec/qt PV @ Deg C cP	40 @ 22 5 @ 49	40 @ 22 5 @ 49										
YP lbs/100 ft2 GELS lbs/100 ft2	15 12/14/17	15 12/14/17										
600/300	25.0/20.0	25.0/20.0										
200/100 6/3	18.0/15.0 12.0/11.0	18.0/15.0 12.0/11.0										
API Filt ml/30 min HTHP @ Deg C ml/30 min												
Cake API/HTHP 32nd in	3/-	3/-										
Corr Solid % by Vol NAP/Water % by Vol	4.1 -/95.0	4.1 -/95.0										
Sand % by vol MBT ppb Eq.	0.40 14.0	0.30 14.0						Pick up well		Activity	ak out runr	ning
pH @ Deg C	8.00 @ 22 0.10	8.00 @ 22 0.10						tool connect				_
ALK Mud Pm ALK Filt Pf/Mf	0.05/0.35	0.05/0.35						13 3/8" wate retrieve land	_			
Chlorides mg/l Tot. Hardness mg/l	16,000 1,600	16,000 1,600						3/8" casing				•
LGS/HGS % by Vol	1.0/3.1 9.37/44.91	1.0/3.1 9.37/44.91						latch onto 13 landing ring		•		
LGS/HGS ppb ASG SG	3.797	3.797						HWDP, atte				
								casing, no s over.	uccess. La	y out bun	nper sub a	nd x-
Additional Properties								over.				
								<u> </u>				
Product Name CLAYSEAL PLUS	Units 216 kg drur	Start Rec	Used 10	End 25	\$9,566.40	Shake		trol Equipm Scre		Hrs	Time Drilling	<u> </u>
potassium chloride BARAZAN D PLUS	1000 kg ba 25 kg ba	g 28	12 14	16	\$5,297.52 \$2,131.36						Circulating Trips	8.5
BARABLOK	50 lb ba	g 182	58	124	\$1,762.62	VSM-300					Rig	8.5
PAC-L DEXTRID LTE	25 kg ba 25 kg sad		16		\$1,309.92 \$1,216.80	VSM-300					Surveys Fishing	15.5
EZ-MUD	25 kg pa	ail 94	8	86	\$686.64						Run Casin	
caustic soda Baracide	25 kg pa 25 kg ca	n 9	4	7	\$176.76 \$174.74						Coring Reaming	
BARACOR 100 BARA-DEFOAM W300	25 kg sac 5 gal ca			32		Hydrocyclone ATL-1600	Cones 16 4	Scre	ens		Testing Logging	
barite	1000 kg bu	lk 92.200		92.200		7112 1000	10 4				Dir Work	
BAROFIBRE FINE bentonite	25 lb ba 1000 kg bul			42.000							Repair Other	
calcium chloride flake 77% Circal 60/16	25 kg ba 25 kg sad			53 170		Centrifuge	Speed	Feed	Rate		Total Rotating	24.0
Circal Y	25 kg sad	k 96		96							ROP	
EZ SPOT Kwikseal Fine	55 gal drur 40 lb ba			38		Fluid Volume B	reakdown		Prehydrat		Dil Rate onite	0.00
lime	20 kg ba	g 86		86		Active	bbl	Additions	bbl	Loss	ses	bbl
N-DRIL HT PLUS NO-SULF	50 lb ba 17 kg pa	ail 48		55 48		Annulus Pipe Cap		Base Drill Water		Fluid Dui Transferi		
Omyacarb 5 potassium hydroxide	25 kg bul 25 kg ba			96.000		Active Pits Total Hole		Dewatering Sea Water		SCE Evaporat	ion	-11.0
sapp	25 kg ba	g 40		40		Total Circ	425.0	Whole Mud		Trips		
soda ash sodium bicarbonate	25 kg ba 25 kg ba			51 48		Reserve Prev Vol	1257.0 2746.7	Barite Chemicals		Other Total Su		
sodium sulfite STEELSEAL	25 kg ba 25 kg sad	g 32		32 180		Net Change Total Vol		Other		Downhol Total Los		-11.0
	_			100	400.00	Fluid Ty	pes	Vol bbl		viation In	formation	
Daily Products Cost Cumulative Products Cost		6 Total Daily Cost 5 Total Cumulative (Cost		\$22,322.76 \$68,204.35	KCI/Polymer/Cla	yseal	1755.0	Survey MI Survey TV			m m
Baroid Representatives	Eugene Edwards a Rd Melbourne	Tim Wald		e 61-03 (9581-7555	•			Angle Direction			Deg
	o Australia I td		Telephon		3001-7000 8 001 115				Horiz Disn	, I		m

Baroid Fluid Se	rvices							D .		05/04/0000	Report N	0	008	
	Daily [Drillina	Fluid F	Report				Date Spud	Date	05/01/2008	Rig Activit		1,123.0 n	<u>n</u>
Operator	Duny	-	Report						04/24 Well N			Nipple u	р В.О.Р.	
3D Oil ltd			Shaug	n Corless						Seahorse 3	lu va ·			
Contractor Seadrill			Report Michea	For al Barry					Rig Na West		Unit Syste Apache	m		
Country		Province/Re		,			ea/County			r Block				
Australia Bit Information	Victo		String (in) /	(m)	Bass Str	aignt Casin	g m		Vic Ps	Circulation/Hy	draulics D	ata		
Bit Size	in		D ID		OD	Set	MD	Model	N:	at -14-P-220	Nat -14		Nat -14-	
Make/Type Jets					30.000 13.375			Bore in Strokes in		6.500 14.000	6.5 14.0		6.50 14.0	
TFA	sq-in							Eff(%)		97	9		97	
Jets Velocity Jet Impact Force	m/sec lbf							bbl/strk SPM		0.139 0	0.1 C		0.13 0	
Bit HHSI Press Drop @ Bit	hhp/in2							gpm bbl/min Total GPM		AV, Riser		Circ Pre	oce poi	
Bit Depth 1,123.0		Hole 19	.000	1,001	.0			Total Circ Tir		AV min DP		Tot Pres	s Loss	
ECD @ Csg Shoe ECD @ Bit	SG SG							BU Time, m Total Strokes		AV max DC BU Strokes		Press D Press D		
Properties	1		2	3	4		Tar		Program	DO Strokes		Treatmer	nts	
Source	Pit 5 3:00		Pit 5 20:00							Fluid Type			rated Ben	
Time Depth m	1,123		1,123							Continue to		,	/Polymer p	orior to
FL Temp Deg C Density @ Deg C SG	1.130 @	22 1	130 @ 22							Dumped vo			ob/left beh	ind
FV @ Deg C sec/qt	40 @ 22	2 .	40 @ 22							casing.				
PV @ Deg C	5 @ 49 15		5 @ 49 15											
GELS lbs/100 ft2	12/14/1		12/14/17											
600/300 200/100	25.0/20. 18.0/15.		25.0/20.0 18.0/15.0											
6/3	12.0/11.		12.0/11.0											
API Filt ml/30 min HTHP @ Deg C ml/30 min														
Cake API/HTHP 32nd in	3/-		3/-											
Corr Solid % by Vol NAP/Water % by Vol	4.1 -/95.0		4.1 -/95.0											
Sand % by vol	0.30		0.30							O- mtimum to		Activity	dia a stais a	
MBT ppb Eq. pp Eq.	14.0 8.00 @ 2	22 8	14.0 .00 @ 22							Continue to				
ALK Mud Pm ALK Filt Pf/Mf	0.10 0.05/0.3	5 (0.10 0.05/0.35							running too		•		
Chlorides mg/l	16,000		16,000							and 13 3/8'	-	•	•	s. Make
Tot. Hardness mg/l LGS/HGS % by Vol	1,600 1.0/3.1		1,600 1.0/3.1							up to MLH Pressure te				lhead
LGS/HGS ppb	9.37/44.9	91 9	.37/44.91							and nipple		Ü	•	
ASG SG	3.797		3.797							_				
A 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2														
Additional Properties														
Product Name barite	1000 k		art Re		End 00 154.600		Cost 6,648.32	Sh	Solids (Control Equipn Scre	nent eens	Hrs	Tim Drilling	ne
BARAZAN D PLUS	25 k	g bag	82	•	16 66	\$2	2,435.84	VSM-300				1110	Circulatin	g
EZ-MUD BARABLOK		kg pail lb bag	86 124		16 70 124		1,373.28	VSM-300 VSM-300					Trips Rig	
Baracide	25 I	g can	7		7			VSM-300					Surveys	
BARACOR 100 BARA-DEFOAM W300		g sack al can	32		32								Fishing Run Casi	nc 19 5
BAROFIBRE FINE	25	lb bag	50		50								Coring	
bentonite calcium chloride flake 77%	1000 k	g bulk 42 kg bag	53		42.000 53			Hydrocyclo	ne Con	es Scre	eens	Hrs	Reaming Testing	
caustic soda	25	kg pail	78		78			ATL-1600	16 4			1.110	Logging	
Circal 60/16 Circal Y		g sack g sack	170 96		170 96								Dir Work Repair	
CLAYSEAL PLUS	216 kg	drum	25		25							_	Other	4.5
DEXTRID LTE EZ SPOT		g sack drum	12 8		12			Centrifug	e Spe	ed Feed	Rate	Hrs	Total Rotating	24.0
Kwikseal Fine	40	lb bag	38		38								ROP	
lime N-DRIL HT PLUS		g bag lb bag	86 55		86 55			Fluid Volum	e Breakdo	wn	Prehydra	ited Rent	Dil Rate	0.00
NO-SULF	17	kg pail	48		48			Active	bb	Additions	bbl	Los	sses	bbl
Omyacarb 5 PAC-L		g bulk 96 g bag	66		96.000			Annulus Pipe Cap		Base Drill Water		Fluid Du Transfei		-874.9
potassium chloride	1000 k	g bag	16		16			Active Pits		6.0 Dewatering		SCE		
potassium hydroxide		g bag g bag	77 40		77 40			Total Hole Total Circ		3.8 Sea Water 6.0 Whole Muc		Evapora Trips	ation	
sapp soda ash	25 k	g bag	51		51			Reserve	84	1.0 Barite	`	Other		
sodium bicarbonate sodium sulfite		g bag g bag	48 32		48 32			Prev Vol Net Change		5.7 Chemicals 4.9 Other		Total Su Downho		
STEELSEAL		g sack	180		180			Total Vol	186	0.8 Total		Total Lo	sses	-874.9
Daily Products Cost	\$10.7	57 44 Total	al Daily Cost			\$10	1 457 44	Fluid KCl/Polymer	Types Clayseal	Vol bbl 1838 (De Survey M		nformatio	
Cumulative Products Cost	\$78,6	61.79 Tota	al Cumulativ	e Cost			3,437.44 8,661.79	NON FOISITIEL	Ciayseai	1000.0	Survey T\			m
Baroid Representatives Office 90 Talings	Eugene Edwa Rd Melbourne		Tim W	aldhuter Telepho	ne 61-03	3-058	1-7555	•			Angle Direction			Deg
	o Australia I td			Tolopho			1 115				Horiz Disi	ol		

		Dai	ily Drilli	ng Flu	id Rer	ort				Date Spud Date	04/24/20	05/02/2008	Depth Rig Activit	y Tripi	1,123.0 m	1
Operator				F	eport For						Well Name)		П	Jing	
3D Oil Itd Contractor					Shaugn Co Report For	orless					West Sea Rig Name	ahorse 3	Unit Syste	m		
Seadrill			Ctata/Duardina		/licheal Ba	arry	Caamambia	: Area/Count			West Trit		Apache			
Country Australia			State/Province Victoria	e/Region			Bass Strai		У		Vic P57					
Bit Info	12.250	in	D	orill String	(in) / (m) ID	Length		sing m Set MD	Model			culation/Hyd 14-P-220	Iraulics D Nat -14		Nat -14-	D 220
Make/Type	HYCALOG/F	SX 616M		5.500	4.670	949.7	30.000 (@ 122.0	Bore i		6	5.500	6.5	00	6.50	00
Jets TFA	3x15 3 1.107		Drill Pipe Drill Collar	5.000 8.000	3.000 2.875	112.8 38.4	13.375 (@ 1,117.0	Stroke Eff(%)	s in	14	4.000 97	14.0 9		14.0 97	
Jets Velocity	1.107	m/sec	Motor	9.250	0.000	22.0			bbl/strl	k	C	.139	0.1	39	0.13	
Jet Impact Force Bit HHSI		lbf hhp/in2							SPM gpm bl	bl/min		0 I	() 	0 I	
Press Drop @ Bit		psi	On an I lala	10.000		1 001 0			Total G	3PM		AV, Riser		Circ Pre		
Bit Depth ECD @ Csg Shoe	1,123.0	m SG	Open Hole	19.000		1,001.0				Circ Time ne , min		AV min DP AV max DC		Tot Pres Press D		
ECD @ Bit Propertie	e	SG	1	2		3	4	l Ta	Total S rgets	Strokes	gram	BU Strokes	Fluid	Press D Treatmer		
Source	.5		Pit 5	Pit 5		<u> </u>	-	14	geta	110	gram	Fluid Type	Tiulu	Treatmen	113	
Time Depth	m		3:00 1,123	20:00 1,123								Continue to	-		•	
FL Temp	Deg C											Barite. Prep prior to disp		•	•	• .
Density @ Deg C FV @ Deg C	SG sec/qt		30 @ 22) @ 22	1.130 @ 40 @ 2								cement with	seawater	, dumping	g returns	
PV @ Deg C	cР		@ 49	5 @ 4								overboard d drilled.	ue to large	e amount	of cement	to be
YP GELS	lbs/100 ft2 lbs/100 ft2	12	15 /14/17	15 12/14/	17							arillea.				
600/300		25	.0/20.0	25.0/20												
200/100 6/3			.0/15.0 .0/11.0	18.0/15 12.0/11												
API Filt HTHP @ Deg C	ml/30 min ml/30 min															
Cake API/HTHP	32nd in		3/-	3/-												
Corr Solid NAP/Water	% by Vol % by Vol		4.1 /95.0	4.1 -/95.0)											
Sand	% by vol		0.30	0.30										g Activity		
MBT pH @ Deg C	ppb Eq.		14.0 0 @ 22	14.0								Continue to Make up 12				
ALK Mud	Pm Dt/Mt		0.10 05/0.35	0.10 0.05/0.								MWD tools.				
ALK Filt Chlorides	Pf/Mf mg/l		6,000	16,00								Halliburton a				
Tot. Hardness LGS/HGS	mg/l % by Vol		,600 .0/3.1	1,600 1.0/3.								from 200m, circ. Wash a	•			еак
LGS/HGS	ppb	9.3	7/44.91	9.37/44	.91							confirm retu				vith
ASG	SG	3	3.797	3.797								seawater.				
Additional Durance	•															
Additional Propert	ies															
						•				<u> </u>		<u> </u>				
Product Na barite	ime		Jnits 000 kg bulk	Start 154 600	Rec	0 800	End 147.800	\$3,229.18	3	Shake		trol Equipm Scre		Hrs	Tim Drilling	ie
BARAZAN D PLUS			25 kg bag	66		4	62		S VSM-30	0				1110	Circulating	
BARABLOK Baracide			50 lb bag 25 kg can	124 7			124 7		VSM-30 VSM-30						Trips Rig	5.0
BARACOR 100			25 kg sack	32			32		VSM-30						Surveys	
BARA-DEFOAM W: BAROFIBRE FINE	300		5 gal can 25 lb bag	50			50								Fishing Run Casir	nc
bentonite		1	000 kg bulk	42.000			42.000								Coring	
calcium chloride flal caustic soda	ke //%		25 kg bag 25 kg pail	53 78			53 78		Hydr	ocyclone	Cones	Scre	ens	Hrs	Reaming Testing	11.5
Circal 60/16			25 kg sack	170			170		ATL-160		16 4	•			Logging	
Circal Y CLAYSEAL PLUS		2	25 kg sack 16 kg drum	96 25			96 25								Dir Work Repair	
DEXTRID LTE			25 kg sack	12			12		0.5	t:f			D-4-		Other	7.5
EZ SPOT EZ-MUD		,	55 gal drum 25 kg pail	8 70			70		Cei	ntrifuge	Speed	Feed	Kate	Hrs	Total Rotating	24.0
Kwikseal Fine			40 lb bag	38			38								ROP	
lime N-DRIL HT PLUS			20 kg bag 50 lb bag	86 55			86 55		Fluid \	Volume B	reakdown				Dil Rate	0.00
NO-SULF			17 kg pail	48			48		Α	Active	bbl	Additions	bbl		ses	bbl
Omyacarb 5 PAC-L			25 kg bulk 25 kg bag	96.000 66			96.000 66		Annulu Pipe C			Base Drill Water		Fluid Du Transfei		
potassium chloride		1	000 kg bag	16			16		Active	Pits		Dewatering		SCE	ution	
potassium hydroxid sapp	e		25 kg bag 25 kg bag	77 40			77 40		Total F			Sea Water Whole Mud		Evapora Trips	uon	
soda ash			25 kg bag	51			51 48		Reserv Prev V			Barite		Other Total Su	urface	
sodium bicarbonate sodium sulfite	;		25 kg bag 25 kg bag	48 32			32		Net Ch			Chemicals Other		Downho		
STEELSEAL			25 kg sack	180			180		Total V	/ol Fluid Typ	3101.6	Total Vol bbl	De	Total Lo	sses nformation	1
Daily Products Cost			\$3,838.14							olymer/Cla	yseal	1848.6	Survey M	D	o.matioi	m
Cumulative Product Baroid Representati		Eugene	\$82,499.94 Edwards		ulative Co im Waldh			\$82,499.94	Prehyd	drated Ben	tonite	1253.0	Survey T Angle	VD		m Deg
Office	90 Talinga	Rd Melb	ourne		vaidi	Telephone	e 61-03-9	9581-7555	7				Direction	nl		209

Report No

009

Baroid Flu	uid Se	rvice	es										Report No	0	010	
		Da	ily Drilli	na Elu	iid D	oport				Date Spud Date	е	05/03/2008	Depth Rig Activity	У	1,400.0 ı	m
Operator		Da	ווויט אוווי		Report I	•					04/24/20 Well Name				lling	
3D Oil Itd					Shaugr	Corless					West Sea					
Contractor Seadrill					Report I Michea						Rig Name West Trit	on	Unit Syster Apache	m		
Country Australia			State/Province Victoria			·	Geograph Bass Stra		ounty	/	Field or BI Vic P57	ock				
	ormation			Orill String	(in) /	(m)		aigni asing m			Cir	culation/Hy	draulics Da	ata		
Bit Size Make/Type	12.250 HYCALOG/I		Drill Pine	OD 5.500	ID 4.67	Length 0 1,226.7	OD 30.000		MD 22.0	Model Bore in		14-P-220 .500	Nat -14- 6.5		Nat -14 6.5	
Jets	3x15	3x16	Drill Pipe	5.000	3.00	0 112.8				Strokes in		4.000	14.0	000	14.0	000
TFA Jets Velocity		sq-in m/sec	Drill Collar Motor	8.000 9.250	2.87 0.00					Eff(%) bbl/strk	0	97 .139	97 0.13		9 0.1	17 139
Jet Impact Force Bit HHSI	1396.6	lbf hhp/in2								SPM gpm bbl/min	407	85 11.84	85	5 11.84	C)
Press Drop @ Bit	696	psi								Total GPM	995	AV, Riser		Circ Pre		170
Bit Depth ECD @ Csg Shoe	1,400.0 1.160		Open Hole	12.250		115.0				Total Circ Time BU Time, min		AV min DP AV max DC		Tot Pre Press D	rop DP	270 74
ECD @ Bit Propertion	1.156		1	2		Hyd 3	4		Tar	Total Strokes		BU Strokes	3,752	Press D	rop An	4
Source	es		Pit 6	Flow L		Flow Line	4		ıar	gets Pro	gram	Fluid Type	riuia i		its lymer/Cla	yseal
Time Depth	m		15:00 1,126	22:0 1,31		23:59 0			-			Drill out cen	nent with se	eawater,	dumping	returns
FL Temp	Deg C		26	37		37						overboard.				
Density @ Deg C FV @ Deg C	SG sec/qt		20 @ 26 9 @ 26	1.130 @ 48 @		1.130 @ 37 48 @ 37			+			Pre-treated				
PV @ Deg C	cР		1 @ 26 17	11 @ 26	26	11 @ 26 26						contaminati displaced h				
YP GELS	lbs/100 ft2 lbs/100 ft2	2	8/9/9	10/14/		10/14/16						float.	0.0	0 22.0	uu,	ug
600/300 200/100			9.0/28.0 1.0/18.0	48.0/3 32.0/2		48.0/37.0 32.0/25.0			+			Built 40 bbls	s I CM pill	20nnh ci	zed calciu	ım
6/3	1/20 i		9.0/7.0 6.0	12.0/1 5.8	0.0	12.0/10.0						carbonate.				
API Filt HTHP @ Deg C	ml/30 min ml/30 min	8.5	5 @ 121	8.3 @	121	5.8 8.3 @ 121						to maintain	0,			
Cake API/HTHP Corr Solid	32nd in % by Vol		2.7	1/2 2.7		1/2 2.6			+			Circal 60/16 at 1380m p			•	
NAP/Water	% by Vol		-/94.0	-/94.	0	-/94.0						prevent see				
Sand MBT	% by vol ppb Eq.			0.10 2.5		0.10 2.5						Continue to		Activity ment fro	m 468m to	0
pH @ Deg C ALK Mud	Pm		00 @ 26 0.24	8.50 @ 0.10		8.50 @ 26 0.10			-			1103m. Dril				
ALK Filt	Pf/Mf	0.:	26/1.00	0.12/1	.10	0.12/1.10						1103m to 1 Continue to				g WBM
Chlorides Tot. Hardness	mg/l mg/l	4	400 400	40,00		41,000 600			+			formation to	1126m. P	erform F	IT with 9.4	
LGS/HGS LGS/HGS	% by Vol		.0/1.7 99/25.34	0.4/2 3.29/34		0.3/2.4 2.46/34.63			-			mud to 750 Commence				
ASG	SG		3.617	3.98		4.035						1392m as p				
												stand.				
Additional Proper KCL %	% by vol		8.0	8.0		8.2			+							
Potassium Ion	mg/l	4	14,000	44,00	00	44,100			\vdash							
Product N	ame		Units	Start	Rec	Used	End	Cos	it		Solids Con	trol Equipm	ent		Tin	me
barite	`	1	1000 kg bulk 25 kg bag	147.800		5.370	142.430 56	\$2,55		Shake VSM-300	r	Scre 89	ens	Hrs	Drilling Circulatin	8.
BARAZAN D PLUS EZ-MUD	>		25 kg pail	70		6	64	\$51	4.98	VSM-300		145		24.0	Trips	ig
Circal 60/16 sodium bicarbonat	Δ		25 kg sack 25 kg bag			21 10	149 38			VSM-300 VSM-300		89 255		24.0	Rig Surveys	
Circal Y	<u> </u>		25 kg sack	96		6	90	\$7	6.80]		255		24.0	Fishing	
Omyacarb 5 BARABLOK			25 kg bulk 50 lb bag			6.000	90.000		6.34	1					Run Casi Coring	inç
Baracide			25 kg can 25 kg sack	7			7 32			Hydrocyclone	Canaa	Scre	2000	Lluo	Reaming Testing	j
BARACOR 100 BARA-DEFOAM W	/300		5 gal can				1			ATL-1600	Cones 16 4	Scie	ens	Hrs	Logging	
BAROFIBRE FINE bentonite		1	25 lb bag 1000 kg bulk				42.000								Dir Work Repair	:
calcium chloride fla	ake 77%		25 kg bag	53			53								Other	15.
caustic soda CLAYSEAL PLUS			25 kg pail 216 kg drum				78 25			Centrifuge	Speed	Feed	Rate	Hrs	Total Rotating	24. 8.
DEXTRID LTE			25 kg sack	12			12			Ì					ROP Dil Rate	32.
EZ SPOT Kwikseal Fine			55 gal drum 40 lb bag				38			Fluid Volume B	reakdown		KCI/Polyr	ner/Clay		0.0
lime N-DRIL HT PLUS			20 kg bag 50 lb bag				86 55			Active Annulus	bbl 522.8	Additions Base	bbl	Lo: Fluid D	sses	bbl
NO-SULF			17 kg pail	48			48			Pipe Cap	89.1	Drill Water		Transfe		
PAC-L potassium chloride)		25 kg bag 1000 kg bag				66 16			Active Pits Total Hole		Dewatering Sea Water		SCE Evapora	ation	-68.
potassium hydroxid			25 kg bag	77			77			Total Circ	871.9	Whole Mud		Trips		00
sapp soda ash			25 kg bag 25 kg bag				40 51			Reserve Prev Vol		Barite Chemicals		Other Total S	urface	-20.
sodium sulfite STEELSEAL			25 kg bag 25 kg sack	32			32 180			Net Change Total Vol		Other	12.2	Downho		-88.
							100		0.00	Fluid Ty	pes	Vol bbl	De	viation I	nformatio	on
Daily Products Cos Cumulative Product			\$4,449.90 \$86,949.83			e Cost		\$4,44 \$86,94		Prehydrated Ber	ntonite	1248.0	Survey MI Survey T\			m m
Baroid Representa Office			Edwards			aldhuter Telephon	a 61-∩2	-9581-75]			Angle Direction			Deg
Warehouse	c/o of Ess					Telephon		-9561-75 56-881-4					Horiz Disp	ol.		m

Baroid Fluid	Serv	rices					Data		05/04/2000	Report No		1 1 810.0 m	
		Daily Drilli	ng Fluid I	Report			Date Spud Date	04/24/200	05/04/2008 ns	Rig Activity			
Operator			Repor					Well Name)		Diming	,	
3D Oil Itd Contractor			Repor					West Sea		Unit Systen	n		
Seadrill Country		State/Province		eal Barry	Geographic Area	/County		West Trito		Apache			
Australia Bit Informati	on	Victoria D	rill String (in)	/ (m)	Bass Straight in Casing	m		Vic P57	culation/Hy	draulics Da	nta		
Bit Size 1	2.250 in	616M Drill Pipe	OD II 5.500 4.6	D Length	OD Set		odel	Nat -1	14-P-220 .500	Nat -14- 6.50	P-220 N	Nat -14-P 6.500	
Jets	3x15 3x1	6 Drill Pipe	5.000 3.0	00 112.8	13.375 @	1,117.0 St	rokes in	14	4.000 97	14.0 97	00	14.00	
Jets Velocity	1.107 sq 92.8 m/	sec Motor	8.000 2.8 9.250 0.0			bb	f(%) l/strk	0	.139	0.13	39	0.139	9
Jet Impact Force 1 Bit HHSI	607.3 lbf 4.18 hh						PM m bbl/min		90 12.54	90 527	12.54	0	
Press Drop @ Bit Bit Depth 1,	801 ps 810.0 m	i Open Hole	12.250	693.0	0		tal GPM tal Circ Time		AV, Riser AV min DP	9.7	Circ Press Tot Pres Lo		201 312
ECD @ Csg Shoe	1.189 SC 1.190 SC	3					J Time , min otal Strokes	29	AV max DC BU Strokes		Press Drop Press Drop		99: 7:
Properties Source		1 Flow Line	2 Flow Line	Hyd 3 Flow Line	4	Target		gram	Fluid Type	Fluid T	reatments KCI/Polym		
Time		5:00	13:30	22:00					Continued t	o add sized	l calcium ca	rbonate	
FL Temp De	m eg C	1,533 39	1,694 38	1,810 39					active, for n	ninimized se	eepage loss	ses.	
	SG c/qt	1.160 @ 37 46 @ 37	1.150 @ 28 49 @ 28	1.160 @ 37 44 @ 37					Treated act				duce
	O0 ft2	11 @ 26 26	11 @ 26 26	10 @ 26 25					hardness, 1 concentration				hrs.
	00 ft2	10/14/16 48.0/37.0	11/15/17 48.0/37.0	10/14/16 45.0/35.0					Prepared 40	OUPPI KCI/B	olymer prei	miv to ma	aintair
200/100		32.0/25.0 12.0/10.0	33.0/25.0 13.0/11.0	30.0/23.0 12.0/10.0					volume and			IIIX to IIIc	airitaii
	0 min	5.8	6.0	5.8									
Cake API/HTHP 32i	0 min nd in	8.3 @ 121 1/2	8.5 @ 121 1/2	8.3 @ 121 1/2									
	oy Vol oy Vol	4.9 -/92.0	5.1 -/92.0	5.1 -/92.0									
	y vol c Eq.	0.50 2.5	1.00 4.5	1.00 4.5					Continue to		Activity " hole from	1392m to	0
pH @ Deg C	Pm	9.00 @ 26 0.15	8.80 @ 26 0.20	9.00 @ 26 0.20					1810m. Circ	culate hole	clean and c		
ALK Filt Pt	f/Mf	0.14/0.90 39,000	0.15/1.50 36,000	0.15/1.40 36,000					Flowcheck	and POOH	for logging.		
Tot. Hardness m	ng/l ng/l	800	260	280									
LGS/HGS p	y Vol	2.6/2.2 24.14/32.55	3.5/1.6 32.23/23.11	2.9/2.2 26.54/32.31									
ASG S	SG	3.328	3.092	3.288									
Additional Properties													
	y vol ng/l	8.0 44,000	7.5 40,000	7.5 40,000									
Product Name CLAYSEAL PLUS		Units 216 kg drum	Start Ro			783.20	Shake		trol Equipm Scre		Hrs Dr	Time illing	19.
potassium chloride BARABLOK		1000 kg bag 50 lb bag	16 124		7 9 \$3,	090.22 VS 944.96 VS			255 145			rculating	
BARAZAN D PLUS		25 kg bag	56	1:	1 45 \$1,	674.64 VS	M-300		255		22.0 Ri	g	
barite EZ-MUD		1000 kg bulk 25 kg pail	64	64 18	3 110 \$1,	647.83 VS 544.94	IVI-300		255			shing	
PAC-L Circal 60/16		25 kg bag 25 kg sack	66 149	69		900.57 698.97					Co	un Casing oring	٤
DEXTRID LTE BARA-DEFOAM W300		25 kg sack 5 gal can	12	72 10		648.96 616.88	Hydrocyclone	Cones	Scre	ens		eaming esting	
Circal Y soda ash		25 kg sack 25 kg bag	90 51	28		614.40 AT 371.00	L-1600	16 4				gging r Work	
Baracide BARACOR 100		25 kg can	7	- :	3 4 \$	262.11 110.00					Re	epair her	
caustic soda		25 kg sack 25 kg pail	32 78		2 76	\$88.38	Centrifuge	Speed	Feed	Rate	Hrs To	tal	24.
calcium chloride flake 7 sodium bicarbonate	7%	25 kg bag 25 kg bag	53 38			\$55.28 \$25.10					Ro RO	otating OP	19. 21.
lime BAROFIBRE FINE		20 kg bag 25 lb bag	86 50	2	50	\$13.10	uid Volume Bı	reakdown		KCI/Polyn	Di ner/Clayse	l Rate	0.0
bentonite citric acid		1000 kg bulk 25 kg bag		40	42.000 40		Active	733.4	Additions	bbl	Losse Fluid Dump	S	bbl
EZ SPOT		55 gal drum	8	40	8	Pi	ре Сар	117.5	Drill Water	363.7	Transferred	b	407
Kwikseal Fine N-DRIL HT PLUS		40 lb bag 50 lb bag	38 55		38 55	To	tive Pits	850.9	Dewatering Sea Water		SCE Evaporatio		-167.
NO-SULF Omyacarb 5		17 kg pail 25 kg bulk	48 90.000		90.000	Re	tal Circ eserve		Whole Mud Barite	5.2	Trips Other		-28.0
potassium hydroxide sapp		25 kg bag 25 kg bag	77 40		77 40		ev Vol et Change		Chemicals	54.1	Total Surfa Downhole	ice	-74.
sodium sulfite		25 kg bag	32		32		otal Vol Fluid Typ	1925.9		423.0	Total Losse		-269.
Daily Products Cost	ct	\$19,090.54	Total Daily Cos	st Cost			ehydrated Ben			Survey MD		auUII	m
Cumulative Products Cos Baroid Representatives	Ει	igene Edwards	Total Cumulati Tim V	Valdhuter	•	040.38				Survey TV Angle	ט		m Deg
		d Melbourne ustralia Ltd		Telephoi Telephoi						Direction Horiz Disp	ıl.		m
HALLIBUF	RTO	N Fluid	Systen	This report, the se AND/OR FITNESS F	oftware, any data contained in this report and any OR A PARTICULAR PURPOSE AND OR NON-I	interpretations based on this NFRINGEMENT. IN NO EVE	report are offered "AS-IS" and "WHERE-IS NT WILL HALLIBURTON OR ITS AFFILIA" PUNITIVE	" THERE ARE NO REPRESE TES OR SUPPIERS BE LIABLE OR EXEMPLARY DAMAGES (ENTATIONS OR WARRANTIES, EX E FOR ANY DAMAGES, WHATSOS INCLUDING, WITHOUT LIMITATIO	PRESSED OR INMPLIED, INCL VER, INCLUDING, BUT NOT LI N, LOSS OF DATA, PROFITS C	JUDING IMPLIED WARRANTIES MITED TO DIRECT, INDIRECT, OR USE OF HARDWARE OR SO	OF MERCHANTABILITY CONSEQUENTIAL, INCID IFTWARE). Customer use	' AND/OR FITN IDENTAL, SPEC ses at their own

		Dai	ily Drilli	na Flu	id Rer	oort				Date Spud Date	04/24/200	05/05/2008	Depth Rig Activit	y Wire Lir	1,810.0 m	
Operator 3D Oil Itd			,	F	Report For Shaugn Co					<u> </u>	Well Name West Sea)		wile Lii	ne logs	
Contractor					Report For						Rig Name		Unit Syste	m		
Seadrill Country			State/Province		Micheal Ba	arry	Geographic	: Area/County	,		West Trite Field or BI		Apache			
Australia	,.		Victoria		<i>(</i> :) <i>(</i> ()		Bass Strai				Vic P57	1 4: 11				
Bit Inform	nation	in	U	orill String	(in) / (m)	Length		sing m Set MD	Model			culation/Hyd 14-P-220	Nat -14		Nat -14-F	2-220
Make/Type						Longar	30.000 @	2 122.0	Bore in		6	.500	6.5	00	6.50	0
Jets TFA		sq-in					13.375 @	1,117.0	Strokes Eff(%)	s in	14	4.000 97	14.0 9		14.00 97	00
Jets Velocity		m/sec							bbl/strk	<	0	.139	0.1		0.13	9
Jet Impact Force		lbf							SPM gpm bb	hl/min		0	C) 	0	
Bit HHSI Press Drop @ Bit		hhp/in2 psi							Total G			AV, Riser		Circ Pre	ss psi	
Bit Depth			Open Hole	12.250		693.0				Circ Time		AV min DP		Tot Pres		
ECD @ Csg Shoe ECD @ Bit		SG SG							Total S	ne , min Strokes		AV max DC BU Strokes		Press D Press D		
Properties			1	2		3	4	Tar	gets	Prog	gram		Fluid	Freatmen	nts	
Source Time			Pit 6 20:00	Pit 6 2:00								Fluid Type Losses on to	in out of h		ymer/Clays	seai
Depth	m		,810	1,810								LOSSOS OII ti	ip out or ii	olo i bbi.		
FL Temp Density @ Deg C	Deg C SG	1 16	60 @ 26	1.160 @	32							Dump and o	lean sand	trap #1 a	and clean sh	haker
FV @ Deg C	sec/qt	45	@ 26	45 @ 3	32							trays.				
PV @ Deg C YP II	cP bs/100 ft2	10	@ 26 25	10 @ 2 25	26											
	bs/100 ft2	10	/14/16	10/14/	16											
600/300			.0/35.0	45.0/35												
200/100 6/3			.0/23.0 .0/10.0	30.0/23 12.0/10												
API Filt r	ml/30 min		5.8	5.8												
HTHP @ Deg C r Cake API/HTHP	ml/30 min 32nd in	8.3	@ 121 1/2	8.3 @ 1 1/2	121											
Corr Solid	% by Vol		5.1	5.1												
	% by Vol % by vol		/92.0 0.80	-/92.0 0.80									Rio	Activity		
MBT	ppb Eq.		4.0	4.0								Continue to			Lay out 12	1/4"
pH @ Deg C ALK Mud	Pm		0 @ 26 0.20	9.00 @ 0.20								BHA. Hold J				-
ALK Filt	Pf/Mf	0.1	5/1.40	0.15/1.	40							wireline. Ru	n wireline	logs as p	er program.	-
Chlorides Tot. Hardness	mg/l mg/l		6,000 280	36,00 280												
LGS/HGS	% by Vol	2.	.9/2.2	2.9/2.	2											
LGS/HGS ASG	ppb SG		54/32.31 3.288	26.54/32 3.288												
AGG	36	J	5.200	3.200	5											
Additional Propertie																
	% by vol		7.5	7.5												
Potassium Ion	mg/l	40	0,000	40,00	0											
Product Nam BARABLOK	ne	ι	Jnits 50 lb bag	Start	Rec	Used	End 60	Cost		Shaker		trol Equipm Scre		Hrs	Time Drilling	е
Baracide			25 kg can	4			4		VSM-300	0		3016	5113	ПІЗ	Circulating	
BARACOR 100			25 kg sack 25 kg bag	28			28		VSM-300						Trips	6.0
BARAZAN D PLUS barite		1	25 kg bag 000 kg bulk	45 138.960			45 138.960		VSM-300 VSM-300						Rig Surveys	
BAROFIBRE FINE			25 lb bag	50			50								Fishing	
bentonite calcium chloride flake	2 77%	1	000 kg bulk 25 kg bag	42.000 49			42.000 49								Run Casin Coring	ç
caustic soda	5 1170		25 kg pail	76			76								Reaming	
Circal 60/16			25 kg sack 25 kg sack	80			80 42		Hydro ATL-160	ocyclone	Cones	Scre	ens	Hrs	Testing	10.0
Circal Y citric acid			25 kg bag	42 40			40		A1L-100	00	16 4				Logging Dir Work	18.0
CLAYSEAL PLUS		2	16 kg drum	20			20								Repair	
DEXTRID LTE EZ SPOT			25 kg sack	68			68		Cer	ntrifuge	Speed	Feed	Rate	Hrs	Other Total	24.0
EZ-MUD			25 kg pail	110			110			······································	Opecu	, , ,		10	Rotating	
Kwikseal Fine			40 lb bag 20 kg bag	38 84			38 84								ROP Dil Rate	0.00
lime N-DRIL HT PLUS			50 lb bag	55			55		Fluid \	/olume Br	eakdown		KCI/Polyi	mer/Clay		0.00
NO-SULF			17 kg pail	48			48			ctive	bbl	Additions	bbl		sses	bbl
Omyacarb 5 PAC-L			25 kg bulk 25 kg bag	90.000			90.000		Annulu Pipe C			Base Drill Water		Fluid Du Transfer		
potassium chloride		1	000 kg bag	9			9		Active	Pits		Dewatering		SCE		-40.0
potassium hydroxide			25 kg bag 25 kg bag	77			77 40		Total H Total C			Sea Water		Evapora Trips	ation	
sapp soda ash			25 kg bag 25 kg bag	40 23			23		Reserv			Whole Mud Barite		Other		
sodium bicarbonate			25 kg bag	36			36		Prev V	'ol	1925.9	Chemicals		Total Su		
sodium sulfite STEELSEAL			25 kg bag 25 kg sack	32 180			32 180		Net Ch Total V		-40.6 1885.3	Other Total		Downho Total Lo		-0.6 -40.6
			•				. 50	*		Fluid Typ	es	Vol bbl		viation lı	nformation	
Daily Products Cost Cumulative Products	Cost	\$	\$0.00 106,040.38	Total Daily Total Cum		ost		90.00 106,040.38	Prehyd	drated Ben	tonite	1248.0	Survey M Survey T\			m m
Baroid Representativ	es	Eugene	Edwards		Tim Waldh	uter			†				Angle	-		Deg
	00 Talinga					Telephon	e 61-03-9	9581-7555	ŀ				Direction	s.I		

Report No

012

Flu	ıid Seı	rvice	s									Report No)	013	
		Da	ily Drilli	na Flu	id Re	nort			Date Spud D		05/06/2008	Depth Rig Activity		1,810.0 n	n
or		υa	ווווזט אוו		Report For	JUIL				04/24/20 Well Name			Tripp	oing	
ltd				:	Shaugn C					West Sea	ahorse 3	-			
ctor ill					Report For Micheal B					Rig Name West Trit		Unit System Apache	1		
у			State/Province		viiciicai Di	arry	Geographic			Field or B		, .p.u.o			
alia Bit Info	rmation		Victoria D	rill String	(in) / (m		Bass Straig in Cas			Vic P57	culation/Hyd	draulics Da	ıta		
ze	12.250			OD	İD	Length	OD Se	et MD	Model	Nat -	14-P-220	Nat -14-	P-220	Nat -14-	
Туре	HYCALOG/F 3x15 3		Drill Pipe Drill Pipe	5.500 5.000	4.670 3.000	1,391.7 112.8	30.000 @ 13.375 @		Bore in Strokes in		6.500 4.000	6.50 14.0		6.50 14.0	
	1.107	sq-in	Drill Collar	8.000	2.875	38.4		,	Eff(%)		97	97	•	97	7
elocity pact Force		m/sec lbf	Motor	9.250	0.000	22.0			bbl/strk SPM).139 0	0.13	39	0.13 0	
SI		hhp/in2							gpm bbl/min				0. 5		
Drop @ Bit	1,565.0	psi m	Open Hole	12.250		693.0			Total GPM Total Circ Time	Э	AV, Riser AV min DP		Circ Pre Tot Pres		
Csg Shoe	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SG							BU Time, min		AV max DC	;	Press D	rop DP	
Bit Propertie	es	SG	1	2		3	4	Tar	Total Strokes gets P	rogram	BU Strokes		Press D reatmen		
е			Pit 6	Pit 6							Fluid Type		KCI/Pol	ymer/Clay	
	m		3:00 1,810	14:0 1,81							Continue cle	eaning shak	er beds	and first s	and
mp	Deg C										trap.				
ty @ Deg C Deg C	SG sec/qt		60 @ 23 6 @ 23	1.160 @ 46 @						_	-				
Deg C	cР		0 @ 26	10 @							1				
	lbs/100 ft2 lbs/100 ft2	10	25 0/14/16	24 10/14/	16			+		_	1				
00		45	.0/35.0	44.0/3	4.0						1				
00			.0/23.0	32.0/2 12.0/1						_	1				
ilt	ml/30 min		5.8	5.8											
@ Deg C API/HTHP	ml/30 min 32nd in	8.3	1/2 1/2	8.3 @ 1/2							1				
Solid	% by Vol		5.1 /92.0	5.1											
Vater	% by Vol % by vol		0.80	-/92. 0.75								Rig	Activity		
D 0	ppb Eq.		4.0	4.0 9.00 @							Continue ru				
Deg C lud	Pm		0 @ 26 0.20	0.20							MDT-Gamm Problem wit	•			
Filt	Pf/Mf		15/1.40	0.15/1							lodged in to		JH and (cieai cullii	iys
ides Iardness	mg/l mg/l		6,000 280	36,00 280							RIH with MF	•	e-run an	d POOH th	hen rig
HGS HGS	% by Vol		.9/2.2 54/32.31	2.9/2 26.54/3							down wirelir Make up an		Mule Sh	ne for P&	Δto
103	ppb SG		3.288	3.28							1565m at m		ividic Offi	50 101 1 Q 7	
											-				
tional Propert %	% by vol		7.5	7.5											
% ssium Ion	% by voi mg/l	4	0,000	40,00											
Drodu-131			Inite	0:	Par	l 1	En al	Coot		601:4- 0	trol Farris	ont.		7:	10
Product Na ABLOK	aille		Units 50 lb bag	Start 60	Rec	Used	End 60	Cost	Shal		ntrol Equipm Scre		Hrs	Tim Drilling	ie
cide			25 kg can	4			4		VSM-300					Circulating	-
COR 100 ZAN D PLUS	.		25 kg sack 25 kg bag	28 45			28 45		VSM-300 VSM-300					Trips Rig	3.9
		1	000 kg bulk	138.960			138.960		VSM-300					Surveys	
FIBRE FINE		1	25 lb bag 000 kg bulk	42.000			42.000							Fishing Run Casir	ng
n chloride fla	ke 77%		25 kg bag	49			49							Coring	
c soda 60/16			25 kg pail 25 kg sack	76 80			76 80		Hydrocyclon	e Cones	Scre	ens	Hrs	Reaming Testing	
Υ			25 kg sack	42			42		ATL-1600	16 4				Logging	19.0
acid SEAL PLUS		2	25 kg bag 216 kg drum	40 20			40 20							Dir Work Repair	
RID LTE			25 kg sack	68			68							Other	0.
POT UD			55 gal drum 25 kg pail	110			110		Centrifuge	Speed	Feed	Rate	Hrs	Total Rotating	24.
eal Fine			40 lb bag	38			38							ROP	
L HT PLUS			20 kg bag 50 lb bag	84 55			84 55		Fluid Volume	Broakdown		KCI/Polym		Dil Rate	0.0
JLF			17 kg pail	48			48		Active	bbl	Additions	bbl		seai	bbl
carb 5			25 kg bulk 25 kg bag	90.000			90.000 55		Annulus Pipe Cap		Base		Fluid Du Transfer		
ium chloride		_	25 kg bag 1000 kg bag	55 9			9		Active Pits		Drill Water Dewatering		SCE	ieu	
ium hydroxid			25 kg bag	77			77		Total Hole	859.6	Sea Water		Evapora	ition	
ash			25 kg bag 25 kg bag	40 23			23		Total Circ Reserve		Whole Mud Barite		Trips Other		-67.
bicarbonate	Э		25 kg bag	36			36		Prev Vol	1885.3	Chemicals		Total Su		
sulfite SEAL			25 kg bag 25 kg sack	32 180			32 180		Net Change Total Vol	-67.6 1817.6	Other Total		Downho Total Lo		-67.6
					0 :		.50	A C	Fluid T	ypes	Vol bbl	Dev	/iation lı	nformatio	n
roducts Cos ative Produc		5	\$0.00 \$106,040.38	Total Dail	y Cost nulative Co	ost	\$	\$0.00 106,040.38	Prehydrated B	entonite	1248.0	Survey MD Survey TV			m m
Representat	tives	Brian A	uckram		Eugene E	dwards		•				Angle			Deg
e ehouse	90 Talinga					Telephone Telephone		581-7555 .881-445	ł			Direction Horiz Disp	I.		m

		Dai	ily Drilli	ng Flu	id Rep	ort				Date Spud Date	04/24/20	05/07/2008	Depth Rig Activity	y Wait on	1,810.0 n	n
Operator 3D Oil Itd				R	Report For Shaugn Co						Well Name West Sea)			Cement	
Contractor Seadrill					Report For Micheal Ba	arry					Rig Name West Trit	on	Unit Syster Apache	m		
Country			State/Province		viiciieai De	ally	Geographic	Area/County	,		Field or BI		траспо			
Australia Bit Infor	mation		Victoria	Orill String	(in) / (m)		Bass Strai	ght sing m			Vic P57	culation/Hyd	draulice D	ata		
Bit Size	12.250	in		OD	ID	Length		Set MD	Model			14-P-220	Nat -14		Nat -14-	-P-220
Make/Type	HYCALOG/F			5.000	3.000	69.5	30.000 (Bore i			5.500	6.5		6.50	
Jets TFA	3x15 3 1.107		Drill Collar Motor	8.000 9.250	2.875 0.000	38.4 22.0	13.375 (@ 1,117.0	Eff(%)	s in	14	4.000 97	14.0 97		14.0 97	
Jets Velocity		m/sec							bbl/strl	k	0	.139	0.13		0.13	
Jet Impact Force Bit HHSI		lbf hhp/in2							SPM gpm bl	bl/min		0 I	0	Ì	0	
Press Drop @ Bit		psi							Total C	3PM		AV, Riser		Circ Pre		
Bit Depth ECD @ Csg Shoe	130.0	m SG	Open Hole	12.250		693.0				Circ Time ne , min		AV min DP AV max DC		Tot Pres Press D		
ECD @ Bit		SG		_		_			Total S	Strokes		BU Strokes		Press D	rop An	
Propertie: Source	S		1 Pit 6	2		3	4	Tar	gets	Pro	gram	Fluid Type	Fluid 1	reatmen	its ymer/Clay	reasi
Time			23:59									Dump 200 b	bls contar		<u> </u>	
Depth	m Dog C	1	,810									while displa	-			
FL Temp Density @ Deg C	Deg C SG	1	1.160									Drilling fluid				H 10-
FV @ Deg C	sec/qt		6 @ 23 1 @ 49									11, hardnes constant at		,	ad weigni	
PV @ Deg C YP	cP lbs/100 ft2	10	25											,		
	lbs/100 ft2		/14/16									No cement i	returns to s	surface o	n cement	plug
600/300 200/100			.0/35.0 .0/23.0									#1B or #2.				
6/3	1/00		.0/10.0													
API Filt HTHP @ Deg C	ml/30 min ml/30 min		5.8													
Cake API/HTHP	32nd in		1/-													
Corr Solid NAP/Water	% by Vol % by Vol		5.1 /92.0													
Sand	% by vol		0.25											Activity		
MBT pH @ Deg C	ppb Eq.		5.0 00 @ 23									Continue to drive and wa				
ALK Mud	Pm		1.20									cement Plug		_		
ALK Filt Chlorides	Pf/Mf mg/l		20/1.40 6,000									1633m. Ma	ke up Top	Drive and	d circulate	
Tot. Hardness	mg/l		960									bottoms up,				
LGS/HGS LGS/HGS	% by Vol		.9/2.2 54/32.31									at surface. 1B and disp	• .			
ASG	SG		3.288									circulate 1 1				
												1417m to 12		RIH and	tag top of	Plug
Additional Properti												1B at 1490n POOH to 12		spotting 5	i0bbl Hi Vi:	sc pill to
KCL % Potassium Ion	% by vol mg/l		7.5 0,000									1149m. Set				
· otacolalli loli	g, .		-,									POOH to 94	2m then c	irculate 1	1/2 times	
Product Na	me	U	Jnits	Start	Rec	Used	End	Cost		<u> </u>	Solids Con	bottoms up.	ent		Tim	ne
BARAZAN D PLUS			25 kg bag	45		8		\$1,217.92		Shake		Scre		Hrs	Drilling	
CLAYSEAL PLUS caustic soda		2	16 kg drum 25 kg pail	20 76		13		\$956.64 \$574.47							Circulatin Trips	g 3.0 12.5
Circal 60/16			25 kg sack	80		20	60	\$202.60	VSM-30	0					Rig	12.0
sodium sulfite Amodrill 1235			25 kg bag 1500 l drum	32	28		24	\$110.00	VSM-30	0					Surveys Fishing	
BARABLOK			50 lb bag	60			60								Run Casi	nç 6.0
Baracide			25 kg can	4			4								Coring Reaming	
BARACOR 100 BARACOR 100			25 kg sack 55 gal drum	28	4		4		Hydr	ocyclone	Cones	Scre	ens	Hrs	Testing	
barite		1	000 kg bulk				138.960		ATL-160	00	16 4	•			Logging	
BAROFIBRE FINE bentonite		1	25 lb bag 000 kg bulk	42.000			42.000								Dir Work Repair	
calcium chloride flat	ke 77%		25 kg bag	49			49								Other	2.5
Circal Y citric acid			25 kg sack 25 kg bag	42			42		Cei	ntrifuge	Speed	Feed	Rate	Hrs	Total Rotating	24.0
CON DET			55 gal drum	40	8		8		1						ROP	
DEXTRID LTE			25 kg sack				68		FI	/-l D-			KOI/D-I	/01	Dil Rate	0.00
EZ SPOT EZ-MUD		,	55 gal drum 25 kg pail	110			110			Volume Bu	bbl	Additions	KCI/Polyr	Los		bbl
Kwikseal Fine			40 lb bag	38			38		Annulu	ıs	92.4	Base		Fluid Du	ımped	
lime N-DRIL HT PLUS			20 kg bag 50 lb bag	84 55			84 55		Pipe C Active			Drill Water Dewatering		Transfer SCE	rrea	
NO-SULF			17 kg pail	48			48		Total F	Hole	911.7	Sea Water		Evapora	ation	
Omyacarb 5 PAC-L			25 kg bulk 25 kg bag				90.000		Total C Reserv			Whole Mud Barite	247.3	Trips Other		-200.0
potassium chloride		1	000 kg bag	55 9			9		Prev V			Chemicals	4.7	Total Su		-200.0
potassium hydroxide	е		25 kg bag	77			77		Net Ch		52.0	Other	050.0	Downho		200.0
sapp			25 kg bag	40			40		Total V	Fluid Typ	1869.7 Des	Total Vol bbl		Total Lo	sses nformatio	-200.0 n
Daily Products Cost		4		Total Daily					Prehyd	drated Ben	tonite		Survey MI	D		m
Cumulative Product Baroid Representati		Brian Au	3109,102.01 uckram		ulative Co Eugene Eo		1	\$109,102.01	ł				Survey T\ Angle	טו		m Deg
Office	90 Talinga	Rd Melb	ourne			Telephone	e 61-03-9	9581-7555	Į				Direction	s.I		- 3

Report No

014

	Da	aily Dri	lling F	luid F	Report				Date Spud Date	04/24/20	05/08/2008	Depth Rig Activity		1,810.0 m	1
Operator				eport For	-					Well Name		<u> </u>	1 0		
3D Oil Itd			5	Shaugn Co	orless					West Sea	ahorse 3				
Contractor Seadrill				teport For /licheal Ba	arrv					Rig Name West Trit	on	Unit System Apache	n		
Country		State/Provin		monoar Be	ATT Y	Geographic	c Area/County	,		Field or B		- q- and t-			
Australia Bit Information		Victoria	Orill String	(in) / (m)		Bass Stra		I		Vic P57	culation/Hyd	traulice Da	ıta.		
Bit Size	in		Orill String OD	ID	Length		sing m Set MD	Model			14-P-220	Nat -14-		Nat -14-	P-220
Make/Type						30.000 (@ 122.0	Bore in			5.500	6.50		6.50	
Jets TFA	sq-in					13.375 (@ 1,117.0	Eff(%)	s in	1.	4.000 97	14.00 97		14.0 97	
Jets Velocity	m/sec							bbl/strk	<	C	.139	0.13		0.13	
Jet Impact Force	lbf hhp/in2							SPM gpm bb	hl/min		0	0	İ	0	
Bit HHSI Press Drop @ Bit	psi							Total G			AV, Riser		Circ Pres	ss psi	
Bit Depth	m	Open Hole	12.250		693.0	1			Circ Time		AV min DP		Tot Pres		
ECD @ Csg Shoe ECD @ Bit	SG SG							Total S	ne , min Strokes		AV max DC BU Strokes		Press Dr Press Dr		
Properties		1	2		3	4	Tar	gets		gram			reatmen		
Source Time		ow Line 23:59									Fluid Type			/mer/Clay	seal
Depth m		1,810									None. prepa	aring to mo	ve to net	w weii.	
FL Temp Deg C		1.400													
Density @ Deg C SG FV @ Deg C sec/qt		1.160 6 @ 23													
PV @ Deg C cP		@ 49													
YP lbs/100 ft2 GELS lbs/100 ft2		25)/14/16													
600/300		.0/35.0													
200/100		.0/23.0													
6/3 API Filt ml/30 mir	12	.0/10.0 5.8													
HTHP @ Deg C ml/30 mir	n	4/													
Cake (API/HTHP) 32nd in Corr Solid % by Vol		5.1													
NAP/Water % by Vol		/92.0													
Sand % by vol MBT ppb Eq.		5.0									POOH from		Activity	roveree ei	roulete
pH @ Deg C	11.0	00 @ 23									displacing m				TCulate
ALK Mud Pm		1.20 20/1.40									contaminate				t
ALK Filt Pf/Mf Chlorides mg/l		6,000									diverter then	ı rig down N	Mandrel,	Choke Ho	se and
Tot. Hardness mg/l		960									BOP. Make up we	ll bood rotri	ioval tool	Pun In a	nd
LGS/HGS % by Vol LGS/HGS ppb		.9/2.2 54/32.31									screw in the				
ASG SG		3.288									Set Abando	nment Cove	er and re	trieve 30".	
Additional Properties															
KCL % % by vol Potassium Ion mg/l	4	7.5 0,000													
r otassiam for mg/r		0,000													
Product Name		Jnits	Start	Rec	Used	End	Cost		S	olids Con	trol Equipme	ent		Tim	e
Amodrill 1235		1500 l drum	2		Coou	2			Shakeı		Scree		Hrs	Drilling	
BARABLOK		50 lb bag 25 kg can				60		VSM-300 VSM-300						Circulatino Trips	
Baracide BARACOR 100		25 kg can 55 gal drum				4		VSM-300						Rig	1.5
BARAZAN D PLUS		25 kg bag				37		VSM-300	0					Surveys	
barite BAROFIBRE FINE	1	000 kg bulk 25 lb bag				138.960								Fishing Run Casing	a
bentonite	1	000 kg bulk	42.000			42.000		1						Coring	,
calcium chloride flake 77%		25 kg bag				49		الله دا ا	a a valana	0	Cara			Reaming	
caustic soda Circal 60/16		25 kg pail 25 kg sack				63		ATL-160	ocyclone 00	Cones 16 4	Scree	ens	Hrs	Testing Logging	
Circal Y		25 kg sack	42			42				10 1				Dir Work	
citric acid CLAYSEAL PLUS		25 kg bag 216 kg drum				40 19								Repair Other	22.0
CON DET		55 gal drum				8		Cer	ntrifuge	Speed	Feed	Rate		Total	24.0
DEXTRID LTE		25 kg sack				68					•			Rotating	
EZ SPOT EZ-MUD		55 gal drum 25 kg pail				110								ROP Dil Rate	0.00
Kwikseal Fine		40 lb bag				38		Fluid \	/olume Br	eakdown		KCI/Polym			0.00
lime		20 kg bag				84			ctive	bbl	Additions	bbl	Los		bbl
N-DRIL HT PLUS NO-SULF		50 lb bag 17 kg pail				55 48		Annulu Pipe C			Base Drill Water		Fluid Du Transfer		
Omyacarb 5		25 kg bulk	90.000			90.000		Active	Pits		Dewatering		SCE		
PAC-L potassium chloride		25 kg bag 1000 kg bag				55		Total H Total C			Sea Water Whole Mud		Evapora Trips	tion	
potassium hydroxide		25 kg bag				77		Reserv			Barite		Other		-29.3
sapp		25 kg bag	40			40		Prev V	ol	1869.7	Chemicals		Total Su		
soda ash sodium bicarbonate	-	25 kg bag 25 kg bag				23 36		Net Ch Total V		-29.3 1840.3	Other Total		Downhol Total Los		-29.3
						00			Fluid Typ	es	Vol bbl	Dev	viation Ir	formation	n
Daily Products Cost Cumulative Products Cost			Total Daily Total Cum		net		0.00\$ 102.01\$	Prehyd	drated Ben	tonite	1248.0	Survey MD Survey TV			m m
Baroid Representatives	Brian A			Gerald Lar	nge	•		İ				Angle	_		Deg
Office 90 Talings					Telephon		9581-7555	ļ				Direction	,		~

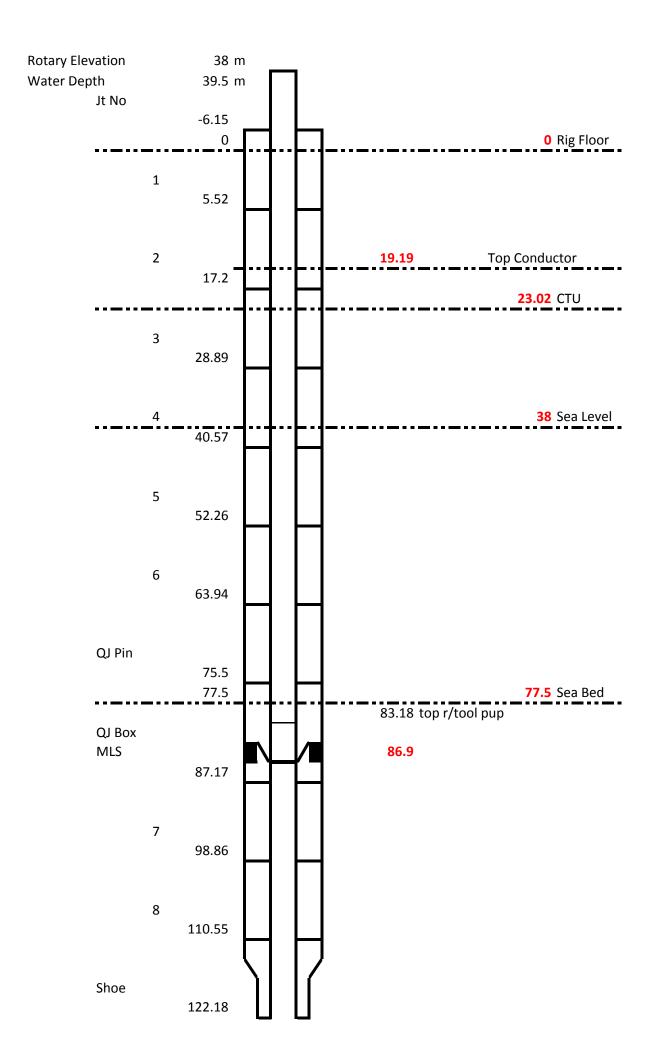
Report No 015

	D-	:: D.::!!!	na Fluid D					Date Spud Date		05/09/2008	Depth Rig Activity	1.0	m
Onerster	Da	ווון טרוווו	ng Fluid R	_				-,	04/24/200 Well Name		,	P&A	
Operator 3D Oil Itd			Report F Shaugn	or Corless					Well Name West Sea				
Contractor			Report F						Rig Name		Unit System		
Seadrill Country		State/Province	Micheal ce/Region	Barry	Geographic	: Area/County	,		West Trite Field or BI		Apache		
Australia		Victoria	will Ctrimer (im) //		Bass Strai				Vic P57	lation/llus	Ivanilias Data		
Bit Information Bit Size	in	L	Orill String (in)/(Length		sing m Set MD	Model			14-P-220	Iraulics Data Nat -14-P-2	220 Nat -1	4-P-220
Make/Type					30.000 @	@ 1.0	Bore in			.500 4.000	6.500 14.000		500 .000
Jets TFA	sq-in						Strokes Eff(%)) III		97	97		97
Jets Velocity	m/sec						bbl/strk SPM		0	.139 0	0.139 0	0.	139 0
Jet Impact Force Bit HHSI	lbf hhp/in2						gpm bb	l/min		<u> </u>			Ĭ
Press Drop @ Bit Bit Depth 1,810.0	psi m				4		Total G	PM irc Time		AV, Riser AV min DP		c Press psi t Pres Loss	
ECD @ Csg Shoe	SG						BU Tim	e , min		AV max DC	Pre	ess Drop DP	
ECD @ Bit Properties	SG	1	2	3	4	l Tar	Total Sigets		gram	BU Strokes	Pre Fluid Trea	ess Drop An	
Source		Pit 6				1	9010		J	Fluid Type		I/Polymer/Cl	ayseal
Time Depth m		16:00 1,810								None. Tran	sferring volum	es to Wardie-	1 well.
FL Temp Deg C													
Density @ Deg C SG FV @ Deg C sec/qt		1.160 6 @ 23					\vdash						
PV @ Deg C cP		0 @ 49											
YP lbs/100 ft2 GELS lbs/100 ft2	10	25 0/14/16											
600/300	45	.0/35.0											
200/100 6/3		2.0/23.0											
API Filt ml/30 min		5.8											
HTHP @ Deg C ml/30 min Cake API/HTHP 32nd in		1/-											
Corr Solid % by Vol		5.1											
NAP/Water % by Vol Sand % by vol	_	-/92.0									Rig Act	tivity	
MBT ppb Eq.	11	5.0 00 @ 23									nporary aband	•	
pH @ Deg C ALK Mud Pm		1.20									h ROV. POOH nt cap and ski	•	•
ALK Filt Pf/Mf Chlorides mg/l		20/1.40									at 16:30 hours	•	CII
Tot. Hardness mg/l		969											
LGS/HGS % by Vol LGS/HGS ppb		1.9/2.2 54/32.31					\vdash						
ASG SG		3.288											
Additional Properties KCL % % by vol		7.5											
Potassium Ion mg/l	4	0,000											
Product Name	_	Units	Start Rec	Used	End	Cost \$2,355.40		Shaker		trol Equipm		. 5	ime
barite Baracide		25 kg can	4		134.000	\$174.74)		Scree	C113 []	Hrs Drilling Circulat	ing
Amodrill 1235 BARABLOK		1500 l drum 50 lb bag	60		60		VSM-300 VSM-300					Trips Rig	
BARACOR 100		55 gal drum	4		4		VSM-300					Surveys	;
BARAZAN D PLUS BAROFIBRE FINE		25 kg bag 25 lb bag	37 50		37 50							Fishing Run Ca	einc
bentonite	1	000 kg bulk			42.000							Coring	1
calcium chloride flake 77% caustic soda		25 kg bag 25 kg pail	49 63		49 63		Hydro	ocyclone	Cones	Scre	ene L	Reamin Testing	
Circal 60/16		25 kg sack	60		60		ATL-160		16 4	3016	1	Logging	
Circal Y		25 kg sack 25 kg bag	42 40		42 40							Dir Wor Repair	k
citric acid CLAYSEAL PLUS	2	25 kg bag 216 kg drum	19		19							Other	16.5
CON DET		55 gal drum	8		8		Cen	trifuge	Speed	Feed	Rate	Hrs Total	16.5
DEXTRID LTE EZ SPOT		25 kg sack 55 gal drum	68 8		68							Rotatino ROP	3
EZ-MUD		25 kg pail	110		110		FI: .1 V	/-l D.			1/01/D - l	Dil Rate	0.00
Kwikseal Fine lime		40 lb bag 20 kg bag	38 84		38 84			ctive	eakdown bbl	Additions	KCI/Polymer/	Losses	bbl
N-DRIL HT PLUS		50 lb bag	55		55		Annulu			Base		id Dumped	
NO-SULF Omyacarb 5		17 kg pail 25 kg bulk	48 90.000		90.000		Pipe Ca Active I			Drill Water Dewatering	SC	ansferred E	
PAČ-L		25 kg bag	55		55		Total H	ole	2.7	Sea Water	Eva	aporation	
potassium chloride potassium hydroxide	<u> </u>	1000 kg bag 25 kg bag	9 77		9 77		Total C Reserv		792 0	Whole Mud Barite	Trij 7.4 Otł	her	-1053.3
sapp		25 kg bag	40		40		Prev Vo	ol	1840.3	Chemicals	0.3 Tot	tal Surface	
soda ash sodium bicarbonate		25 kg bag 25 kg bag	23 36		23 36		Net Char Total V		-1045.5 794.7			wnhole tal Losses	-1053.3
					00	Φ0.50° ' '		Fluid Typ	es	Vol bbl	Deviat	ion Informati	on
Daily Products Cost Cumulative Products Cost			Total Daily Cost Total Cumulative	Cost	9	\$2,530.14 111,632.15	Prehyd	rated Beni	tonite	1248.0	Survey MD Survey TVD		m m
Baroid Representatives	Brian A	uckram	Gerald I	ange			ļ				Angle		Deg
Office 90 Talinga				Telephor		9581-7555	ŀ				Direction Horiz Displ		

Report No 016

Attachment 4

Casing Report



TUBULAR RUNNING SERVICES JOB REPORT

GENERAL	ADMINISTRATI	ON INFORM	ATION									
CUSTOME	R	ADA - 3E)				RIG		,	West Triton		
WELL NAME	<u>:</u> :	West Seahor	se-3		٧	VORK OR	DER NO.:		SP0	19/08		
FIELD OP	ERATIONS CHE	CKLIST										
NOTE: EN	SURE A SAFE WOI PORTED IMMEDIA	RKING ENVIR									NTS MUST	BE
IMPORTANT	FOR ALL WELLS!											Tick (x) when done
1. WSM has	signed this checklist	and a copy is a	attached to	the Service T	icket and	passed to	town.					x
HEALTH, SA	FETY, ENVIRONME	ENT & QUALIT	Υ									Tick (x) when done
soon as poss	cidents and accident ible. (Enter N/A if no	incidents)					• .			nel as required infor	med as	х
	to comply with all rig											X
3. Copy of Cr	necksheet left with W	ISM. (Woodsid	e only - Ke	у Репогтапс	e Indicato	r (KPI) tor	m is compi	etea, revi	ewea ana	a copy left with WS	SIVI.)	X
PRE-OPERA	TIONAL CHECKS											Tick (x) when done
	on of <i>job details</i> are on in Pre-Job Toolbo		e.									X
3. Unloading	of containers is done	e safely.										Х
	on of <i>equipment</i> ship on of Rig Owned <i>equ</i>			ned.								X
6. All equipm	ent is visually inspec	cted for damag	e in accord	lance with pro								х
8. All equipm	a Permit to Work is ent shipped (and rig						per relevar	nt procedu	res. Ensi	ure all parts are free	moving	X X
and suitably I 9. The size of	f the safety clamp is	checked and if	necessary	, adjusted.								x
	d, the Stab-in Guide				d adjusted	l.						Х
	ngs are dressed for nit Safety shut down			meter								X X
	ong Safety Interlock		lovotoro o	nd Clin Incorts								X
	orrect dies are fitted on is requested and				5.							X
	gnals are establishe n and testing of Stab		done Pro	On section of	f the Stabl	ning Roar	d Deport is	complete	d			X
18. Tubular g	oods on pipe deck a	are inspected for	or type and	condition.			•	•				X
	at all necessary and rill-floor and perform			If quantity get	ting low in	form Mate	erials Repr	esentative).			X X
	LL safety wires for F			and Retainer	s are insta	illed and i	n good ser	vicable or	der replac	ce as necessary.		x
	ate remedial action is s in carrying out inst								gislation	are clarified with the	person in	X
charge.					_	_		_	_			Tick (x)
	TORQUE FIGUR	ES (Company	Rep's Ap	proval Requi	red)							when done
					FT/LE Minimum	SS Optimum	Maximum	Turns F	Program	Company Rep's S	ianiture	
Pipe Size	Туре	Weight	Grade	Shoulder Torque	Torque	Torque	Torque	Min	Max	,,		
13 3/8 30	Buttress D60/MT	68ppf 0.00	L 80 0	0	0	30,000	0	0.0	0.0			
0	0	0.00	0	0	0	0	0	0.0	0.0			
0	0	0.00 0.00	0	0	0	0	0	0.0	0.0			
0	0	0.00	0	0	0	0	0	0.0	0.0			T-1-()
Confirmation	n NOT to run a no-c	ross coupling	(Compan	y Rep's Appr	oval Req	uired)				Company Rep's Signit	ture	Tick (x) when done
Type of Housing	g:											
DRIFT PAR	AMETERS (Drift Re	quirements of	Tubing ar	nd Casing)								Tick (x) when done
			.	Required D			Drift OD		Requirement	Company Rep's S	ianiture	
Pipe Size 13 3/8	Type Buttress	Weight 68ppf	Grade L 80	OD 0	ASAS	OD 0	ASAS 0	OD	ASAS	,p 3 0	J	
0	0	0.00	0	0		0	0					
0	0	0.00 0.00	0	0	0	0	0					
0	0	0.00	0	0	0	0	0					
0	0	0.00	0	0	0	0	0		l			

CUSTOMER ADA - 3D	RIG	West Triton	
WELL NAME: West Seahorse-3	WORK ORDER NO.:	SP019/08	
FIELD OPERATIONS CHECKLIST			
RIG UP			Tick (x) when done
1. Power Unit is a sited in a safe position.			X
2. If used, <i>JAM system</i> is sited in a safe position.3. Hydraulic hoses are safely routed and do not pose a tripping hazard.			X
4. Airlines have 'R' clips and/or Whip-lines fitted.			х
5. Equipment is transported safely to the drill-floor.6. The position of equipment during operation is agreed and used.			X
7. The <i>Power Tong</i> hanger spring and lift ram are attached securely to to 8. The <i>Power Tong</i> is securely and safely suspended.	ong.		X
9. The Torque gauge assembly is fitted to tong with the damper open (If	not using JAM)		XX
10. A correctly rated tong snub line is selected.11. The Elevator is installed to the travelling block bails safely.			X
Suspend Single Joint Elevator from travelling block, if required. Suspend Single Joint Elevator from travelling block, if required. Suspend Single Joint Elevator from travelling block, if required.			X
14. Difficulties in carrying out instructions in accordance with company a	nd customer policies, procedur	es and legislation are clarified with the person	
charge.			\perp
OPERATION			Tick (x) when done
Power Unit started and correct working pressure selected. Equipment is used as per relevant procedures and work instructions.			X
3. Tubular goods are handled, made up and broken out to Client require	ments.		X
Thorough crew-change hand over is done. Participation in Pre-Job/Tour Toolbox Talk.			X
6. Difficulties in carrying out instructions in accordance with company an charge.	d customer policies, procedure	s and legislation are clarified with the person in	1 x
RIG DOWN			Tick (x) when done
Permission obtained from Client Representative to rig down. Method of rig down agreed with driller.			X
3. Power Tong Lift Ram is retracted, if fitted.			х
Power Unit shut down. Power Tong lowered safely to the floor.			X
Hydraulic hoses disconnected. Hanging line and snub line removed.			X
8. Torque gauge assembly removed, damper closed and stored in baske			х
9. If used, <i>JAM system</i> cables disconnected and JAM equipment stored 10. Jaws, lift ram, hanger spring removed and stored in basket.	in container.		X
Handling <i>equipment</i> rigged down. Arrange for <i>equipment</i> to be removed from the floor.			X X
13. Return the work site to normal condition.			x
POST OPERATIONAL CHECKS			Tick (x) when done
I. If required, Permit to Work closed off. All equipment assembled in a safe area.			X
3. All equipment cleaned.			X
Repairs carried out if <i>equipment</i> to remain onboard. Bare metal areas protected from corrosion and all points greased.			X
6. Re-pack equipment in containers and fit covers (assist deck crew if cr 7. Hydraulic hoses coiled back in <i>power unit</i> .	ane required).		X
8. Equipment prepared for back-load.			Х
9. All <i>relevant paperwork</i> completed. 10. Feedback invited from the Client.			X
	400507 OF THE OUTON 100		
PLEASE COMMENT IF PROBLEMS MET IN COMPLYING WITH ANY	ASPECT OF THE CHECKLIST		
Weatherford Representative:	Date	Signed:	
Contractor Representative:	Date	Signed:	
Contractor Representative.	Date	Olyneu.	

GENERAL ADMINISTRATION	INFORMATION		
SENERAL ADMINISTRATION	IIII GRIIIATION		
CUSTOMER	ADA - 3D	RIG	West Triton
WELL NAME: W	est Seahorse-3	WORK ORDER NO.:	SP019/08
FIELD OPERATIONS CHECK	LIST		
RANGE STATEMENT			
Difficulties in carrying out instruct	ions unclear instructions, imp	precise details, lack of information	n. conflicts with operational procedures.
Appropriate remedial action	rectify, report, repair, rep	olace, adjust.	
Job Details	running and handling pr	actices and procedures, Well na	ime, work scope
Equipment			Safety Clamps, Stab in Guides, Elevators, Hand Stor (SJE), JAM systems, A-Q-Tork, Centrifugal Dop
Power Unit	Electric, Diesel, Rig Sup	oplied Power.	
Power Tongs		d to Weatherford Power Tong manb 16/25, 14-50, 24-50, Dual	nodels 5.5 complete with Back Up, 7.625 complete Completion Tong
JAM System	includes but is not limite	d to JAM 2000 IS, LV-2, XP-1, J	AM Pro
JAM equipment	includes but is not limite	d to Load Cell, Turns counter, c	ables, dump valve, Remote Control Unit (RCU)
Stabbing Board	includes but is not limite	d to Rail Mounted Board, Cherry	y Picker style, Cage fitted to pipe handler.
Ancillary items	Thread Compounds, Ce	entralisers, Stop Collars, Cemen	Plugs, Darts, TDCH, Solvent, Rags
Tubular goods	Casing, Tubing, Sub As	semblies	
Relevant paperwork	WIS operations field rep	oorts, Job Tickets, Back Load Lis	ts, Customer specific reports and forms.
Preparatory work	place accessories on rig	floor, run hydraulic hoses, ensu	ure correct shackles available, obtain snub lines.
Safety Wire, Safety Slings	Includes retaining wire, whether load rated and		in wire, elevator bell guide slings, All securing wire
Policies, procedures and legislatio	n company and customer Health and Safety at wo		s, health and safety at work manuals, Occupationa

30" Tally		13-3	3/8 Deck Tally	
Joint No	Length	1		11.45
Shoe	11.63	2	11.58	
1	11.67	3	11.69	
2	11.68	4		11.61
3	11.69	5	11.45	
4	11.68	6		11.63
5	11.69	7		11.36
6	11.68	8		11.51
7	11.69	9	11.69	
8	11.69	10	11.65	
9	11.67	•	TOTAL	57.56
QJ Pin	11.56			
QJ Box	11.67			

- 6.06 Length of pipe below wellhead flange
- 0.36 Adjuster Nut (mid stroke)
- 3.72 effective length r/tool & pup joint above MLS land off point
- **10.14 TOTAL OF FIXED MEASUREMENTS**
- 19.19 TOP OF CONCUCTOR BELOW RIG FLOOR (Final Cut)
- 57.57 Length of 13-3/8 Casing required

Weatherford Australia Pty Ltd ACN 008 947 395 Level 1, 225 St Georges Terrace

PERTH W.A. 6000 PH: (08) 9212 4600 FAX: (08) 9226 4638

Tubular Running Services Job Report

Customer: ADA - 3D Attention: Neil Hensen

Prepared by: Ryan Ingram
Email: ingram80@hotmail.com

Rig / Installation:	West Triton
,	
Drilling Contractor:	Sea Drill
Company Rep's (D/N):	Shaughan Corless
	Rocco
Completion Eng (D/N) :	
Completion Eng (D/N) .	
	_
Job Description:	13 3/8" Casing
Well Name / No:	West Seahorse-3
Area / Permit / Lease :	Vic-P57
Arca / Terrine / Lease .	VIO 1 01
Weatherford Job No:	SP019/08
Job Date:	22 April 2008

Tubular Running Services Job Report

Personnel						
Name	Designation	Shift	Departed		Return	
Name	Designation	Silit	Base	Date	Base	Date
Ryan Ingram	CREW CHIEF	DAY	SALE	22/04/08	SALE	
Brendan Northway	CREW CHIEF	NIGHT	SALE	22/04/08	SALE	
Michael Northway	TONG OPERATOR	DAY	SALE	27/04/08	SALE	
Caine Page	TONG OPERATOR	FLEXI	SALE	27/04/08	SALE	
Ally Murray	TONG OPERATOR	DAY	SALE	27/04/08	SALE	

Main Equipment Items

Equipment Description	Serial Number
13 3/8" CMS-XL Hand Slips	702963
Clamp Master	223412
Safety Clamp- Dressed to 13 3/8" & 30":	261092
13 3/8" Single Joint Elevators	229409
13 3/8" Single Joint Elevators Stabberless	261825
4Cly Diesel Power Unit	228571
16K Power Tong	260905
500t ISIS Elevator Dressed 13 3/8"	849365
Varco FMS dressed 13 3/8"	259623
Stabmaster	261803
32" Torque Gauge	CR238
30" Baash Ross Bushings	225343
30" Hand Slips	232705
30" Petel Strap Tongs	29763 229765
30" Side door elevators	702420

Tubular Running Services Job Report

Tubular Running Services Information

TORQUE PARAMETERS

						F	Γ/LBS		Turns I	Program
Pipe No.	Size	Type	Weight ppf	Grade	Shoulder Torque	Minimum Torque	Optimum Torque	Maximum Torque	Min	Max
1	13 3/8	Buttress	69nnf	L 80			10,000			
1			68ppf	L 60			,			
2	30	D60/MT					30,000			
3										
4										
5										
6										

RUN / PULL COUNT

Pipe No	. Size	Туре	Weight	Grade	Examined	Accepted	Re-Ran	Rejected by JAM	Rejected Visually	Rejected on Pipe Rack
1	13 3/8	Buttress	68ppf	L 80	98	98	0	0	0	2
2	30	D60/MT	0.00	0	11	11	0	0	0	0
3	0	0	0.00	0			0	0	0	0
4	0	0	0.00	0						
5	0	0	0.00	0						
6	0	0	0.00	0						

DRIFT PARAMETERS

Pipe No.	Size.	Туре	Weight	Grade	Required Drift OD	Actual Drift OD	Special Drift
					ASAS	ASAS	ASAS
1	13 3/8	Buttress	68ppf	L 80	-	-	
2							
3	0	0	0.00	0			
4	0	0	0.00	0			
5	0	0	0.00	0			
6	0	0	0.00	0			

General Information 13 3/8" Casing

Pipe ran / pulled in: Singles Thread Compound: Jet Lube

Pipe Stabbed: Stabberless System Elevators: Free Swinging

Pipe Condition: OK Weather: Cold

Centralisation: Yes Thread Locking Compound: Weatherford Tube Lok

Comments:

TUBULAR RUNNING SERVICES JOB REPORT

Job Time Breakdown	
Job Started on: Thursday, 24 April 2008	Time: 12:00
Job Finished on: Thursday, 24 April 2008	Time: 22:50
Total Job Time: 10:50	Total Tubular Running Time: 5:05
Weatherford Down Time: 0:00	Non Weatherford Stoppages: 5:45
Average Jnts per Hour:	Non Conformances Reported During Job:

Comments

		reakdown			
Jate.	Thurse	lay, 24 April 2008	W/Ford	W/ford	Time to
=rom	To	Activity	Up Time	Down Time	Other
10111	.0	, tourny		Tillie	
			00:00		
12:00	12:30	Rig up JSA			00:30
2:30	13:00	Pick up shoe	00:30		
13:00	13:55	Run the first 3 connections	00:55		
3:55	14:20	Make up the MLS support	00:25		
4:20	15:05	Continue running in hole	00:45		04.05
5:05		Wait on rig to get through the CTU	04:40		01:05
6:10	17:50	. ,	01:40		04:40
7:50	22:00	Wait on cement job and casing cut	00.50		04:10
2:00	22:50	Break out landing string and rig down.	00:50		
0.00			00:00 00:00		
0:00			00.00		00:00
0:00					00.00
00:00					00:00
00:00			00:00		00.00
00:00			00.00		00:00
00:00			00:00		00.00
00:00			00.00		00:00
00:00			00:00		00.00
00:00			00.00		00:00
0.00			00:00		00.00
00:00			00.00		00:00
00:00			00:00		00.00
00:00			00.00		00:00
00:00			00:00		
			00:00		
			00:00 00:00		
	Friday	. 25 April 2008	00:00	W/ford	Time to
ate:	Friday To	. 25 April 2008 Activity		W/ford Down Time	Time to Other
ate: rom	-		00:00 W/Ford Up Time	Down	
oate: From 0:00	-		00:00 W/Ford Up Time	Down	
Date: From 00:00 00:00	-		00:00 W/Ford Up Time 00:00 00:00	Down	
Date: From 10:00 10:00 10:00	-		00:00 W/Ford Up Time 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:0	-		00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	

Job 7	ime Breakdown			
Date: From	Saturday, 26 April 2008 To Activity	W/Ford Up Time	W/ford Down Time	Time to Other
00:00		00:00		
00:00		00:00		
00:00 00:00		00:00 00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00 00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00 00:00		00:00 00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
Date:	Sunday, 27 April 2008	W/Ford	W/ford Down	Time to
From	To Activity	Up Time	Time	Other
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00 00:00		00:00 00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00 00:00		00:00 00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00 00:00		00:00 00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		

	ime Breakdown			
Date:	Monday, 28 April 2008	W/Ford	W/ford	Time to
From	To Activity	Up Time	Down Time	Other
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00 00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00		
00:00		00:00 00:00		
00:00		00:00		
			W/ford	
	Tuesday, 29 April 2008	W/Ford		Time to
From			Down	
	To Activity	Up Time	Down Time	Other
00:00	To Activity	Up Time 00:00		
00:00	To Activity	Up Time 00:00 00:00		
00:00 00:00	To Activity	00:00 00:00 00:00		
00:00 00:00 00:00	To Activity	00:00 00:00 00:00 00:00		
00:00 00:00 00:00	To Activity	00:00 00:00 00:00 00:00 00:00		
00:00 00:00 00:00 00:00	To Activity	Up Time 00:00 00:00 00:00 00:00 00:00 00:00		
00:00 00:00 00:00	To Activity	00:00 00:00 00:00 00:00 00:00		
00:00 00:00 00:00 00:00 00:00	To Activity	Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00		
00:00 00:00 00:00 00:00 00:00 00:00	To Activity	Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00		
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	To Activity	Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00		
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	To Activity	Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00		
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	To Activity	Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00		
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	To Activity	Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00		
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	To Activity	Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00		
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	To Activity	Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00		
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	To Activity	Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00		
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	To Activity	Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00		
00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	To Activity	Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00		

Job Time Breakdown

Date: Wednesday, 30 April 2008 From To Activity	W/Ford Up Time	W/ford Down Time	Time to Other
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		

TUBULAR RUNNING SERVICES JOB REPORT

Job Time Breakdown		
Job Started on: Monday, 28	3 April 2008	Time: 12:00
Job Finished on: Tuesday, 29	9 April 2008	Time: 6:00
Total Job Time: 18	8:05 Total Tubular Running Time	: 11:45
Weatherford Down Time: 0	0:00 Non Weatherford Stoppages	: 6:20
Average Jnts per Hour:	9.3 Non Conformances Reported During Job	:

Comments

Job 7	ime B	reakdown			
Date:	Monda	y, 28 April 2008	W/Ford	W/ford	Time to
From	То	Activity	Up Time	Down Time	Other
			00:00		
12:00	12:15	Rig up JSA	00.00		00:15
12:15	13:00	Begin Rigging up			00:45
13:00		Wait on rig to remove diverter ring			00:45
13:45	14:00	Finish rigging up			00:15
14:00	14:15	JSA to run casing			00:15
14:15		Wait on rig to pickup shoe and flow check			00:15
14:30	14:45	pick up float collar			00:15
14:45	14:55	Make up Float to shoe (Weatherfor tub loc)	0:20		
14:55		Make up first connection	00:20 02:40		
15:20 18:00		C.R.I.H Finish running centralisers C.R.I.H	02:40		
21:50		Stuck in hole circulating down.	03.50		00:30
22:20	1:35	C.R.I.H	03:15		00.00
01:35	2:00	Wait on MLS to get to the floor			00:25
02:00	2:05	Make up MLS	00:05		
02:05	2:30	Waiting on pipe			00:25
02:30	3:30	C.R.I.H	01:00		
03:30	5:30	Waiting on rig to change bails and pick up well head			02:00
05:30	5:45	Make up well head	00:15		00.45
05:45	6:00	Rig down	00.00		00:15
00:00			00:00		00:00
00:00			00:00		00.00
00:00			00.00		00:00
00:00			00:00		
			00:00		
			00:00		
00.00					
Date:	Tuesda	ay, 29 April 2008	W/Ford	W/ford	Time to
From	То	Activity	Up Time	Down Time	Other
	. •			Time	
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00 00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		

loh i	Timo P	brookdown			
OD I	IIIIe E	Breakdown			
Date: From	Wedne To		W/Ford Up Time	W/ford Down Time	Time to Other
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
0:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00 00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
JU:UU			00:00		
00:00					
00:00	Thurse		00:00 00:00 W/Ford	W/ford	Time to
0:00 Date:	Thurs o	day, 1 May 2008 Activity	00:00 00:00	W/ford Down Time	Time to Other
Oo:00 Date:			00:00 00:00 W/Ford	Down	
0:00 Date: From 0:00			00:00 00:00 W/Ford Up Time	Down	
Date: From 00:00 00:00			00:00 00:00 W/Ford Up Time	Down	
0:00 Date: From 0:00 0:00 0:00			00:00 00:00 W/Ford Up Time 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00	Down	
00:00 Date: From 00:00 00:00 00:00 00:00 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
00:00 Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
00:00 Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
00:00 Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	

~~ 5	ina D	voo kalo vuo			
OD I	ime B	reakdown			
Date: From	Friday To	, 2 May 2008 Activity	W/Ford Up Time	W/ford Down Time	Time to Other
00:00			00:00		
00:00			00:00		
00:00			00:00		
00:00			00:00		
0:00			00:00		
0:00			00:00		
0:00			00:00		
0:00			00:00		
0:00			00:00 00:00		
0:00			00:00		
0:00			00:00		
00:00			00:00		
00:00			00:00		
0:00			00:00		
0:00			00:00		
0:00			00:00		
0:00			00:00		
0:00			00:00		
		ay, 3 May 2008	00:00 00:00 W/Ford	W/ford Down	Time to
0:00 Date:	Saturd To	ay, 3 May 2008 Activity	00:00 00:00		Time to Other
o:00 Date:			00:00 00:00 W/Ford	Down	
0:00 Date: From			00:00 00:00 W/Ford Up Time	Down	
0:00 Date: From 0:00 0:00 0:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00	Down	
0:00 Date: From 0:00 0:00 0:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00	Down	
0:00 Date: From 0:00 0:00 0:00 0:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00	Down	
0:00 Date: From 0:00 0:00 0:00 0:00 0:00 0:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
0:00 Date: From 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
0:00 Date: From 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
0:00 Date: From 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
0:00 Date: From 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
00:00 Date: From 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00			00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
Date: From 00:00			00:00 00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
0:00 Date: From 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0			00:00 00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
0:00 Date: From 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:			00:00 00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	
00:00			00:00 00:00 00:00 W/Ford Up Time 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00	Down	

Date: Sunday, 4 May 2008 From To Activity	W/Ford Up Time	W/ford Down Time	Time to Other
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		
00:00	00:00		

West Seahorse-3 13 3/8" CASING TALLY

	C	asing Data				Wo	ll Data
Sizo		in			Base CTU	22.4	
Size Grade	N80	111			Mudline	77.5	
Weight	101	1- ~ /	Dynast	5020:	17.5" TD		
Calipered ID	12.415	kg/m in		5020 psi 12.415 in	17.5 1D	1123.0	
M/U Loss	0.12	·		12.259 in	Rathole	6.2	m
Thread		m	שוו ווט	12.239 III	Kamole	0.2	III
Internal Capacity	BTC 0.4912	bbl/m					
micrial Capacity	0.4912	DOI/III					
Joint Number	Meas. Length (ft)	Effective Length (ft)	Depth - Top of Joint (ft)	Depth - Bottom of Joint (ft)	Running Depth	Capacity bbls	Comments
Wellhead (above hang off point)	1.50	1.50	17.76	19.26	1099.06		
Wellhead (below hang off point)	1.24	1.24	19.26	20.50	1097.56		Land off point on 30"at 19.20mRT
X/O	4.45	4.45	20.50	24.95	1096.32		
PUP	1.50	1.500	24.95	26.45	1091.87	536.36	
1	11.24	11.240	26.45	37.69	1090.37	535.63	
4	11.34	11.340	37.69	49.03	1079.13	530.11	
5	11.62	11.620	49.03	60.65	1067.79	524.54	
6	11.34	11.340	60.65	71.99	1056.17	518.83	
7	11.24	11.240	71.99	83.23	1044.83	513.26	
Upper MLS	3.72	3.72	83.23	86.95	1033.59	507.74	
Lower MLS	3.17	3.17	86.95	90.12	1029.87	505.91	MLS hang-off at 86.95m
9	10.91	10.91	90.12	101.03	1026.70	504.35	<u> </u>
10	11.30	11.30	101.03	112.33	1015.79	498.99	Centraliser
11	11.56	11.56	112.33	123.89	1004.49	493.44	Centraliser
12	11.24	11.24	123.89	135.13	992.93	487.76	
13	11.59	11.59	135.13	146.72	981.69	482.24	
14	11.43	11.43	146.72	158.15	970.10	476.55	
15	11.76	11.76	158.15	169.91	958.67	470.93	
16	11.31	11.31	169.91	181.22	946.91	465.16	
17	11.55	11.55	181.22	192.77	935.60	459.60	
18	11.62	11.62	192.77	204.39	924.05	453.93	
19	11.45	11.45	204.39	215.84	912.43	448.22	
20	11.70	11.70	215.84	227.54	900.98	442.59	
21	11.57	11.57	227.54	239.11	889.28	436.85	
22	11.66	11.66	239.11	250.77	877.71	431.16	
23	11.32	11.32	250.77	262.09	866.05	425.43	
24	11.10	11.10	262.09	273.19	854.73	419.87	
25	11.07	11.07	273.19	284.26	843.63	414.42	
26	11.80	11.80	284.26	296.06	832.56	408.98	
27	11.57	11.57	296.06	307.63	820.76	403.19	
28	11.27	11.27	307.63	318.90	809.19	397.50	
29	11.50	11.50	318.90	330.40	797.92	391.97	
30	11.57	11.57	330.40	341.97	786.42	386.32	
31	11.45	11.45	341.97	353.42	774.85	380.63	
32	11.68	11.68	353.42	365.10	763.40	375.01	
33	11.65	11.65	365.10	376.75	751.72	369.27	
34	11.08	11.08	376.75	387.83	740.07	363.55	
35	11.58	11.58	387.83	399.41	728.99	358.11	
36	11.27	11.27	399.41	410.68	717.41	352.42	
37	11.20	11.20	410.68	421.88	706.14	346.88	
38	11.50	11.50	421.88	433.38	694.94	341.38	
40	11.34	11.34	433.38	444.72	683.44	335.73	
41	11.57	11.57	444.72	456.29	672.10	330.16	
42	11.70	11.70	456.29	467.99	660.53	324.48	
43	11.42	11.42	467.99	479.41	648.83	318.73	
44	11.55	11.55	479.41	490.96	637.41	313.12	
45	11.69	11.69	490.96	502.65	625.86	307.44	
46	11.12	11.12	502.65	513.77	614.17	301.70	
47	11.36	11.36	513.77	525.13	603.05	296.24	
48	10.81	10.81	525.13	535.94	591.69	290.66	
49	11.73	11.73	535.94	547.67	580.88	285.35	

Joint Number	Meas. Length (ft)	Effective Length (ft)	Depth - Top of Joint (ft)	Depth - Bottom of Joint (ft)	Running Depth	Capacity bbls	Comments
50	11.77	11.77	547.67	559.44	569.15	279.59	
51	11.49	11.49	559.44	570.93	557.38	273.80	
52	11.49	11.49	570.93	582.42	545.89	268.16	
53	11.80	11.80	582.42	594.22	534.40	262.52	
54	11.68	11.68	594.22	605.90	522.60	256.72	
55	11.34	11.34	605.90	617.24	510.92	250.98	
56	10.29	10.29	617.24	627.53	499.58	245.41	
57	11.39	11.39	627.53	638.92	489.29	240.36	
58	10.84	10.84	638.92	649.76	477.90	234.76	
59	11.22	11.22	649.76	660.98	467.06	229.44	
60	11.67	11.67	660.98	672.65	455.84	223.92	
61	11.07	11.07	672.65	683.72	444.17	218.19	
62	11.02	11.02	683.72	694.74	433.10	212.75	
63	11.52	11.52	694.74	706.26	422.08	207.34	
64	11.27	11.27	706.26	717.53	410.56	201.68	
65	11.57	11.57	717.53	729.10	399.29	196.15	
66	11.30	11.30	729.10	740.40	387.72	190.46	
67	11.69	11.69	740.40	752.09	376.42	184.91	
68	11.32	11.32	752.09	763.41	364.73	179.17	
69	11.51	11.51	763.41	774.92	353.41	173.61	
70	11.21	11.21	774.92	786.13	341.90	167.95	
71	11.61	11.61	786.13	797.74	330.69	162.45	
72	11.51	11.51	797.74	809.25	319.08	156.74	
73 74	11.09	11.09	809.25	820.34	307.57	151.09	
75	11.53	11.53	820.34	831.87	296.48	145.64	
76	10.96 11.30	10.96 11.30	831.87 842.83	842.83 854.13	284.95 273.99	139.98 134.59	
77							
	10.95	10.95	854.13 865.08	865.08	262.69	129.04	
78	11.70	11.70		876.78	251.74	123.66	
79	11.39	11.39	876.78	888.17	240.04	117.92	
80	11.47	11.47	888.17	899.64	228.65	112.32	C 1'
81	11.17	11.17	899.64	910.81	217.18	106.69	Centraliser
82	11.62	11.62	910.81	922.43	206.01	101.20	Centraliser
83	11.51	11.51	922.43	933.94	194.39	95.49	Centraliser
84	11.63	11.63	933.94	945.57	182.88	89.84	Centraliser
85	11.32	11.32	945.57	956.89	171.25	84.12	Centraliser
86	11.21	11.21	956.89	968.10	159.93	78.56	Centraliser
87	11.58	11.58	968.10	979.68	148.72	73.06	Centraliser
88	11.63	11.63	979.68	991.31	137.14	67.37	Centraliser
89	11.44	11.44	991.31	1002.75	125.51	61.65	Centraliser
90	10.88	10.88	1002.75	1013.63	114.07	56.04	Centraliser
91	11.57	11.57	1013.63	1025.20	103.19	50.69	Centraliser
92	11.08	11.08	1025.20	1036.28	91.62	45.01	Centraliser
93	11.75	11.75	1036.28	1048.03	80.54	39.56	Centraliser
94	11.36	11.36	1048.03	1059.39	68.79	33.79	Centraliser
95	10.88	10.88	1059.39	1070.27	57.43	28.21	Centraliser
96	11.48	11.48	1070.27	1081.75	46.55	22.87	Centraliser
97	11.37	11.37	1081.75	1093.12	35.07	17.23	Centraliser
Float Jt 'A'	11.50	11.50	1093.12	1104.62	23.70	11.64	Two centralisers
Shoe Jt 'A'	12.20	12.20	1104.62	1116.82	12.20	5.99	Two centralisers

Attachment 5

Cementing Report

Australian Drilling Associates

Level 5, Rialto North Tower 525 Collins St Melbourne, Victoria, 3000

West Seahorse 3 Post Job Report

Prepared for Rajiv Tikkoo Thursday, 15 April 2010

Submitted by Andrew Stobie/Premkumar Salibendla

Halliburton Australia Pty Ltd 90 Talinga Rd, Cheltenham, VIC, 3192 Ph: 03 9581 7536 Fax: 03 9581 7599

90 Talinga Road Cheltenham, Vic 3192 Tel: +61 3 9583 7500 Fax: +61 3 9583 7599

Thursday, 15 April 2010

Rajiv Tikkoo Australian Drilling Associates Level 5, Rialto North Tower 525 Collins St Melbourne, Victoria, 3000

Rajiv,

Re: West Seahorse 3

Included for your review is a copy of the Post Job Report of the West Seahorse 3 cementing operations. The PJR includes the programs, job logs, and lab reports.

I trust this PJR meets the requirements of ADA and with insight and reflection provides sufficient detail for future reference.

Yours sincerely,

Andrew Stobie Technical Professional

&

Prem kumar Salibendla Technical Professional

Cementing Page 2 of 42 April 15, 2010

Table of Contents

1.0	SUN	MMARY OF OPERATIONS	4
	1.1	LESSONS LEARNT	4
2.0	CEN	MENT PROGRAMS	5
	2.1	SCHEMATIC	6
	2.2	30 INCH CASING DETAIL	7
		2.2.1 30in Casing Job Procedure	9
	2.3	13 3/8 INCH CASING DETAILS	10
		2.3.1 13 3/8in casing Job Procedure	13
	2.4	PLUG #1A DETAILS	14
		2.4.1 Plug #1A Job Procedure	16
	2.5	PLUG #1B DETAILS	17
		2.5.1 Plug #1B Job Procedure	19
	2.6	PLUG # 2 DETAILS	20
		2.6.1 Plug #2 Job Procedure	22
	2.7	PLUG # 3 DETAILS	23
		2.7.1 Plug #3 Job Procedure	25
3.0	LAB	REPORTS	26
4.0	JOB	SSUMMARY, EJCS, JOB LOGS	29
	4.1	30 INCH CONDUCTOR CASING	29
		4.1.1 Job Summary	29
		4.1.2 Job Logs	30
		4.1.3 KPI & EJCS	31
	4.2	13 3/8" SSR CASING	32
		4.2.1 Job Summary	32
		4.2.2 JOB LOGS	34
		4.2.3 KPI & EJCS	35
		4.2.4 Pumping Chart	36
	4.3	P&A PLUGS	37
		4.3.1 KPI&EJCS	37
		4.3.2 SUMMARY	38
		4.3.3 JOB LOGS	39
		434 PHIMPING CHARTS	40

1.0 Summary of operations

Cementation on West Seahorse#3 well was completed as follows

- 30" Conductor casing was cemented on the 25th of April 2008
- 13 3/8" Surface Casing was cemented on the 29th of April 2008
- Plug and abandonment of the well was completed on the 7th May 2008.

1.1 Lessons Learnt

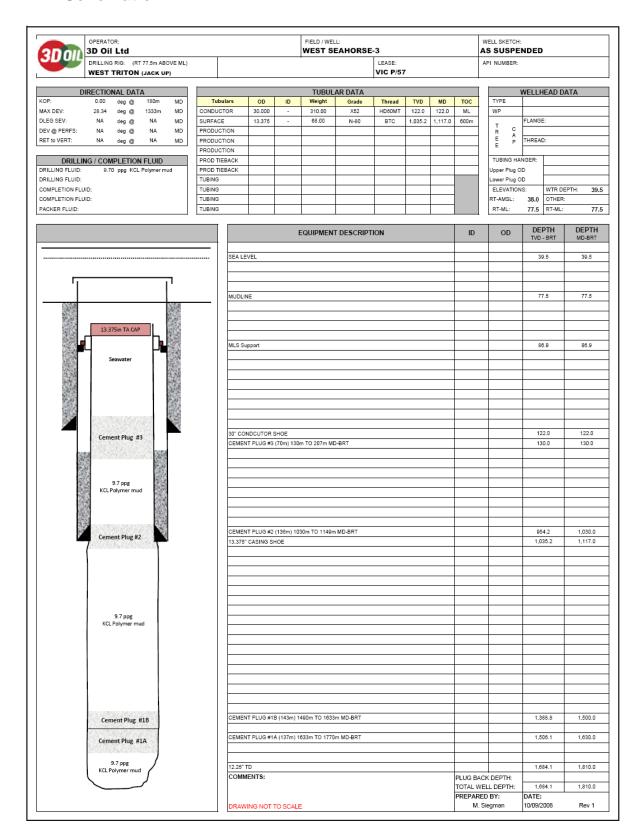
SSR plugset didn't not work as designed. Releasing pressures were not definitively witnessed. Top plug pressure was recorded on the Martin Decker but not the digital recorder. Weight on BHA, cement returns when running to bottom and long drill out times are also additional problems witnessed with this job. Going forward the following items have been addressed

- Bottom plug off SSR set has been removed
- Diameters of balls we had offshore have been confirmed as correct
- Dart has been confirmed as correct
- The recording frequency of the on board computer is one sample per second. This is the highest sample rate. During the job the sample rate must be set lower in order to record the whole job. When a laptop computer is connected it records at one sample per second in real time. The sensitivity can be modified to display 5 readings per second.
- Operators need to set the correct date and time to allow for easier cross referencing of data after the event.
- The dart should be landed with less that 1bpm rate. It took a higher rate to actually launch the dart out of the head. This rate was then maintained (>6bpm) so it was hard/impossible to see the shear pressure on the digital recorder
- Chase up rig for dims and inspect landing string components for irregularities.

Cementing Page 4 of 42 April 15, 2010

2.0 Cement Programs

The following program illustrates the cementation of 30in and 13 3/8in casings on West Seahorse-3 followed by P&A program.


Revision History

Revision 4

21st December 2007 28th February 2008 16th April 2008 Draft 1 Initial program Revision 1 Changed Casing depths Revision 2 SSR plug shear pressures and Sugar pill recipe is add 22nd of April 2008 Revision 3 Removed sugar pill. Don't open ports at MSL on 13 3/8" job. Reduce TOC on 13 3/8" to 600m. Reduce TOC on 9 5/8" Job to 1300m. 24th of April 2008 Fluid loss control additive removed from the tail on the 13 3/8" CSG

Page 5 of 42 April 15, 2010 Cementing

2.1 Schematic

Cementing Page 6 of 42 April 15, 2010

2.2 30 inch Casing Detail

JOB PARAMETERS

Casing measured depth: 122m BHST temperature: 20°C

True vertical depth: 122m BHCT temperature: 17°C

Depth to top cement: 78m Drilling mud type: SW&HVBS

Drilling mud density: 8.60ppg

WELLBORE

Casing/Tubing (Inner string job)

0-122m 5 1/2in 24.7ppf Tubing

0-120m 30in 309.7ppf Casing (X-52 D60/MT)

120-122m 20in 169ppf Casing

Annulus

0-78m RKB-ML

78-122m 36in open hole (200% excess)

SPACERS

Spacer #1 - 100.0bbl Seawater at 8.55ppg

Seawater 42.00 gal/bbl (12m OH annular fill / 13min contact time)

Spacer #2 - 20.0bbl Seawater + Dye at 8.57ppg

Seawater 41.98 gal/bbl (2m OH annular fill / 3min contact time)

Fluorescein Dye 0.20 lb/bbl

Contact times are based on the displacement rate.

CEMENT

Composition		Properties	
Adelaide Brighton Class G		Surface density:	15.90 ppg
Calcium Chloride 1%	1.00 %BWOC	Surface yield:	1.17 ft ³ /sk
Seawater	5.16 gal/sk	Total mixing fluid:	5.20 gal/sk

NF-6	0.25 gal/10bblMF	Thickening time (70 Bc):	3:30
		Free water vert at 17°C:	<1 %
		Comp strength at 19°C	50 psi in 4 hrs
		Comp strength at 19°C	500 psi in 6 hrs
		Comp strength at 19°C	2,000 psi in 24 hrs

Note that %BWOC are based on a 94 lb sack

VOLUME CALCULATIONS		
Cement		
30in Casing / 36in hole volume	42 m x 1.2620 bbl/m	53.0 bbl
30in Casing / 36in hole excess	2.00 x 53.0 bbl	106.0 bbl
20in Casing / 36in hole volume	2 m x 2.8555 bbl/m	5.7 bbl
20in Casing / 36in hole excess	2.00 x 5.7 bbl	11.4 bbl
	Total slurry volume	=176.2 bbl
	Total slurry volume	=176.2 bbl
Quantity of cement	<i>Total slurry volume</i> 176.2 bbl x 5.6146 / 1.17 ft ³ /sk	=176.2 bbl 845 sks
Quantity of cement Quantity of mix fluid		
•	176.2 bbl x 5.6146 / 1.17 ft ³ /sk	845 sks
•	176.2 bbl x 5.6146 / 1.17 ft ³ /sk	845 sks

Total displacement volume =8.5 bbl

PUMPING SCHEDULE & TIMES			
	Volume	Rate	Time
	(bbl)	(bbl/min)	(min)
Make up lines & pressure test:	N/A	N/A	30
Circulate 1.5 x Casing volume:	12.8	10.0	1
Pump spacers:	120.0	10.0	12
Mix & pump cement:	176.2	6.0	29
Release dart/top plug:	N/A	N/A	5
Pump displacement:	8.5	8.0	1

Total job time (including circulation): 78 min 1hr 18min

Minimum cement thickening time (with 2hr safety factor): 155 min 2hr 35min

MINIMUM MATERIAL REQUIREMENTS (Double for loadout)

Spacer #1 - Seawater

Seawater 100 bbl

Spacer #2 - Seawater + Dye

Seawater 20 bbl

Fluorescein Dye 4 lb

Cement

Adelaide Brighton Class G 36 MT(844 ft³)

Calcium Chloride 1% 794 lbs

Seawater 103.8 bbl

NF-6 3 gals

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance.

2.2.1 30in Casing Job Procedure

- 1) Run 30" casing to TD with innerstring pipe.
- 2) Rig up surface equipment including a releasing tool for the latch in dart if one is required
- 3) Rig up surface equipment
- 4) Establish circulation
- 5) Test lines to 3000psi
- 6) Pump 100bbls Seawater
- 7) Pump 20bbls Seawater with Fluorescine Dye
- 8) Mix and pumped 343bbls of 15.9ppg cement or until returns are evident on the seafloor
- 9) Drop top plug/latch in plug if one is being used
- 10) Displace with 8bbls of MUD
- 11) Slow pump rate down and bump plug 500psi over and hold for 10mins. Bleed back and check floats

2.3 13 3/8 inch Casing Details

JOB PARAMETERS

Casing measured depth: 1,117m BHST temperature: 55°C

True vertical depth: 1,035m BHCT temperature: 38°C

Depth to top lead: 600m Drilling mud type: EZ-MUD

Depth to top tail: 1,000m Drilling mud density: 9.60ppg

WELLBORE

Casing/Tubing

0-1,117m 13 3/8in 68ppf Casing (N-80 BTC)

Annulus

0-122m 20in 169ppf casing (18.376in ID)

122-1,000m 17.5in open hole (10% excess)

1,000-1,117m 17.5in open hole (10% excess)

SPACERS

Spacer #1 - 70.0bbl Seawater at 8.55ppg

Seawater 42.00 gal/bbl (157m OH annular fill / 9min contact time)

Spacer #2 - 30.0bbl Tuned Spacer E+ at 11.00ppg

Freshwater 37.31 gal/bbl (67m OH annular fill / 4min contact time)

Tuned Spacer 16.80 lb/bbl

Barite 133.78 lb/bbl

Contact times are based on the displacement rate.

LEAD CEMENT

Composition		Properties	
Adelaide Brighton Class G		Surface density:	12.50 ppg
Econolite Liquid	15.00 gal/10bblMF	Surface yield:	2.19 ft ³ /sk
Seawater	12.41 gal/sk	Total mixing fluid:	12.88 gal/sk

Cementing Page 10 of 42 April 15, 2010

NF-6	0.25 gal/10bblMF	Thickening time (70 Bc):	6:30
		Free water dev at 38°C:	Trace %
		Comp strength at 38°C:	50 psi in 8 hrs
		Comp strength at 38°C:	500 psi in 24 hrs

TAIL CEMENT			
Composition		Properties	
Adelaide Brighton Class G		Surface density:	15.80 ppg
CFR-3L	3.00 gal/10bblMF	Surface yield:	1.16 ft ³ /sk
SCR-100L	1.00 gal/10bblMF	Total mixing fluid:	5.12 gal/sk
Freshwater	5.06 gal/sk	Thickening time (70 Bc):	4:30
NF-6	0.25 gal/10bblMF	Free water vert at 38°C:	Trace %
		Fluid loss at 38°C:	<100 cc/30min
		Comp strength at 49°C	50 psi in 5 hrs
		Comp strength at 49°C	500 psi in 7 hrs
		Comp strength at 49°C	2,000 psi in 24 hrs

VOLUME CALCULATIONS Lead Cement 13 3/8in Casing / 17.5in hole volume 400 m x 0.4059 bbl/m 162.4 bbl 13 3/8in Casing / 17.5in hole excess 0.10 x 162.4 bbl 16.2 bbl Total lead slurry volume =178.6 bbl Quantity of lead cement 178.6 bbl x 5.6146 / 2.19 ft³/sk 458 sacks Quantity of lead mix fluid 458 sacks x 12.88 gal/sk 140.5 bbl **Tail Cement** 13 3/8in Casing / 17.5in hole volume 117 m x 0.4059 bbl/m 47.5 bbl 13 3/8in Casing / 17.5in hole excess 0.10 x 47.5 bbl 4.7 bbl Shoe track volume 12 m x 0.4912 bbl/m 5.9 bbl Total tail slurry volume =58.1 bbl

Cementing Page 11 of 42 April 15, 2010

Quantity of tail cement	58.1 bbl x 5.6146 / 1.16 ft ³ /sk	281 sks
-------------------------	--	---------

Quantity of tail mix fluid 281 sks x 5.12 gal/sk 34.3 bbl

Displacement

13 3/8in Casing volume 1,105 m x 0.4912 bbl/m 542.8 bbl

Total displacement volume =542.8 bbl

PUMPING SCHEDULE & TIMES

	Volume	Rate	Time
	(bbl)	(bbl/min)	(min)
Make up lines & pressure test:	N/A	N/A	30
Circulate 1.5 x Casing volume:	823.0	10.0	82
Pump spacers:	100.0	10.0	10
Mix & pump lead cement:	178.6	6.0	30
Mix & pump tail cement:	58.1	5.0	12
Release dart/top plug:	N/A	N/A	5
Pump displacement:	542.8	8.0	68

Total job time (including circulation): 237 min 3hr 57min

Minimum lead cement thickening time (with 2hr safety factor): 235 min 3hr 55min

Minimum tail cement thickening time (with 2hr safety factor): 205 min 3hr 25min

MINIMUM MATERIAL REQUIREMENTS (Double for loadout)

Spacer #1 - Seawater

Seawater 70 bbl

Spacer #2 - Tuned Spacer E+

Freshwater 26.6 bbl

Tuned Spacer 504 lb

Barite 4,013 lb

Lead Cement

Adelaide Brighton Class G 20 MT(469 ft³)

Econolite Liquid 211 gals

Seawater 135.3 bbl

NF-6 4 gals

Tail Cement

Adelaide Brighton Class G 12 MT(281 ft³)

CFR-3L 10 gals

SCR-100L 3 gals

Freshwater 33.9 bbl

NF-6 1 gals

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance.

2.3.1 13 3/8in casing Job Procedure

- 1) Establish circulation
- 2) Test lines to 3000psi
- 3) Pump 70bbls Seawater
- 4) Pump 30bbls of Tuned Spacer E+
- 5) Drop weighted plastic ball to lands on a seal in the bottom plug ID.
- Apply 1100 ± 500 psi to shear the pins and releases bottom plug. (Apply 1550 ± 500 psi to by pass the bottom plug when it lands on the collar
- 7) Pumped 200bbls of Lead cement
- 8) Pumped 60bbls of Tail cement
- 9) Drop releasing dart on the releasing sleeve and apply about 2500 ± 500 psi to release the top plug.
- 10) Pump 10bbls of fresh water
- 11) Displace with 542bbls of mud. Use calliper volumes if possible
- 12) Slow pump rate down for final 10bbls. Bump plug 500psi over and hold for 10mins. Bleed back and check floats
- 13) End job

2.4 Plug #1A Details

Plug Details - 12.25in hole

JOB	PAR	AME'	TERS

Plug bottom MD: 1,770m BHST temperature: 71°C

Plug bottom TVD: 1,618m BHCT temperature: 57°C

Plug top MD: 1,633m Drilling mud type: KCL Polymer Mud

Plug length: 137m Drilling mud density: 9.70ppg

Plug length with DP in: 141m

WELLBORE

Workstring

0-1,770m 4in 14ppf tubing

Annulus

0-1,117m 13 3/8in 68ppf casing (12.415in ID)

1,117-1,770m 12.25in open hole (15% excess)

SPACERS

Spacer - Freshwater at 8.33ppg

Freshwater 42.00 gal/bbl 20.0bbl ahead and 1.4bbl behind to balance

(35m annular fill / 3min contact time)

Contact times are based on the displacement rate.

CEMENT SLURRY

Composition		Properties	
Adelaide Brighton Class G		Surface density:	15.80 ppg
SCR-100L	2.00 gal/10bblMF	Surface yield:	1.16 ft ³ /sk
CFR-3L	3.00 gal/10bblMF	Total mixing fluid:	5.12 gal/sk
Freshwater	5.05 gal/sk	Thickening time (70 Bc):	4:00
NF-6	0.125 gal/10bblMF	Free water vert at 57°C:	trace %

Comp strength at 66°C	50 psi in 4:30 hrs
Comp strength at 66°C	500 psi in 6:00 hrs
Comp strength at 66°C	2,500 psi in 24 hrs

VOLUME CALCULATIONS		
Cement		
12.25in hole volume	137 m x 0.4782 bbl/m	65.5 bbl
12.25in hole excess	0.15 x 65.5 bbl	9.8 bbl
	Slurry volume	=75.4 bbl
Quantity of cement	75.4 bbl x 5.6146 / 1.16 ft ³ /sk	365 sacks
Quantity of mix fluid	365 sacks x 5.12 gal/sk	44.5 bbl
Displacement		
4in tubing volume	1,589 m x 0.0356 bbl/m	56.5 bbl

Total displacement volume =56.5 bbl

PUMPING SCHEDULE & TIMES				
	Volume	Rate	Time	
	(bbl)	(bbl/min)	(min)	
Make up lines & pressure test:	N/A	N/A	30	
Circulate 1 x bottoms up:	817.6	6.0	136	
Pump spacers ahead:	20.0	6.0	3	
Mix & pump cement:	75.4	5.0	15	
Drop wiper ball:	N/A	N/A	5	
Pump spacers behind:	1.4	6.0	0	
Pump displacement:	56.5	6.0	9	
Pull workstring 27 m above TOC:	164m	9.0m/min	18	
Circulate workstring clean:	57.0	6.0	10	
	Total job time (includi	ng circulation):	226 min	3hr 46min

Cementing Page 15 of 42 April 15, 2010

177 min

2hr 57min

Minimum cement thickening time (with 2hr safety factor):

MINIMUM MATERIAL REQUIREMENTS (Double for loadout)

Spacer - Freshwater

Freshwater 21.4 bbl

Cement

Adelaide Brighton Class G 16 MT(375 ft³)

SCR-100L 9 gals

CFR-3L 13 gals

Freshwater 43.9 bbl

NF-6 1 gals

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance.

2.4.1 Plug #1A Job Procedure

- 1) RIH with 4" drill pipe
- 2) Rig up surface lines, circulate hole to clean fluid
- 3) Establish circulation by pumping 10bbl Fresh water
- 4) Pressure test lines to 2000psi
- 5) Pump 10bbls freshwater
- 6) Pumped 74bbls of 15.8ppg slurry
- 7) Pump 2bbls of freshwater behind to balance
- 8) Displace with 102bbls of well fluid
- 9) POOH slowly one stand above top of plug. Reverse circulate 2 tubing volumes clean

2.5 Plug #1B Details

Plug Details - 12.25in hole

JOB PARAMETERS			
Plug bottom MD:	1,633m	BHST temperature:	71°C
Plug bottom TVD:	1,503m	BHCT temperature:	57°C
Plug top MD:	1,490m	Drilling mud type:	KCL Polymer Mud
Plug length:	143m	Drilling mud density:	9.70ppg

WELLBORE

Plug length with DP in:

Workstring

0-1,633m 4in 14ppf tubing

Annulus

0-1,117m 13 3/8in 68ppf casing (12.415in ID)

147m

1,117-1,633m 12.25in open hole (15% excess)

SPACERS

Spacer - Freshwater at 8.33ppg

Freshwater 42.00 gal/bbl 20.0bbl ahead and 1.4bbl behind to balance

(35m annular fill / 3min contact time)

Contact times are based on the displacement rate.

CEMENT SLURRY			
Composition		Properties	
Adelaide Brighton Class G		Surface density:	15.80 ppg
SCR-100L	2.00 gal/10bblMF	Surface yield:	1.16 ft ³ /sk
CFR-3L	3.00 gal/10bblMF	Total mixing fluid:	5.12 gal/sk
Freshwater	5.05 gal/sk	Thickening time (70 Bc):	4:00
NF-6	0.125 gal/10bblMF	Free water vert at 57°C:	trace %

Cementing Page 17 of 42 April 15, 2010

Comp strength at 66°C	50 psi in 4:30 hrs
Comp strength at 66°C	500 psi in 6:00 hrs
Comp strength at 66°C	2,500 psi in 24 hrs

Total displacement volume =51.4 bbl

VOLUME CALCULATIONS		
Cement		
12.25in hole volume	143 m x 0.4782 bbl/m	68.4 bbl
12.25in hole excess	0.15 x 68.4 bbl	10.3 bbl
	Slurry volume	=78.7 bbl
Quantity of cement	78.7 bbl x 5.6146 / 1.16 ft ³ /sk	381 sacks
Quantity of mix fluid	381 sacks x 5.12 gal/sk	46.5 bbl
Dignlacement		
Displacement		

PUMPING SCHEDULE & TIMES

	Volume	Rate	Time
	(bbl)	(bbl/min)	(min)
Make up lines & pressure test:	N/A	N/A	30
Circulate 1 x bottoms up:	749.2	6.0	125
Pump spacers ahead:	20.0	6.0	3
Mix & pump cement:	78.7	5.0	16
Drop wiper ball:	N/A	N/A	5
Pump spacers behind:	1.4	6.0	0
Pump displacement:	51.4	6.0	9
Pull workstring 27 m above TOC:	170m	9.0m/min	19
Circulate workstring clean:	52.0	6.0	9

Total job time (including circulation): 216 min 3hr 36min

Minimum cement thickening time (with 2hr safety factor): 178 min 2hr 58min

Cementing Page 18 of 42 April 15, 2010

MINIMUM MATERIAL REQUIREMENTS (Double for loadout)

Spacer - Freshwater

Freshwater 21.4 bbl

Cement

Adelaide Brighton Class G 16 MT(375 ft³)

SCR-100L 9 gals

CFR-3L 14 gals

Freshwater 45.9 bbl

NF-6 1 gals

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance.

2.5.1 Plug #1B Job Procedure

- 1) RIH with 4" drill pipe
- 2) Rig up surface lines, circulate hole to clean fluid
- 3) Establish circulation by pumping 10bbl Fresh water
- 4) Pressure test lines to 2000psi
- 5) Pump 10bbls freshwater
- 6) Pump 78bbls of 15.8ppg slurry
- 7) Pump 2bbls of freshwater behind to balance
- 8) Displace with 90bbls of well fluid
- 9) POOH slowly one stand above top of plug. Reverse circulate 2 tubing volumes clean

2.6 Plug # 2 Details

Plug Details - 13 3/8in casing x 12.25in hole

J	OB	PA	RA	M	ET	EI	RS

Plug bottom MD: 1,149m BHST temperature: 56°C

Plug bottom TVD: 1,046m BHCT temperature: 45°C

Plug top MD: 1,030m Drilling mud type: KCL Polymer Mud

Plug length: 119m Drilling mud density: 9.70ppg

Plug length with DP in: 123m

WELLBORE

Workstring

0-1,149m 4in 14ppf tubing

Annulus

0-1,117m 13 3/8in 68ppf casing (12.415in ID)

1,117-1,149m 12.25in open hole (15% excess)

SPACERS

Spacer - Freshwater at 8.33ppg

Freshwater 42.00 gal/bbl 20.0bbl ahead and 1.6bbl behind to balance

(35m annular fill / 3min contact time)

Contact times are based on the displacement rate.

CEMENT SLURRY

Composition		Properties	
Adelaide Brighton Class G		Surface density:	15.80 ppg
SCR-100L	1.00 gal/10bblMF	Surface yield:	1.16 ft ³ /sk
CFR-3L	3.00 gal/10bblMF	Total mixing fluid:	5.12 gal/sk
Freshwater	5.07 gal/sk	Thickening time (70 Bc):	6:43
NF-6	0.125 gal/10bblMF	Free water vert at 45°C:	trace %
		Comp strength at 52°C	50 psi in 4:30 hrs

Comp strength at 52°C	500 psi in 6:00 hrs

Comp strength at 52°C 2,500 psi in 24 hrs

VOLUME CALCULATIONS		
Cement		
13 3/8in casing volume	87 m x 0.4912 bbl/m	42.7 bbl
12.25in hole volume	32 m x 0.4782 bbl/m	15.3 bbl
12.25in hole excess	0.15 x 15.3 bbl	2.3 bbl
	Slurry volume	=60.3 bbl
Quantity of cement	60.3 bbl x 5.6146 / 1.16 ft ³ /sk	292 sacks
Quantity of mix fluid	292 sacks x 5.12 gal/sk	35.6 bbl
Displacement		
4in tubing volume	981 m x 0.0356 bbl/m	34.9 bbl

Total displacement volume =34.9 bbl

165 min

2hr 45min

PUMPING SCHEDULE & TIMES				
	Volume	Rate	Time	
	(bbl)	(bbl/min)	(min)	
Make up lines & pressure test:	N/A	N/A	30	
Circulate 1 x bottoms up:	507.7	6.0	85	
Pump spacers ahead:	20.0	6.0	3	
Mix & pump cement:	60.3	5.0	12	
Drop wiper ball:	N/A	N/A	5	
Pump spacers behind:	1.6	6.0	0	
Pump displacement:	34.9	6.0	6	
Pull workstring 27 m above TOC:	146m	9.0m/min	16	
Circulate workstring clean:	36.0	6.0	6	
	Total job time (includi	ng circulation):	163 min	2hr 43min

Minimum cement thickening time (with 2hr safety factor):

MINIMUM MATERIAL REQUIREMENTS (Double for loadout)

Spacer - Freshwater

Freshwater 21.6 bbl

Cement

Adelaide Brighton Class G 12 MT(281 ft³)

SCR-100L 4 gals

CFR-3L 11 gals

Freshwater 35.2 bbl

NF-6 1 gals

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance.

2.6.1 Plug #2 Job Procedure

- 1) RIH with 4" drill pipe
- 2) Rig up surface lines, circulate hole to clean fluid
- 3) Establish circulation by pumping 10bbl sea water
- 4) Pressure test lines to 2000psi
- 5) Pump 10bbls sea water
- 6) Pumped 65bbls of 15.8ppg slurry
- 7) Pump 2bbls of freshwater behind to balance
- 8) Displace with 60bbls of well fluid
- 9) POOH slowly one stand above top of plug. Reverse circulate 2 tubing volumes clean

2.7 Plug # 3 Details

Plug Details - 13 3/8in casing

JOB PARAMETERS

Plug bottom MD: 207m BHST temperature: 24°C

Plug bottom TVD: 207m BHCT temperature: 19°C

Plug top MD: 130m Drilling mud type: seawater

Plug length: 77m Drilling mud density: 8.55ppg

Plug length with DP in: 80m

WELLBORE

Workstring

0-207m 4in 14ppf tubing

Annulus

0-207m 13 3/8in 72ppf casing (12.347in ID)

SPACERS

Spacer - Seawater at 8.54ppg

Seawater 42.00 gal/bbl 10.0bbl ahead and 0.8bbl behind to balance

(23m annular fill / 2min contact time)

Estimated Pv: 1cP

Estimated Yp: 1lbs/100ft²

Contact times are based on the displacement rate.

CEMENT SLURRY

Composition		Properties	
Adelaide Brighton Class G		Surface density:	15.90 ppg
Seawater	5.12 gal/sk	Surface yield:	1.16 ft ³ /sk
NF-6	0.125 gal/10bblMF	Total mixing fluid:	5.12 gal/sk
		Thickening time (70 Bc):	3:00

Cementing Page 23 of 42 April 15, 2010

Comp strength at 22°C	50 psi in 3 hrs
Comp strength at 22°C	500 psi in 6 hrs
Comp strength at 22°C	2,400 psi in 24 hrs

VOLUME CALCULATIONS		
Cement		
13 3/8in casing volume	77 m x 0.4858 bbl/m	37.4 bbl
	Slurry volume	e =37.4 bbl
Quantity of cement	37.4 bbl x 5.6146 / 1.16 ft ³ /sk	181 sacks
Quantity of mix fluid	181 sacks x 5.12 gal/sk	22.1 bbl
Displacement		

104 m x 0.0356 bbl/m

Total displacement volume =3.7 bbl

3.7 bbl

PUMPING SCHEDULE & TIMES

4in tubing volume

	Volume	Rate	Time
	(bbl)	(bbl/min)	(min)
Make up lines & pressure test:	N/A	N/A	30
Circulate 1 x bottoms up:	90.0	6.0	15
Pump spacers ahead:	10.0	6.0	2
Mix & pump cement:	37.4	5.0	7
Drop wiper ball:	N/A	N/A	5
Pump spacers behind:	0.8	6.0	0
Pump displacement:	3.7	6.0	1
Pull workstring 27 m above TOC:	104m	9.0m/min	12
Circulate workstring clean:	4.0	6.0	1

Total job time (including circulation): 73 min 1hr 13min

Minimum cement thickening time (with 2hr safety factor): 146 min 2hr 26min

MINIMUM MATERIAL REQUIREMENTS (Double for loadout)

Spacer - Seawater

Seawater 10.8 bbl

Cement

Adelaide Brighton Class G 8 MT(188 ft³)

Seawater 22.1 bbl

NF-6 1 gals

These are estimates calculated on the information given. Calculations should be confirmed on the job site well in advance.

2.7.1 Plug #3 Job Procedure

- 1) RIH with 4" drill pipe
- 2) Rig up surface lines, circulate hole to clean fluid
- 3) Establish circulation by pumping 10bbl sea water
- 4) Pressure test lines to 2000psi
- 5) Pump 10bbls sea water
- 6) Pump 38bbls of 15.9ppg slurry
- 7) Displace with 5bbls of Sea water
- 8) End job

Cementing Page 25 of 42 April 15, 2010

3.0 LAB REPORTS

HALLIBURTON

CEMENT SLURRY REPORT

JOB INFORMATION

 Customer
 : 3D Oil
 Date
 : 27/04/2008

 Well Name
 : West Seahorse 3
 Reference
 : WES-08-02A

Casing Size: 13 3/8inchJob Type: Surface Casing

Slurry Type : Lead

Time to Temp : 25min API sch9.4

WELL PROPERTIES Depth(MD from RKB) Depth(TVD from RKB) : 1129 Meters 1040 Meters **Temperature Gradient Surface Temperature** 2.88 Deg.C./100M 25.00 Deg.C. **BHST** : 55.00 BHCT (per API Spec 10) 38.00 Deg.C. Deg.C.

Mud Weight : 9.60 PPG Water Source : Seawater

SLURRY PROPERTIES

ABC Class G : 94.00 Lbs/sk From Yard

 Econolite Liquid
 : 15.00
 gal/10bbl of Mix Fluid
 0.460
 gal/sk

 NF-6
 : 0.25
 gal/10bbl of Mix Fluid
 0.008
 gal/sk

Slurry Weight : 12.50 PPG Slurry Yield : 2.21 CuFt/Sack Mixing Water : 12.42 Gals/Sack Total Mixing Fluid : 12.88 Gals/Sack

 THICKENING TIME

 Reading (BC)
 : Initial BC
 30 BC
 50 BC
 70 BC
 2,300 psi

 Time(hrs:mins)
 : 18
 4:23
 5:33
 6:08
 38 Deg.C.

COMPRESSIVE STRENGTH

 UCA Summary
 : 50psi
 4:59
 UCA Max Temp
 : 50.5 Deg C

 : 500psi
 14:24
 UCA Pressure
 : 3000 psi

: 722psi 23:00

Notes : The test was conducted to the specifications provided.

Lab Test Conducted By : Daniel Gibbons

Approved By : Prem kumar Salibendla/Andrew Stobie

The above report is based on sound engineering practices, but because of variable well conditions and other information which must be relied upon, Halliburton makes no warranty, express or implied, as to the accuracy of the data or any of the calculations or opinions expressed herein. You agree that Halliburton shall not be liable for any loss or damage whether due to negligence or otherwise arising out of or in connection with such data, calculations or opinions.

Cementing Page 26 of 42 April 15, 2010

CEMENT SLURRY REPORT

JOB INFORMATION

Customer 3D Oil Date 27/04/2008 **Well Name** : West Seahorse 3 Reference WES-08-03A

Casing Size : 13 3/8inch Job Type : Surface Casing

Slurry Type : Tail

: 25mins API sch9.4 Time to Temp

WELL PROPERTIES							
Depth(MD from RKB)	: 1129	Meters	Depth(TVD from RKB)	:	1040	Meters	
Surface Temperature	: 25.00	Deg.C.	Temperature Gradient	:	2.88	Deg.C./100M	
BHST	: 55.00	Deg.C.	BHCT (per API Spec 10)	:	38.00	Deg.C.	
Mud Weight	: 9.60	PPG	Water Source	:	Seawater	•	

SLURRY PROPERTIES						
ABC Class G	: 94.00	Lbs/sk	From Yard			
CFR-3L	: 3.00	gal/10bbl of I	Mix Fluid	0.037	gal/sk	
HR-6L	: 2.00	gal/10bbl of I	Mix Fluid	0.024	gal/sk	
NF-6	: 0.25	gal/10bbl of N	Mix Fluid	0.003	gal/sk	
Slurry Weight	: 15.90	PPG	Slurry Yield	:	1.16	CuFt/Sack
Mixing Water	: 5.08	Gals/Sack	Total Mixing Fluid		5.13	Gals/Sack

			THICKEN	NING TIME		
Reading (BC)	:	Initial BC	30 BC	50 BC	70 BC	2,300 psi
Time(hrs:mins)	:	7	3:05	3:09	3:12	38 Deg.C.

COMPRESSIVE STRENGTH							
UCA Summary	:	50psi	4:11	UCA Max Temp:	50.5 Deg C		
	:	500psi	6:25	UCA Pressure :	3000 psi		
	•	3433psi	24:00		•		

Notes : The test was conducted to the specifications provided.

Lab Test Conducted By : Daniel Gibbons

Approved By : Prem kumar Salibendla/Andrew Stobie

The above report is based on sound engineering practices, but because of variable well conditions and other information which must be relied upon, Halliburton makes no warranty, express or implied, as to the accuracy of the data or any of the calculations or opinions expressed herein. You agree that Halliburton shall not be liable for any loss or damage whether due to negligence or otherwise arising out of or in connection with such data, calculations or opinions.

Page 27 of 42 Cementing April 15, 2010

CEMENT SLURRY REPORT

JOB INFORMATION

 Customer
 : 3D Oil
 Date
 : 6/05/2008

 Well Name
 : West Seahourse-3
 Reference
 : WES-08-05B

Casing Size : 12 1/4in Open Hole

Job Type : Plug-1 Slurry Type : Plug Time to Temp : 23min

WELL PROPERTIES							
Depth(MD from RKB)	: 1568	Meters	Depth(TVD from RKB)	:	1435	Meters	
Surface Temperature	: 25.00	Deg.C.	Temperature Gradient	:	0.03	Deg.C./100M	
BHST	: 71.00	Deg.C.	BHCT (per API Spec 10)	:	57.00	Deg.C.	
Mud Weight	: 57.00	PPG	Water Source	:	Freshwater	_	

SLURRY PROPERTIES						
ABC Class G	: 94.00	Lbs/sk	From Yard			
NF-6	: 0.25	gal/10bbl of I	Mix Fluid	0.003	gal/sk	
CFR-3L	: 3.00	gal/10bbl of I	Mix Fluid	0.037	gal/sk	
SCR-100L	: 1.00	gal/10bbl of N	Mix Fluid	0.012	gal/sk	
Slurry Weight	: 15.80	PPG	Slurry Yield	:	1.16	CuFt/Sack
Mixing Water	: 5.07	Gals/Sack	Total Mixing Fluid		5.12	Gals/Sack

			THICKEN	IING TIME		
Reading (BC)	:	Initial BC	30 BC	50 BC	70 BC	2,834 psi
Time(hrs:mins)	:	8	6:01	6:34	6:43	57 Deg.C.

COMPRESSIVE STRENGTH							
UCA Summary	:	50psi	4:07	UCA Max Temp:	71 Deg C		
	:	500psi	5:17	UCA Pressure :	3000 psi		
	:	2702psi	20:48				

Notes : The test was conducted to the specifications provided.

Lab Test Conducted By : Daniel Gibbons

Approved By : Prem kumar Salibendla/Andrew Stobie

The above report is based on sound engineering practices, but because of variable well conditions and other information which must be relied upon, Halliburton makes no warranty, express or implied, as to the accuracy of the data or any of the calculations or opinions expressed herein. You agree that Halliburton shall not be liable for any loss or damage whether due to negligence or otherwise arising out of or in connection with such data, calculations or opinions.

Cementing Page 28 of 42 April 15, 2010

4.0 Job Summary, EJCS, Job Logs

4.1 30 inch Conductor Casing

4.1.1 Job Summary

								1			1		ı		
		A .		-	l los	'AD'		CUSTOMER	t		SALES ORDER N	lo.	DATE	0000	
		AL		31	URT			3D Oil			0		25 April	2008	
						CEMENT/	ышыш	NG IOB	SHMMA	NPV					
						1	PUMPII	_	SUMMA	AIX I					
WELL			LOCATION/		NAME	COUNTRY		HES REP			CUSTOMER REP		WELL TYPE		
West Seah	orse 3		Bass Str	aıt		Australia		Nigel Lu	cas		Rocco Ross	ouw	Explorat	ion	
JOB TYPE						JOB PURPOSE CODE					BDA		RIG		
Zonal Isolat					1	CEMENT COND					Perth		West Tri	iton	
PERSONNEL / E				HRS	PERSONNEL / E	XPOSURE	HRS	PERSONNE	L / EXPOSUE	RE	HRS	PERSONNE	L / EXPOSURE		HRS
126997		Lucas		18								-			
344450	Prem	kumar Sali	ibendla	18											
							EQUI	PMENT							
SAP#	PUME	ING / MIXIN	IG				HOURS	SAP#	VEHIC	CLES / TRAIL	ERS			н	OURS
0	SKID	PUMP CN	IT TWIN HT	400 A	DVANTAGE 108	851913	24								
0	Elect	ric Hydrauli	ic Package	10851	913		24								
0	4 Tar	nk Electric (CMS 109658	3			24								
SAP#	BULK	SUPPLY / T	TANKS				HOURS	SAP#	OTHE	R EQUIPME	NT			н	OURS
#N/A	Rig s	upplied Bul	lk system												
						FLOAT EQUIP	MENT A	ND CASIN	IG EQUIP	MENT					
SAP#	FLOA	T EQUIPME	NT				QTY	SAP#	PLUG	s				(QTY
0	20 in	ch Drillquip	Innersting s	tab in	shoe		1								
			_				1								
SAP#	CASI	NG ATTACH	MENTS				QTY	SAP#	OTHE	R					QTY
							WELL	PROFILE							
NEW CASING					OPEN HOLE + E	XCESS OR CALIPER DAT			CASING ONE	:		PREVIOUS	CASING TWO		
30x20in ppf						cess 75.5m to 124.18n		111211000	07101110 0112			- KEVIOOO	ONOMO TITO		
Om to 122.18n	MD m	TVD					-								
			LEASE IND	ICATE	WORKSTRING	5.5in 24.7pp	f S135 X	T 57							
								T DESIGN							
		el libby	1 - Single			Т	0	. 220.0.	-		Ī				
DENSITY 15.	Qnna		TER REQ		5.16gal/sk	DENSITY	WΔ	TER REQ			DENSITY		WATER REQ		
			FLUID REG			YIELD		FLUID REG			YIELD		MIX FLUID REG	,	
YIELD 1.1 WATER SOUR	7cuft/sk	Sea,			5.2gal/sk	WATER SOURCE :	IVILA	LOID KE			WATER SOUR	CE ·	WIN L FOID KEG		
CEMENT TYP			Class 'G' @	QA IL	n/sk	CEMENT TYPE:	ΔΒ	C Class 'G' @	94 lb/ek		CEMENT TYPE				
Total Cement		1660		54 ID	n on	Total Cement Used	ABI	J Class G &	> J4 IU/SK		Total Cement				
Estimated TO		77.5		T . · ·		Estimated TOC	Concent		T-4-1 **		Estimated TOO			T-4-111 1	
Additive		Concentra			Used	Additive	Concent	ation	Total Used	1	Additive	Conc	centration	Total Used	
Calcium Chlor	iae	1 %BWO0	-	33 sx	CIDS										
NF-6		as req.													
				_											
						F	UMPING	SCHEDU	LE		T				
FLUID DESC	RIPT	ON	VOLUME bbls			FLUID DESCRIPT	ION	VOLUME bbls		RATE bpm	FLUID DESC	RIPTION	VOLUME bbls	DENSITY	RATE bpm
sea wate		J.14	80		pg bpm 54 6	LOID DESCRIPT	1011	פוטנ	ppg	opin	י בטוט טבטט	III HON	טטט	ppg	opill
Sea wate Sea wate			20		54 6	1									
	Dye					1					1				
Cement			343	15	5.9 5						I				

Cementing Page 29 of 42 April 15, 2010

4.1.2 **Job Logs**

					cus	TOMER	SALES ORDER No.	DATE
HA	LLLIE	3UR	TON		3D	Oil	0	25-April-2008
			CE	MENT/PUI	MPING JOE	LOGS & DETAILS	ı	
WELL		CATION/FIELD NAME	COUN		HES		CUSTOMER REP	WELL TYPE
West Seahorse 3	3 Ba	ass Strait	Aus	tralia	Nig	el Lucas	Rocco Rossouw	Exploration
JOB TYPE				URPOSE CODE			BDA	RIG
Zonal Isolation			CEI	MENT COND	UCTOR CASI		Perth	West Triton
	1				JOB LO			
DATE	TIME	VOLUME	PRESSURE	(psi)	RATE	JOB DESCRIPTION		
DAY-MTH-YR	HRS:MIN	BBLS	HIGH	LOW	ВРМ	REMARKS/DETAILS		
25/04/2008	1:00				1	Ho	ld JSA with Drill Quip	on the rig Floor
	1:20	50	50	20	6		Pump 50bbls of se	ea water
	1:30		1200		1		Pressure test	lines
	1:36	30	100	20	6-Jan		Pump 30bbls of se	
	1:42	20	100	20	6		Pump 20bbls of Dye	
	1:47	343	200	20	5-Jan	Mix a	nd pump 343bbls of c	
	3:15]		1		End pump cer	
	3:15	8	100	25	6.4		Pump 8bbls of se	
	3:17		20	20		Open line a		check the floats holding
	1		1				Floats held	
	3:18			ļ	1	Ca	Il rig floor, inform cem	ent job finished
	1		-	ļ	1			
	1			ļ	1			
							Chemicals u	
					1	1	1660sk= 70MT of Clas	
					1		Cacl2=33sks=1	
							NF-6=5ga	S
					-			
					+			
					+			
					+			
					+			
	+		1	-	+			
	+		1	-	+	+		
	+	-	1	 	+			
	+	-	1	 	+			
	+	-	1	<u> </u>				
	+	-	1	<u> </u>	1			
	+	-	1	<u> </u>	1			
			1					
			1					
			1					
	+		1		+			
	+		1		+			
	1		1					
	+		1	†	+			
	+		1	†	+			
	+	+	1		+			
	+		1		1			
	+		1					
	+		1					
	+		1					
i			1		1	1		

4.1.3 KPI & EJCS

			CUST	OMER	SALES	ORDER No.	DATE		
HAL	LIBURT	ON	3D		0		25-	April-2008	
		CEMENT/PU	UMPING	KPI & EJC	cs				
WELL	LOCATION/FIELD NAME	COUNTRY	HES R			OMER REP		. TYPE	
West Seahorse 3	Bass Strait	Australia JOB PURPOSE CODE	Nige	el Lucas	ROC BDA	co Rossouw	EXP	oloration	
Zonal Isolation		CEMENT CONDUCTO			Pert	h	We	st Triton	
		KEY PERFO	RMANCE	INDICATORS	3				
TYPE OF JOB (Cementing	g or Non-Cementing):	Cementing	WAS	THIS A PRIMAR	RY CEMENT JOB	(YES / NO)		YES	3
Select the job type (Cemen					Casing job, Liner				
TOTAL OPERATING TIME		12.0 hrs	DID	WE RUN WIPER	PLUGS?			None	
Rig up/ Pumping/ Rig Down HSE INCIDENT, ACCIDEN		NO	WΔS	THIS A PI LIG C	OR SQUEEZE JOI	R2		Neither	$\overline{}$
This should be recordable i			*****		0402222			Troition	
	D CORRECTLY AS PERJOB DE	SIGN?: YES			RY OR REMEDIA			Prima	ıry
This will be dictated by the TOTAL TIME PUMPING (I		4 Hrs			attempts or corre		•	99%	
Total number of hours pum	•	4 FIIS					ement mixed at de		
NON -PRODUCTIVE RIG T		nil		-	al bbls of cement i				
As a result of Halliburton ce	-		WAS	AUTOMATED D	ENSITY CONTRO	OL USED		YES	3
NUMBER OF JSA'S PERF	ORMED:	1	IOB	WAS PLIMPED	AT DESIGNED PL	IMP RATE		95%	
NUMBER OF UNPLANNE	D SHUTDOWNS (After starting to	o pump)	Pum	p rate ranged def	fined as +/- bpm.	Calculation : tota	al bbls of fluid pum		<u>'</u>
TYPE OF RIG(CLASSIFIC	ATION) JOB WAS PERFORMED	ON: JACKUP	NUM	IBER OF REMED	ded by total bbls o	OBS REQUIRE	O - HES	nil	
REASON FOR LINDI ANNE	ED SHUTDOWNS (After starting	to numn)					job performed by COMPETITION		$\overline{}$
Add details in job logs	- D GITO I D GITTING	10 pap.					job performed by		
	DUCTIVE RIG TIME (Cementing I	PSL responsibility):	NUM	IBER OF REMED	DIAL PLUG JOBS	REQUIRED - H	ES	nil	
Add details in job logs			Num	ber of remedial p	lug jobs required a	after primary plug	g pumped by HES		
		EJCS / CUS	STOMER	COMMENTS					
Dear Customer,					ate your respor erneath the rati				
				your opinion		J			_
	re happy with the service qu lliburton. It is the aim of our			_ დ დ	⊕ ლ	Met	reo d	Po	
	I to deliver equipment and s			upe (Esta erfor	rovic	× p	over) n	
· ·	service sector of the energ			ablish man	eded Expecta ided more thar was expected)	pectations (D was expected)	Below expectations do what was expe recovery made) Cres	red)	
Diagram tales that t		t		Perfo	nore xpec	ition expec	tatio /as e ide) i	Oble:	
	me to let us know if our per ease be as critical as possib			Superior Performance (Establish new quality performance standards)	Exceeded Expectations (Provided more than what was expected)	Met expectations (Did what was expected)	stions (Did not s expected, e) Create CPI	Poor (Job problems / failures occured) Create CPI	
	ve our service. Your comme			ance ality ards)	who	d w	e ted,	S fail	
us and are intend	led for the exclusive use of	Halliburton.							
Did our parsanna	el perform the job to your sa	ticfaction?		5	4	3	2	1	4
	nt perform the job to your sa				1			 	1
	he job to the agreed upon d								1
	and materials perform as you								4
	n a safe & careful manner?	PPE, Pre/Post mtgs, JSA manner? Spills, disharges, c	lean un		1		+	 	4
	ormed as scheduled? On tin		поат ар					†	1
	nt condition & appearance n]
	personnel communicate du	ring mobilisation,							
rig-up and job exe	ecuuon?			YES	NO		1		J
Overall, I was sat	tisfied with Halliburton's job	performance							
		. , . ,	01						
Customer Comn	nents? (What can we do to	o improve/maintain our servic	ces?)						

Cementing Page 31 of 42 April 15, 2010

4.2 13 3/8" SSR CASING

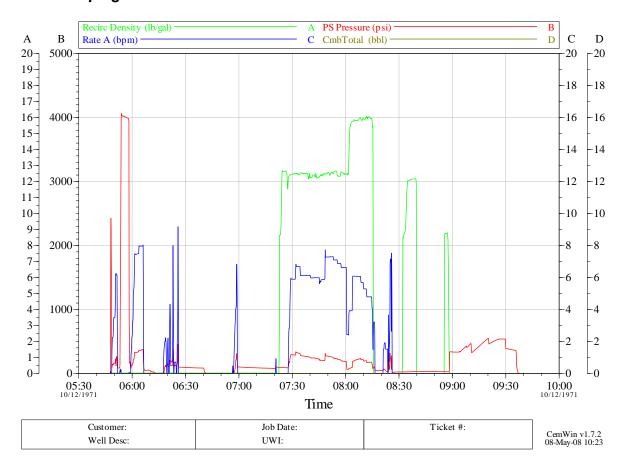
4.2.1 Job Summary

						_		CUSTOMER	₹		SALES ORD	ER No		DATE		
	HAL	.LJE	31	JRT		J		3D Oil			0			29 April 2008		
					.CE	VI = N = 2/-	HIMBUS	C IOP	CHIMIN	IADV -						
						WENT/F	UMPIN		SUMIN	IARY						
WELL		LOCATION/		NAME	COUNTRY			HES REP			CUSTOMER			WELL TYPE		
West Seahors	se 3	Bass Str	aıt		Australia			Nigel Lu	cas		Shaugha	n Co	rless	Explorati	on	
JOB TYPE					JOB PURPO		0.7504				BDA			RIG		
Zonal Isolatio					SURFAC	E CASIN		1			Perth	_		West Tri	ton	
PERSONNEL / EX				PERSONNEL / EX	POSURE		HRS	PERSONNE	L / EXPOS	URE		HRS	PERSONNEL / EX	POSURE		HRS
126997	Nigel Lucas		18													
344450	Premkumar Salii	bendla	18													+
							FOLUE	MENT				_				
SAP#	PUMPING / MIXIN	0					HOURS	SAP#	VEL	HICLES / TRAIL	EDE				HOUR	
	SKID PUMP CM		400 ΔΙ	DVANTAGE 108	51013		24	SAP#	VE	TICLES / TRAIL	EKS				HOUR	13
	Electric Hydrauli				31313		24									
	4 Tank Electric (24									
	2.000.10															
SAP#	BULK SUPPLY / T	ANKS					HOURS	SAP#	ОТІ	HER EQUIPME	NT				HOUR	RS
	Rig supplied Bul															
					FLOA	T EQUIPI	MENT AN	ID CASIN	IG EQU	IPMENT						
SAP#	FLOAT EQUIPME	NT					QTY	SAP#	PLU	JGS					QTY	′
0	13 3/8 Float Sho	e (Halliburto	on)				1	0	Hal	lliburton Sub s	sea 13 3/8 p	ug se	l			
0	13 3/8 Float Coll	ar (Halliburt	on)				1	0	Hal	lliburton Sub s	sea Wiper pl	ug rel	ease Ball			
0	13 3/8 Float Coll	ar (Halliburt	on)				1	0	Hal	lliburton sub s	ea Top plug	dart				
SAP#	CASING ATTACHI	MENTS					QTY	SAP#	ОТІ	HER					QTY	(
0	Halliburton 13 3/	8 centralise	r Bow	spring												
			_				WELL P	ROFILE				_				
NEW CASING				OPEN HOLE + EX			١	PREVIOUS					PREVIOUS CASIN	IG TWO		
13.375in 68ppf E				17.5in + 10% ex	cess 0m to	1117m		30x20in pp)						
0m to 122.18m N				WORKSTRING	F F:	047	0405 VT	0m to 122.	18m							
FUK PLUG AND	LINER JOBS P	LEASE IND	ICATE	WURKSTRING	5.51		S135 XT CEMENT									
	CI LIDOY	1 - Lead						Y 2 - Tail	4							
DENSITY 12.5p		ER REQ		11.8gal/sk	DENSITY	15 0000		FR REQ	E 4	6 gal/sk	DENSITY		\A/ A.T	ER REQ		
		EK KEQ FLUID REG		11.8gal/sk 12.2gal/sk		15.9ppg 1.16cuft/sk		EK KEQ FLUID REG		6 gal/sk	YIELD			FLUID REG		
WATER SOURCE		. LOID REG		yui/ 3N	WATER SO		sea	LOID REG	. 0.1	o garon	WATER SO	URC		0.0 1.26	•	
CEMENT TYPE:	,	Class 'G' @	94 lh	/sk	CEMENT 1			Class 'G' @	94 lh/sk		CEMENT T					
Total Cement U					Total Cem		290 s				Total Cem		ed			
Estimated TOC	600 r	n			Estimated		1000	m			Estimated					
Additive	Concentra		Total	Used	Additive		Concentra		Total Us	ed	Additive		Concentra	ation	Total Used	
Econolite	15 gal/10b		236 g		CFR-3L		3 gal/10bbl		12 gals					-		
	3				HR-6L		2 gal/10bbl		8 gals							
NF-6	as req.				NF-6		as req		5 gal							
									-							
											l					

Cementing Page 32 of 42 April 15, 2010

					PUMPIN	G SCHEDU	LE					
FL	UID DESCRIPTION	VOLUME bbls	DENSITY PPG	RATE bpm	FLUID DESCRIPTION	VOLUME bbls	DENSITY ppg	RATE bpm	FLUID DESCRIPTION	VOLUME bbls	DENSITY PPg	RATE bpm
1)	sea water	60	8.54	6	5) sea water	12	8.54	6				
2)	Sea water + Dye	10	8.54	6								
3)	Cement	210	12.5	7								
4)	Cement	68	15.9	6								
					ADDITION	AL COMME	NTS					
	did not bump Plug half the shoe track volume was displaced (3 BBL)											
					floats held 3 b	bl was flowe	d back,					
					final pressure after pun	np where shu	ut off was	350PSI				
					13 3/8 cemet jo	b start time	1100 hrs					
					13 3/8 cement	ob end time	1500 hrs					
Π												
Т												

4.2.2 JOB LOGS


					_	TOMER	SALES ORDER No.	DATE 11 0000
HA		3UR	TON		3D	Oil	0	29-April-2008
			CE	MENT/PIII	MPING IOF	LOGS & DE	TAILS	
·5.1		ATION/FIELD NAME	COUN			REP	CUSTOMER REP	WELL TYPE
VELL West Seahorse 3		ss Strait		tralia		jel Lucas	Shaughan Corless	Exploration
IOB TYPE				URPOSE CODE		,-	BDA	RIG
Zonal Isolation				RFACE CASII	NG 7521		Perth	West Triton
					JOB LO	G		
DATE	TIME	VOLUME	PRESSURE	(psi)	RATE	JOB DESCRI	PTION	
DAY-MTH-YR	HRS:MIN	BBLS	HIGH	LOW	ВРМ	REMARKS/DETAILS		
29/04/2008	9:30						Hold JSA with Drill Quip	on the rig Floor
	0.00						Dia	d
	9:20 9:44						Rig up cement lines and Rig circulat	
	9.44						Rig circulai	e
	11:10	10	300		5		Pump 10 BBI sea w	ater spacer
	11:15		4000				Pressure Test Lines	
	11:20	50	300		6		Pump 50 BBI sea w	
	11:35						Drop Ball to shear	wiper Plug
	11:00						Problem with not seeing a sh	ear of the wiper plug
						-		
	12:40	200	300		7	1	Mix and pump Lead cem	
	13:05	60	30		6		Mix and pump Tail ceme	#III & 13.9 PPG
							Release Top	Dart
							Pump 2 BB	
			2000				see shear	
	13:45	10	300				Pump 10 BBI of s	
	13:45						Switch to R	ig
	13:48	542	730		15		Rig Displac	
							Did not bun	
		2					Bleed Off Pressure and r	ecord flow back
							wash up	
	1		1		1	1		
	-		+		+	+		
	1		 		+	+		
	ļ							
			1		1	1		
	1		1		1	1		
	1		+		+	+		
			+		+	+		
			1		†	1		

4.2.3 KPI & EJCS

			CUST	OMER	SALES	ORDER No.	DATE		
НΛΙ	LIBURT		3D (Oil	0		29-	April-2008	
	LIBORI							•	
		CEMENT/PU	MPING	KPI & EJC	S				
WELL	LOCATION/FIELD NAME	COUNTRY	HES R	EP	CUSTO	OMER REP	WELL	. TYPE	
West Seahorse 3	Bass Strait	Australia	Nige	el Lucas		ughan Corles		oloration	
JOB TYPE		JOB PURPOSE CODE SURFACE CASING 75.	24		Pert	la.	RIG	st Triton	
Zonal Isolation		KEY PERFOR		INDICATORS		.n	lwe	St Triton	
		RETTERTOR	MANOL	INDIOATOR					
TYPE OF JOB (Cementing	or Non-Cementing):	Cementing	WAS	THIS A PRIMAR	RY CEMENT JOB	(YES / NO)		YES	3
Select the job type (Cement	ing or Non-Cementing)		Prim	ary cement job =	Casing job, Liner	Job, tie back			
TOTAL OPERATING TIME	(hrs)	12.0 hrs	DID	WE RUN WIPER	PLUGS?			None	
Rig up/ Pumping/ Rig Down									
HSE INCIDENT, ACCIDENT This should be recordable in		NO	WAS	THIS A PLUG C	OR SQUEEZE JOI	В?		Neither	
	CORRECTLY AS PERJOB DES	IGN?: YES	WAS	THIS A PRIMAR	RY OR REMEDIAL	JOB?		Prima	arv
This will be dictated by the d		120			attempts or corre		ement job	1 111116	u y
TOTAL TIME PUMPING (h		4 Hrs			JOB STAYED IN			99%	6
Total number of hours pump	ing fluid on this job		Dens	sity defined as +/-	0.2ppg. Calculat	ion: Total bbls ce	ement mixed at de	signed	
NON -PRODUCTIVE RIG TI		100 mins			al bbls of cement i				
As a result of Halliburton cer	-		WAS	AUTOMATED D	ENSITY CONTRO	OL USED		YES	3
NUMBER OF JSA'S PERFO	DRMED:	1	IOD	WAS DUMBED	AT DECICNED D	IMP DATE		050	
NUMBER OF UNPLANNED	SHUTDOWNS (After starting to	pump) 2			AT DESIGNED PU fined as +/- bpm.		l bbls of fluid num	95% aned at)
	one is a rine (rater starting to	Pap)		-	ded by total bbls o			pod di	
TYPE OF RIG(CLASSIFICA	TION) JOB WAS PERFORMED O	N: JACKUP	NUM	BER OF REMED	DIAL SQUEEZE J	OBS REQUIRE	- HES	nil	
					queeze jobs requi				
	D SHUTDOWNS (After starting to	pump)			DIAL AQUEEZE J				
Add details in job logs	LOTING DIO TIME (O	N			queeze jobs requi				
Add details in job logs	UCTIVE RIG TIME (Cementing PS	SL responsibility):			lug jobs required a			nil	
Add details in job logs			rvann	ber of remedial p	iag jobs required t	inci pilinary piag	pamped by TIEO		
		EJCS / CUS	TOMER	COMMENTS					
Daar Customer					ate your respor				
Dear Customer,					erneath the rati	ng that best n	natches		
We hope you were	e happy with the service qua	lity of this job		your opinion					7
	iburton. It is the aim of our r			g _ g	҈ ঢ়	Met	Below do v	0 0	
	to deliver equipment and se			Esta Esta	ovic v	e ×p	0 ¥	05 (C	
unmatched in the	service sector of the energy	industry		mar ior	ided i	/as	elow expectat do what was ecovery made)	red)	
				Superior Performance (Establish new quality performance standards)	Exceeded Expectations (Provided more than what was expected)	pectations (D was expected)	w expectations () what was expected what was expected when was expected when we have the waste of the waste	<u>ა</u> გ	
	ne to let us know if our perfo			w q	tha	ctec	Cre expe	eate	
	ase be as critical as possible			nan. ualit dard	ın w atio	Bi Di	ante ecte	유 a:	
	e our service. Your commended for the exclusive use of H			s v e	hat ns	Met expectations (Did what was expected)	tions (Did not s expected, s) Create CPI	Poor (Job problems / failures occured) Create CPI	
us and are intende	da for the exclusive use of the	amburton.		5	4	3	2	1	-
Did our personnel	perform the job to your satis	sfaction?						<u> </u>	1
	t perform the job to your sat]
	e job to the agreed upon de								
	and materials perform as you								
	a safe & careful manner? P						ļ	ļ	4
	an environmentally sound n rmed as scheduled? On time	nanner? Spills, disharges, cle	ean up				1	+	-
	t condition & appearance me							+	-
	personnel communicate duri							1	1
rig-up and job exe									
				YES	NO		-		-
Overall, I was sati	sfied with Halliburton's job p	erformance			ļ]			
		. , . ,	01						
Customer Comm	ents? (what can we do to	improve/maintain our service	es ?)						
<u> </u>									
ļ									

Cementing Page 35 of 42 April 15, 2010

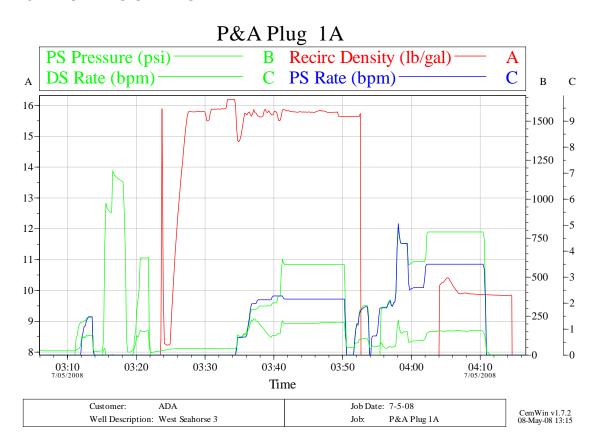
4.2.4 Pumping Chart

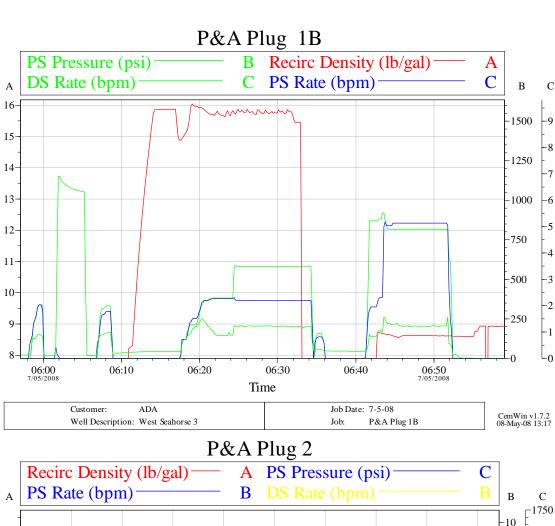
4.3 P&A Plugs

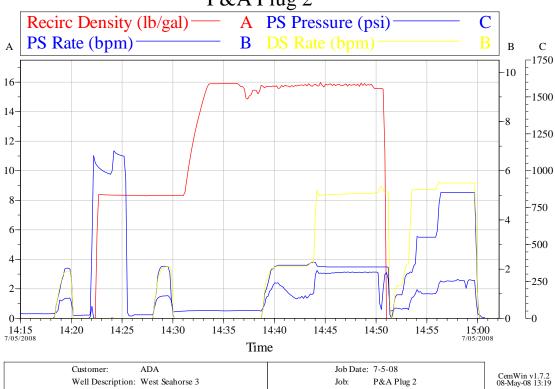
4.3.1 KPI&EJCS

ΗΛΙ	LIBURT		CUSTOMER	SALE	S ORDER No.	DA [*]	TE
ПАІ	-LIDUR I		ADA	0		7 M	lay 2008
	C	EMENT/PUMPIN	G JOB SUM	MARY			
WELL	LOCATION/FIELD NAME	COUNTRY	HES REP		OMER REP	WE	LL TYPE
West Seahorse #3	Bass Strait	Australia	R.Bridgman	S.Cor			oloration
JOB TYPE	Dass Grait	JOB PURPOSE CODE	IX.Bridghan	BDA	1000	RIG	
P&A Plugs		PLUG TO ABANDON 7528		Perth			est Triton
KEY PERFORMAN	ICE INDICATORS	TEGG TO ABAINDON 1920		i ciai		WC	St Titon
ILL I LIKE ORGANIA							
TYPE OF JOB (Cementing or I	Non-Cementing):	Cementing	WAS THIS A PRIMARY	CEMENT JOR	(YES / NO)		NO
Select the job type (Cementing of			Primary cement job = Ca				
TOTAL OPERATING TIME (hrs	=-	5.0 hrs	DID WE RUN WIPER PL		,		None
Rig up/ Pumping/ Rig Down	,						
HSE INCIDENT, ACCIDENT, IN	JURY:	NO	WAS THIS A PLUG OR	SQUEEZE JOI	3?		Plug Job
This should be recordable incide							1109 000
	ORRECTLY AS PERJOB DESIGN	YES	WAS THIS A PRIMARY	OR REMEDIAL	JOB?		Primary
This will be dictated by the custo			Remedial = Repeated att	tempts or corre	ctions of initial	cement job	
TOTAL TIME PUMPING (hrs)		4.0 hrs	MIXING DENSITY OF JO				100%
Total number of hours pumping	fluid on this job		Density defined as +/- 0.2	2ppg. Calculat	ion: Total bbls o	ement mixed at	designed
NON -PRODUCTIVE RIG TIME:		0.0 hrs	density divided by total bi				•
As a result of Halliburton cemen			WAS AUTOMATED DEN				YES
NUMBER OF JSA'S PERFORM	IED:	2					
			JOB WAS PUMPED AT	DESIGNED PL	JMP RATE		100%
NUMBER OF UNPLANNED SH	UTDOWNS (After starting to pum	1p) 0	Pump rate ranged define	d as +/- bpm.	Calculation : tot	al bbls of fluid po	umped at
			the designed rate divided	d by total bbls o	f fluid pumped i	multiplied by 100) <u> </u>
TYPE OF RIG(CLASSIFICATIO	N) JOB WAS PERFORMED ON:	JACKUP	NUMBER OF REMEDIAL	L SQUEEZE J	OBS REQUIRE	D - HES	0
			Number of remedial sque	eeze jobs requi	red after primar	y job performed	by HES
REASON FOR UNPLANNED S	HUTDOWNS (After starting to pu	m <u>p)</u>	NUMBER OF REMEDIAL	L AQUEEZE J	OBS REQUIRE	D - COMPETITION	ON 0
Add details in job logs			Number of remedial sque	eeze jobs requi	red after primar	y job performed	by competition
REASON FOR NON-PRODUCT	IVE RIG TIME (Cementing PSL re	esponsibility):	NUMBER OF REMEDIAL	L PLUG JOBS	REQUIRED - H	IES	0
Add details in job logs			Number of remedial plug	jobs required a	after primary plu	ig pumped by Hi	ES
E 100 / OUGTONE	D 001111FUT0						
EJCS / CUSTOME	R COMMENTS						
Dear Customer,			Please indicate you				
W- h h			the box underneath	the rating that	best matches		
	with the service quality of this job p f our management and service pers		your opinion.	1		- 0 0	T . 70
	a standard unmatched in the servi	ce sector of the	ре (Es	tha (Pro	@ (D) 8	not not nade	occu
energy industry			Superior Superior Performance Establish new quality performance standards)	Exceeded Expectations (Provided more than what was	Met expectations (Did what was expected)	Below expectations (Did not do what was expected, recovery made) Create CPI	Poor (Job problems / failures occured) Create CPI
	us know if our performance met yo		xpected) superior rformanc iablish ne quality rformanc andards)	ation a mo	ctati at wa ed)	ons hat v reco	(Job /fail
	ssible to ensure we constantly imposure to us and are intended for the ex		9 % 6	n s ore	as	Vas Very	ures
· ·			5	4	3	2	1
Did our personnel perform	the job to your satisfaction?						1
Did our equipment perform	the job to your satisfaction?						
Did we perform the job to t	the agreed upon design?						
Did our products and mate	rials perform as you expected?						
Did we perform in a safe &	careful manner? PPE, Pre/Post m	tgs, JSA					
Did we perform in an envir	onmentally sound manner? Spills,	disharges, clean up					
Was the job performed as	scheduled? On time, as designed/o	discussed					
Did the equipment condition	n & appearance meet you expecta	tions?					
How well did our personne	el communicate during mobilisation,	rig up and job execution					
			YES	NO			
Overall, I was satisfied with	h Halliburton's job performance						
			<u>-</u>				
Customer Comments? (What can we do to improve/mainta	in our services?)					
Customer Signature:			Date:				

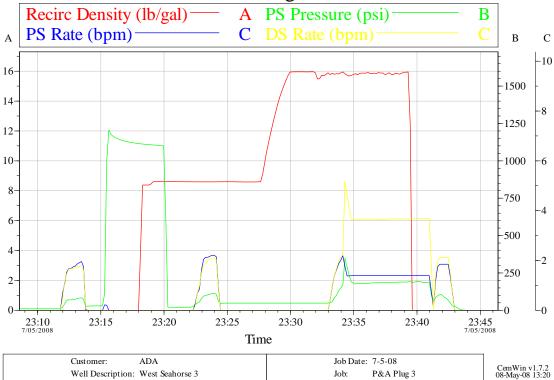
4.3.2 SUMMARY


PERSONNEL / EXPOSURE hrs PERSONNEL / EXPOSURE	HOURS
EQUIPMENT SAP# PUMPING / MIXING HOURS SAP# BULK SUPPLY / TANKS 10951913 SKD ADVANTAGE 25DZ2 - WEST TRITON 5 WELL PROFILE NEW CASING OPEN HOLE + EXCESS OR CALIPER DATA PREVIOUS CASINGS	HOURS
SAP# PUMPING / MIXING HOURS SAP# BULK SUPPLY / TANKS 10951913 SKD ADVANTAGE 25DZ2 - WEST TRITON 5 WELL PROFILE NEW CASING OPEN HOLE + EXCESS OR CALIPER DATA PREVIOUS CASINGS	HOURS
10951913 SKD ADVANTAGE 25DZ2 - WEST TRITON 5 WELL PROFILE NEW CASING OPEN HOLE + EXCESS OR CALIPER DATA PREVIOUS CASINGS	HOURS
WELL PROFILE NEW CASING OPEN HOLE + EXCESS OR CALIPER DATA PREVIOUS CASINGS	
NEW CASING OPEN HOLE + EXCESS OR CALIPER DATA PREVIOUS CASINGS	
12.25in, 15 percent excess, 1117m to 1780m, Caliper = 55.13bbls 13.375in, 68ppf, 0m to 1117m	
FOR PLUG AND LINER JOBS PLEASE INDICATE WORKSTRING 5.5in 24.7ppf Drill Pipe with No Stinger	
CEMENT DESIGN	
Plug Plug Plug	
	5.07gal/sk
· · · · · · · · · · · · · · · · · · ·	5.12gal/sk
WATER SOURCE Drillwater WATER SOURCE Drillwater WATER SOURCE Drillwater	
CEMENT TYPE ABC Class 'G' at 94lb/sk CEMENT TYPE ABC Class 'G' at 94lb/sk CEMENT TYPE ABC Class 'G' at 94lb/sk	/sk
Total Cement Used 358sks Total Cement Used 377sks Total Cement Used 315sks	
Estimated TOC 1630m Estimated TOC 1500m Estimated TOC 1030m	
	I Used
CFR-3L 3 gal/10bbl 12gals CFR-3L 3 gal/10bbl 15gals CFR-3L 3 gal/10bbl 12gals	
SCR-100L 1 gal/10bbl 4gals SCR-100L 1 gal/10bbl 5gals SCR-100L 1 gal/10bbl 4gal	
NF-6 0.25 gal/10bbl 1gals NF-6 0.25 gal/10bbl 1gals NF-6 0.25 gal/10bbl 1gals	.S
Plug DENSITY 15.9000 WATER 5.200al/sk	
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
YIELD 1.17cuft/ft MIX FLUID 5.20gal/sk WATER SOURCE Seawater	
CEMENT TYPE ABC Class 'G' at 94lb/sk	
Total Cement Used 183sks	
Estimated TOC 130m	
Additive Concentration Total Used	
NF-6 0.25 gal/10bbl 1gals	


Cementing Page 38 of 42 April 15, 2010


4.3.3 JOB LOGS

DATE	TIME	VOLUME	PRESSURE (psi)	RATE	JOB DESCRIPTION
			1	•		
7/05/2008	2:50					JSA
PLUG #1A	3:10	5		177	3	Pump 5 BBL Drillwater
	3:12		1000			Test Lines
	3:15	6		231	3.5	Pump 6 BBL Drillwater
	3.25	74		241	5	Mix & Pump74 BBL 15.8 ppg Slurry
	3:52	2			2	Pump 2 BBL Drillwater
	3:53	102		180	8	Pump 102 BBL Mud
	4:08					Bleed off
PLUG #1B						
	5.57	5		180	4	Pump 5 BBL Drillwater
	5:59		1000			Test Lines
	6:05	6		217	4	Pump 6 BBL Drillwater
	6:14	78		190	5	Mix & Pump78 BBL 15.8 ppg Slurry
	6:35	2			2	Pump 2 BBL Drillwater
	6:38	90		190	10	Pump 90 BBL Mud
	6:51					Bleed off
PLUG #2						
	13:45					JSA
	14:15	5		180	4	Pump 5 BBL Drillwater
	14:18		1000			Test Lines
	14:25	6		120	4	Pump 6 BBL Drillwater
	14:28	65		190	65	Mix & Pump 65 BBL 15.8 ppg Slurry
	14:48	2			2	Pump 2 BBL Drillwater
	14:50	60		190	8.5	Pump 60 BBL Mud
	14:57					Bleed off
	22:14					Test Plug #2 1500 Psi
PLUG #3						
	23:07	5		180	4	Pump 5 BBL Seawater
	23:09		1000			Test Lines
	23:19	6			4.5	Pump 6 BBL Seawater
	23:24	38		180	5	Mix & Pump 38 BBL 15.9 ppg Slurry
	23:33	5		130	4	Pump 5 BBL Seawater
	23:39					Bleed off
						Chemicals
						45 gals CFR3-L
						15 gals SCR100L
						5 gals NF6
						Cement
						52.55 MT Class G


4.3.4 PUMPING CHARTS

P&A Plug 3

Cementing Page 42 of 42 April 15, 2010

Attachment 6

LOT/FIT Report

FIT / LOT TEST RESULTS. Australian Drilling Associates Pty Ltd

	FIT / LOT DATA												
TEST DATE:	3/05/2008	WELL #: \	West Seahorse-3	CLIENT:	3D Oil								
	CASIN	TEST MUD DATA											
CASING SIZE	CASING GRADE	SHOE TVD (M)	SHOE MD (M)	WEIGHT (PPG)	VISCOSITY (SEC)								
13 3/8	N80	1034	1117	9.4	50								
INDICATE TY	PE OF TEST:	FIT:	✓	LOT:									
LEAK OFF (PRESSURE (PSI):	OR FIT TEST	EQUIVALENT MUD WEIGH (PPG):	IMAX MUID	VOLUME PUMPED (BBLS):	VOLUME RETURNED (BBLS):								
7:	50	4.25	13.65	2.5	2.5								

SURFACE	VOLUME	000	
PRESSURE	PUMPED	800	
(PSI):	(BBLS):		
30	0.25		
40	0.5	700	+
50	0.75		
65	1		+++
120	1.25	600	
190	1.5		
320	1.75		
450	2	500	
590	2.25		
750	2.5	Augustian 400 (Psi)	
		2 400	
		90	
		300	
		200	
745	1 minute	200	
740	2 minute		
735	3 minute	100	
730	4 minute		
725	5 minute		
		0 +	
		0.25 0.5 0.7511.2 5 1. 5 1.7522.2 5 2.5 1 n 2 im 0inedire oineoineoine	
		Volume Pumped (bbls)	

PRESENT DAY INFO.										
	DEPT	H (M):	MUD:							
DATE:	MD:	TVD:	WEIGHT (PPG): VISCOSITY (SEC):							
16/05/2008	1034	1034	9.4	50						

MAASP = | 750

COMMENTS:			
	-		

Attachment 7 Directional Drilling Report

3D Oil

West Seahorse-3

End of Well Report

	Name	Signature	Date
Schlumberger QC	David de Freitas		
Client approval			

Contents

- 1. General Information
- 2. Geomagnetic and Survey Reference Criteria
- 3. Definitive Survey
- 4. Performance Drilling Report
- 5. BHA Reports
- 6. Drilling Parameter Sheets
- 7. Drilling Tool Run Reports
- 8. Drill Bit Grading

General Information

Client: 3D Oil

Well Name: West Seahorse-3

Rig: West Triton

Field: West Seahorse

Location: Bass Strait

Country: Australia

Cell Members: Patrick Dassens (DD)

Punniamoorthy Sellathurai (DD)

Kevin Stroud (DDT) Jun Ikeda (MWD) San Thida Aung (MWD)

Town Contacts: David de Freitas Directional Drilling Coordinator

Mee Yean Tan Field Services Manager

Company Representatives:

S. Corless
Company Representative
R. Rossouw
Company Representative

M. Ngatai Company Representative
Wellsite Geologist

Geomagnetic and Survey Reference Criteria

Geomagnetic Data

Magnetic Model:

Magnetic Date:

April 29th 2008

Magnetic Field Strength:

Magnetic Declination:

Magnetic Dip:

-68.778°

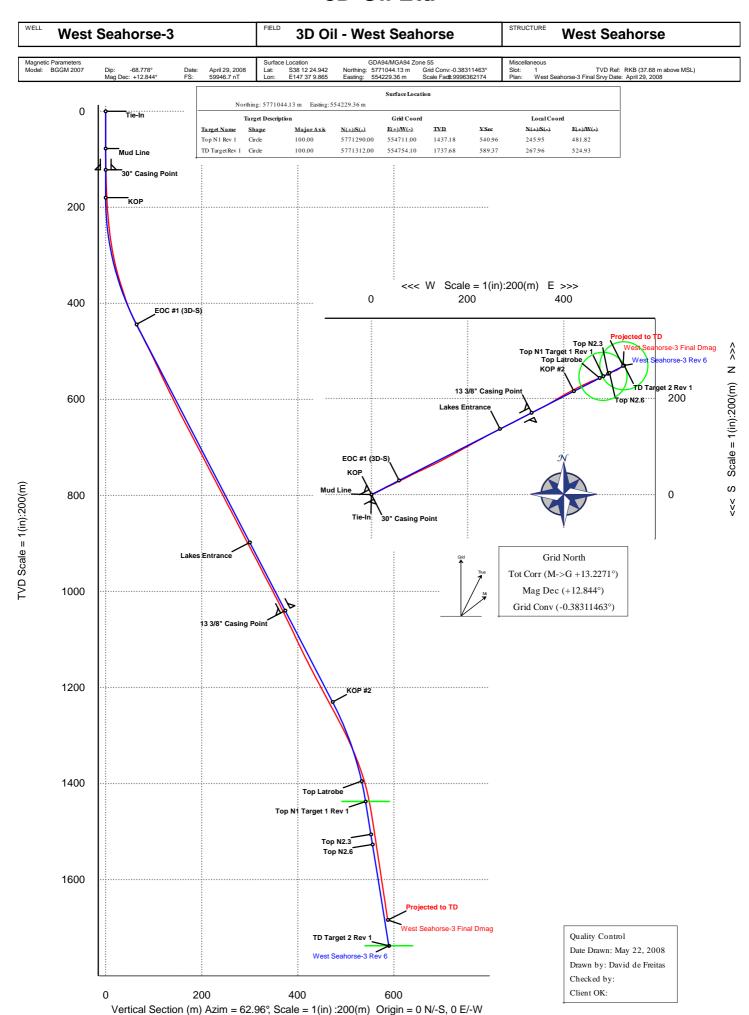
Survey Reference Criteria

Reference G: 1000.02 mG
Reference H: 1198.93HCNT
Reference Dip: -68.778°
G value Tolerance: 2.50 mG
H value Tolerance: 6.00 HCNT
Dip Tolerance: 0.45°

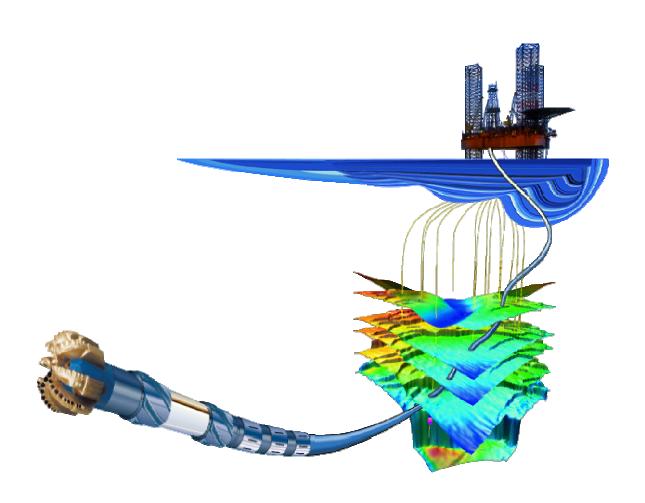
Survey Corrections Applied

Reference North: Grid North
Magnetic Declination: 12.844°
Grid Convergence: -0.38311463°
Total Azimuth Correction: +13.227°
Vertical Section Azimuth: 62.960°

Survey Reference Location


Location Coordinates

Latitude: 38° 12′ 24.942″ South Longitude: 147° 37′ 9.865″ East Fasting: 554229 358m


Easting: 554229.358m Northing: 5771044.135m

Reference System:

3D Oil Ltd

Definitive Survey

West Seahorse-3 Final DMAG Survey

Report Date: May 21, 2008 Client: 3D Oil Ltd

Field: 3D Oil - West Seahorse

Structure / Slot: West Seahorse / 1

Well: West Seahorse-3

Borehole: West Seahorse-3

UWI/API#:

Survey Name / Date: West Seahorse-3 Final Dmag / April 29, 2008

Tort / AHD / DDI / ERD ratio: 73.430° / 587.54 m / 5.182 / 0.349
Grid Coordinate System: GDA94/MGA94 Zone 55
Location Lat/Long: S 38 12 24.942, E 147 37 9.865
Location Grid N/E Y/X: N 5771044.135 m, E 554229.358 m

Grid Convergence Angle: -0.38311463°
Grid Scale Factor: 0.99963622

Survey / DLS Computation Method: Minimum Curvature / Lubinski

Vertical Section Azimuth: 62.960°

 $\textbf{Vertical Section Origin:} \quad N \ 0.000 \ m, \ E \ 0.000 \ m$

TVD Reference Datum: RKB

 Magnetic Declination:
 12.844°

 Total Field Strength:
 59946.745 nT

 Magnetic Dip:
 -68.778°

 Declination Date:
 April 29, 2008

 Magnetic Declination Model:
 BGGM 2007

North Reference: Grid North
Total Corr Mag North -> Grid North: +13.227°
Local Coordinates Referenced To: Well Head

Comments	Measured Depth	Inclination	Azimuth Grid	Course Length	TVD	Vertical Section	NS Grid North	EW Grid North	Closure	Closure Azimuth	DLS	Mag / Grav Tool Face
	(m)	(deg)	(deg)	(m)	(m)	(m)	(m)	(m)	(m)	(deg)	(deg/30 m)	(deg)
Tie-In	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mud Line	77.50	0.00	0.00	77.50	77.50	0.00	0.00	0.00	0.00	0.00	0.00	71.37M
	182.42	2.71	71.37	104.92	182.38	2.45	0.79	2.35	2.48	71.37	0.77	68.61M
	210.69	4.37	68.61	28.27	210.60	4.19	1.40	3.99	4.23	70.67	1.77	65.93M
	240.38	6.29	65.93	29.69	240.16	6.94	2.47	6.53	6.98	69.23	1.96	7.93L
	269.55	8.46	63.88	29.17	269.08	10.68	4.07	9.91	10.72	67.67	2.25	2.08L
	299.18	10.91	63.41	29.63	298.29	15.66	6.29	14.38	15.69	66.38	2.48	9.23L
	328.89	13.72	61.49	29.71	327.31	22.00	9.23	19.99	22.02	65.22		9.02R
	358.27	17.82	63.61	29.38	355.58	29.98	12.89	27.08	29.99	64.55	4.23	87.82R
	388.46	17.83	64.35	30.19	384.32	39.22	16.94	35.38	39.23	64.41	0.23	0.81R
	417.21	21.75	64.50	28.75	411.37	48.95	21.14	44.16	48.96	64.42	4.09	6.26L
	446.30	26.47	63.34	29.09	437.91	60.83	26.38	54.83	60.84	64.31	4.89	5.72R
	476.28	27.58	63.58	29.98	464.62	74.45	32.46	67.01	74.46	64.15	1.12	153.10L
	505.67	26.63	62.50	29.39	490.78	87.84	38.53	78.95	87.85	63.99	1.09	127.44R
	534.94	25.97	64.51	29.27	517.02	100.80	44.32	90.55	100.82	63.92	1.14	179.19L
	564.20	25.07	64.48	29.26	543.43	113.41	49.75	101.93	113.42	63.99	0.92	
	622.88	26.33	65.24	58.68	596.30	138.84	60.55	124.97	138.87	64.15	0.67	61.41L
	653.06	26.86	63.15	30.18	623.29	152.34	66.44	137.13	152.38	64.15	1.07	35.71L
	682.20	27.68	61.89	29.14	649.19	165.69	72.60	148.97	165.72	64.02	1.03	154.70R
	711.65	27.35	62.23	29.45	675.31	179.30	78.97	160.99	179.32	63.87	0.37	53.29L
	740.89	27.59	61.54	29.24	701.25	192.78	85.33	172.89	192.80	63.73	0.41	100.84L
	771.14	27.55	61.08	30.25	728.07	206.78	92.05	185.17	206.79	63.57	0.21	143.92L
	800.56	27.43	60.89	29.42	754.17	220.35	98.64	197.05	220.36	63.41	0.15	
	829.48	27.85	61.35	28.92	779.78	233.76	105.12	208.79	233.76	63.28	0.49	173.09L
	858.79	27.32	61.21	29.31	805.76	247.32	111.64	220.70	247.33	63.17	0.55	32.51R
	888.16	27.56	61.54	29.37	831.83	260.85	118.12	232.58	260.85	63.07	0.29	134.05R
	917.34	27.23	62.29	29.18	857.74	274.28	124.44	244.42	274.28	63.02	0.49	106.23R
	947.31	27.18	62.67	29.97	884.39	287.98	130.77	256.57	287.98	62.99	0.18	8.31R
	975.78	28.05	62.94	28.47	909.62	301.18	136.81	268.31	301.18	62.98	0.93	150.13R
	1005.05	27.38	63.78	29.27	935.53	314.79	142.91	280.48	314.79	63.00	0.79	113.70L
	1034.76	27.21	62.92	29.71	961.93	328.41	149.02	292.65	328.41	63.01	0.43	41.49L
	1064.70	27.86	61.70	29.94	988.48	342.25	155.45	304.91	342.25	62.99	0.86	149.68R
	1094.42	27.04	62.76	29.72	1014.85	355.95	161.84	317.03	355.95	62.96	0.96	166.79R
	1143.32	25.87	63.39	48.90	1058.63	377.73	171.70	336.45	377.73	62.96	0.74	158.21L
	1155.24	25.60	63.14	11.92	1069.37	382.91	174.03	341.07	382.91	62.97	0.73	133.66L
	1184.95	25.36	62.55	29.71	1096.19	395.69	179.87	352.45	395.69	62.96	0.35	37.50L

	1214.47	26.04	61.37	29.52	1122.79	408.49	185.88	363.74	408.49	62.93	0.86	31.66L
	1244.37	26.98	60.10	29.90	1149.55	421.82	192.41	375.38	421.82	62.86	1.10	22.19L
	1273.71	27.90	59.30	29.34	1175.59	435.32	199.23	387.06	435.32	62.76	1.01	38.25R
	1303.22	28.28	59.93	29.51	1201.62	449.19	206.26	399.04	449.20	62.67	0.49	85.80R
	1333.07	28.34	61.42	29.85	1227.90	463.34	213.19	411.38	463.34	62.61	0.71	101.29R
	1362.30	28.22	62.76	29.23	1253.64	477.18	219.68	423.62	477.19	62.59	0.66	154.80R
	1392.46	27.26	63.75	30.16	1280.33	491.22	225.99	436.16	491.23	62.61	1.06	156.70R
	1421.70	25.28	65.76	29.24	1306.55	504.15	231.52	447.86	504.16	62.66	2.23	165.32R
	1451.62	22.71	67.51	29.92	1333.89	516.29	236.35	459.02	516.30	62.76	2.67	171.38R
	1481.39	20.37	68.53	29.77	1361.58	527.18	240.45	469.15	527.18	62.86	2.39	174.73L
	1511.23	17.28	67.57	29.84	1389.82	536.77	244.04	478.08	536.77	62.96	3.12	170.35L
	1540.81	13.06	64.38	29.58	1418.36	544.49	247.16	485.16	544.49	63.00	4.36	161.40L
	1570.48	10.61	59.84	29.67	1447.40	550.57	249.99	490.55	550.57	63.00	2.65	171.93L
	1600.19	8.73	58.08	29.71	1476.68	555.55	252.55	494.83	555.55	62.96	1.92	94.34R
	1629.88	8.74	67.66	29.69	1506.03	560.04	254.60	498.83	560.04	62.96	1.47	107.14R
	1658.96	8.56	72.15	29.08	1534.78	564.38	256.10	502.93	564.38	63.01	0.72	55.59L
	1688.35	8.90	69.06	29.39	1563.83	568.80	257.59	507.13	568.80	63.07	0.59	110.77L
	1717.96	8.56	61.83	29.61	1593.10	573.28	259.45	511.22	573.28	63.09	1.16	92.10L
	1747.50	8.58	55.23	29.54	1622.31	577.66	261.74	514.97	577.67	63.06	1.00	43.20L
Projected to TD	1777.39 1789.31 1810.00	8.69 8.74 8.74	54.55 56.02 56.02	29.89 11.92 20.69	1651.86 1663.64 1684.09	582.11 583.90 587.02	264.32 265.35 267.11	518.64 520.12 522.73	582.11 583.90 587.02	62.99 62.97 62.93	0.15 0.57 0.00	78.07R

Survey Type: Definitive Survey

Survey Error Model: SLB ISCWSA version 24 *** 3-D 95.00% Confidence 2.7955 sigma

Surveying Prog:			
MD From (m)	<u>MD To (m)</u>	EOU Freq Survey Tool Type	Borehole -> Survey
0.00	77.18	Act-Stns SLB_ZERO-Depth Only	West Seahorse-3 -> West Seahorse-3 Final Dmag
77.18	77.50	Act-Stns SLB_ZERO	West Seahorse-3 -> West Seahorse-3 Final Dmag
77.50	1094.42	Act-Stns SLB_MWD+DMAG	West Seahorse-3 -> West Seahorse-3 Final Dmag
1094.42	1789.31	Act-Stns SLB_MWD-STD	West Seahorse-3 -> West Seahorse-3 Final Dmag
1789.31	1810.00	Act-Stns SLB_BLIND+TREND	West Seahorse-3 -> West Seahorse-3 Final Dmag

West Seahorse-3 Final Dmag Geodetic Survey

Report Date: May 21, 2008 Client: 3D Oil Ltd

Field: 3D Oil - West Seahorse
Structure / Slot: West Seahorse / 1
Well: West Seahorse-3
Borehole: West Seahorse-3

UWI/API#:

Survey Name / Date: West Seahorse-3 Final Dmag / April 29, 2008
Tort / AHD / DDI / ERD ratio: 73.430° / 587.54 m / 5.182 / 0.349
Grid Coordinate System: GDA94/MGA94 Zone 55

Location Lat/Long: S 38 12 24.942, E 147 37 9.865
Location Grid N/E Y/X: N 5771044.135 m, E 554229.358 m

Grid Convergence Angle: -0.38311463° Grid Scale Factor: 0.99963622 Survey / DLS Computation Method: Minimum Curvature / Lubinski

Vertical Section Azimuth: 62.960°

Vertical Section Origin: N 0.000 m, E 0.000 m

TVD Reference Datum: RKB

TVD Reference Elevation: 37.7 m relative to MSL
Sea Bed / Ground Level Elevation: -39.500 m relative to MSL

 Magnetic Declination:
 12.844°

 Total Field Strength:
 59946.745 nT

 Magnetic Dip:
 -68.778°

 Declination Date:
 April 29, 2008

 Magnetic Declination Model:
 BGGM 2007

North Reference: Grid North
Total Corr Mag North -> Grid North: +13.227°
Local Coordinates Referenced To: Well Head

Comments	Measured	Inclination	Azimuth Grid	TVD	Vertical Section	NS Grid North	EW Grid North	DLS	Northing	Easting	Latitude	Longitude
	Depth (m)	(deg)	(deg)	(m)	(m)	(m)	(m)	(deg/30 m)	(m)	(m)		
Tie-In	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5771044.14	554229.36	S 38 12 24.942	E 147 37 9.865
Mud Line	77.50	0.00	0.00	77.50	0.00	0.00	0.00	0.00	5771044.14	554229.36	S 38 12 24.942	E 147 37 9.865
	182.42	2.71	71.37	182.38	2.45	0.79	2.35	0.77	5771044.93	554231.71	S 38 12 24.916	E 147 37 9.961
	210.69	4.37	68.61	210.60	4.19	1.40	3.99	1.77	5771045.53	554233.34	S 38 12 24.896	E 147 37 10.028
	240.38	6.29	65.93	240.16	6.94	2.47	6.53	1.96	5771046.61	554235.88	S 38 12 24.861	E 147 37 10.132
	269.55	8.46	63.88	269.08	10.68	4.07	9.91	2.25	5771048.20	554239.27	S 38 12 24.808	E 147 37 10.271
	299.18	10.91	63.41	298.29	15.66	6.29	14.38	2.48	5771050.42	554243.73	S 38 12 24.735	E 147 37 10.454
	328.89	13.72	61.49	327.31	22.00	9.23	19.99	2.87	5771053.36	554249.34	S 38 12 24.639	E 147 37 10.684
	358.27	17.82	63.61	355.58	29.98	12.89	27.08	4.23	5771057.02	554256.43	S 38 12 24.518	E 147 37 10.974
	388.46	17.83	64.35	384.32	39.22	16.94	35.38	0.23	5771061.07	554264.73	S 38 12 24.385	E 147 37 11.315
	417.21	21.75	64.50	411.37	48.95	21.14	44.16	4.09	5771065.27	554273.51	S 38 12 24.247	E 147 37 11.674
	446.30	26.47	63.34	437.91	60.83	26.38	54.83	4.89	5771070.50	554284.17	S 38 12 24.075	E 147 37 12.111
	476.28	27.58	63.58	464.62	74.45	32.46	67.01	1.12	5771076.59	554296.35		E 147 37 12.610
	505.67	26.63	62.50	490.78	87.84	38.53	78.95	1.09	5771082.65	554308.28		E 147 37 13.099
	534.94	25.97	64.51	517.02	100.80	44.32	90.55	1.14	5771088.44	554319.88	S 38 12 23.485	E 147 37 13.575
	564.20	25.07	64.48	543.43	113.41	49.75	101.93	0.92	5771093.86	554331.25	S 38 12 23.307	E 147 37 14.041
	622.88	26.33	65.24	596.30	138.84	60.55	124.97	0.67	5771104.67	554354.28	S 38 12 22.951	E 147 37 14.985
	653.06	26.86	63.15	623.29	152.34	66.44	137.13	1.07	5771110.55	554366.44		E 147 37 15.483
	682.20	27.68	61.89	649.19	165.69	72.60	148.97	1.03	5771116.71	554378.28		E 147 37 15.968
	711.65	27.35	62.23	675.31	179.30	78.97	160.99	0.37	5771123.08	554390.29	S 38 12 22.346	E 147 37 16.460
	740.89	27.59	61.54	701.25	192.78	85.33	172.89	0.41	5771129.43	554402.18	S 38 12 22.137	E 147 37 16.947
	771.14	27.55	61.08	728.07	206.78	92.05	185.17	0.21	5771136.15	554414.46		E 147 37 17.450
	800.56	27.43	60.89	754.17	220.35	98.64	197.05	0.15	5771142.74	554426.33		E 147 37 17.937
	829.48	27.85	61.35	779.78	233.76	105.12	208.79	0.49	5771149.21	554438.08		E 147 37 18.418
	858.79	27.32	61.21	805.76	247.32	111.64	220.70	0.55	5771155.73	554449.97	S 38 12 21.274	E 147 37 18.905
	888.16	27.56	61.54	831.83	260.85	118.12	232.58	0.29	5771162.21	554461.85	S 38 12 21.061	
	917.34	27.23	62.29	857.74	274.28	124.44	244.42	0.49	5771168.53	554473.69		E 147 37 19.877
	947.31	27.18	62.67	884.39	287.98	130.77	256.57	0.18	5771174.86	554485.84		E 147 37 20.374
	975.78	28.05	62.94	909.62	301.18	136.81	268.31	0.93	5771180.89	554497.57		E 147 37 20.855
	1005.05	27.38	63.78	935.53	314.79	142.91	280.48	0.79	5771186.99	554509.73	S 38 12 20.246	E 147 37 21.354
	1034.76	27.21	62.92	961.93	328.41	149.02	292.65	0.43	5771193.10	554521.91	S 38 12 20.046	E 147 37 21.852
	1064.70	27.86	61.70	988.48	342.25	155.45	304.91	0.86	5771199.53	554534.16	S 38 12 19.834	E 147 37 22.354
	1094.42	27.04	62.76	1014.85	355.95	161.84	317.03	0.96	5771205.91	554546.27	S 38 12 19.625	E 147 37 22.851
	1143.32	25.87	63.39	1058.63	377.73	171.70	336.45	0.74	5771215.78	554565.69	S 38 12 19.300	E 147 37 23.646
	1155.24	25.60	63.14	1069.37	382.91	174.03	341.07	0.73	5771218.10	554570.31	S 38 12 19.224	E 147 37 23.836
	1184.95	25.36	62.55	1096.19	395.69	179.87	352.45	0.35	5771223.93	554581.68	S 38 12 19.032	E 147 37 24.301
	1214.47	26.04	61.37	1122.79	408.49	185.88	363.74	0.86	5771229.95	554592.97	S 38 12 18.835	E 147 37 24.764
	1244.37	26.98	60.10	1149.55	421.82	192.41	375.38	1.10	5771236.48	554604.61	S 38 12 18.620	E 147 37 25.241
	1273.71	27.90	59.30	1175.59	435.32	199.23	387.06	1.01	5771243.30	554616.27		E 147 37 25.719
	1303.22	28.28	59.93	1201.62	449.19	206.26	399.04	0.49	5771250.32	554628.26	S 38 12 18.166	E 147 37 26.209
	1333.07	28.34	61.42	1227.90	463.34	213.19	411.38	0.71	5771257.25	554640.59	S 38 12 17.938	E 147 37 26.715

	1362.30	28.22	62.76	1253.64	477.18	219.68	423.62	0.66	5771263.73	554652.83	S 38 12 17.726	E 147 37 27.216
	1392.46	27.26	63.75	1280.33	491.22	225.99	436.16	1.06	5771270.05	554665.36	S 38 12 17.518	E 147 37 27.729
	1421.70	25.28	65.76	1306.55	504.15	231.52	447.86	2.23	5771275.57	554677.05	S 38 12 17.336	E 147 37 28.209
	1451.62	22.71	67.51	1333.89	516.29	236.35	459.02	2.67	5771280.40	554688.21	S 38 12 17.177	E 147 37 28.666
	1481.39	20.37	68.53	1361.58	527.18	240.45	469.15	2.39	5771284.50	554698.34	S 38 12 17.042	E 147 37 29.081
	1511.23	17.28	67.57	1389.82	536.77	244.04	478.08	3.12	5771288.09	554707.27	S 38 12 16.923	E 147 37 29.447
	1540.81	13.06	64.38	1418.36	544.49	247.16	485.16	4.36	5771291.21	554714.34	S 38 12 16.821	E 147 37 29.737
	1570.48	10.61	59.84	1447.40	550.57	249.99	490.55	2.65	5771294.03	554719.73	S 38 12 16.728	E 147 37 29.958
	1600.19	8.73	58.08	1476.68	555.55	252.55	494.83	1.92	5771296.60	554724.00	S 38 12 16.644	E 147 37 30.133
	1629.88	8.74	67.66	1506.03	560.04	254.60	498.83	1.47	5771298.64	554728.00	S 38 12 16.576	E 147 37 30.297
	1658.96	8.56	72.15	1534.78	564.38	256.10	502.93	0.72	5771300.15	554732.10	S 38 12 16.527	E 147 37 30.465
	1688.35	8.90	69.06	1563.83	568.80	257.59	507.13	0.59	5771301.63	554736.31	S 38 12 16.478	E 147 37 30.638
	1717.96	8.56	61.83	1593.10	573.28	259.45	511.22	1.16	5771303.49	554740.39	S 38 12 16.417	E 147 37 30.805
	1747.50	8.58	55.23	1622.31	577.66	261.74	514.97	1.00	5771305.78	554744.14	S 38 12 16.341	E 147 37 30.958
	1777.39	8.69	54.55	1651.86	582.11	264.32	518.64	0.15	5771308.36	554747.81	S 38 12 16.257	E 147 37 31.109
	1789.31	8.74	56.02	1663.64	583.90	265.35	520.12	0.57	5771309.39	554749.29	S 38 12 16.223	E 147 37 31.169
Projected to TD	1810.00	8.74	56.02	1684.09	587.02	267.11	522.73	0.00	5771311.15	554751.90	S 38 12 16.166	E 147 37 31.276

Survey Type: Definitive Survey

Survey Error Model: SLB ISCWSA version 24 *** 3-D 95.00% Confidence 2.7955 sigma

Surveying Prog:			
MD From (m)	<u>MD To (m)</u>	EOU Freq Survey Tool Type	Borehole -> Survey
0.00	77.18	Act-Stns SLB_ZERO-Depth Only	West Seahorse-3 -> West Seahorse-3 Final Dmag
77.18	77.50	Act-Stns SLB_ZERO	West Seahorse-3 -> West Seahorse-3 Final Dmag
77.50	1094.42	Act-Stns SLB_MWD+DMAG	West Seahorse-3 -> West Seahorse-3 Final Dmag
1094.42	1789.31	Act-Stns SLB_MWD-STD	West Seahorse-3 -> West Seahorse-3 Final Dmag
1789.31	1810.00	Act-Stns SLB_BLIND+TREND	West Seahorse-3 -> West Seahorse-3 Final Dmag

West Seahorse-3 Final Dmag EOU Report

Report Date: May 21, 2008 Client: 3D Oil Ltd

Field: 3D Oil - West Seahorse

Structure / Slot: West Seahorse / 1 Well: West Seahorse-3 Borehole: West Seahorse-3

UWI/API#:

Survey Name / Date: West Seahorse-3 Final Dmag / April 29, 2008

Tort / AHD / DDI / ERD ratio: 73.430° / 587.54 m / 5.182 / 0.349 Grid Coordinate System: GDA94/MGA94 Zone 55 Location Lat/Long: S 38 12 24.942, E 147 37 9.865 Location Grid N/E Y/X: N 5771044.135 m, E 554229.358 m

Grid Convergence Angle: -0.38311463° Grid Scale Factor: 0.99963622

Survey / DLS Computation Method: Minimum Curvature / Lubinski

Vertical Section Azimuth: 62.960°

Vertical Section Origin: N 0.000 m, E 0.000 m TVD Reference Datum: RKB

TVD Reference Elevation: 37.7 m relative to MSL Sea Bed / Ground Level Elevation: -39.500 m relative to MSL

Magnetic Declination: 12.844° Total Field Strength: 59946.745 nT Magnetic Dip: -68.778° Declination Date: April 29, 2008

Magnetic Declination Model: BGGM 2007 North Reference: Grid North

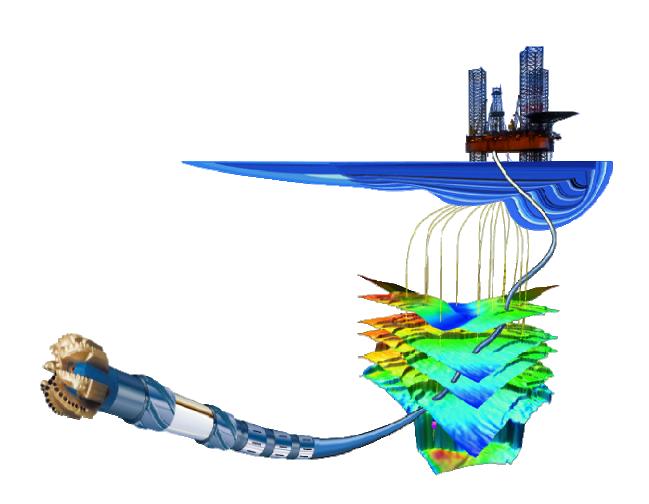
Total Corr Mag North -> Grid North: +13.227° Local Coordinates Referenced To: Well Head

Comments	Measured	Inclination	Azimuth	TVD	Vertical	NS	EW	DLS	Semi-Axis	Semi-Axis	EOU Unc	Major Axis	Survey Tool
Comments	Depth		Grid		Section	Grid North	Grid North		Major NEV	Minor NEV	Vertical	Azimuth NEV	Model
T: 1	(m)	(deg)	(deg)	(m)	(m)	(m)	(m)	(deg/30 m)	(m)	(m)	(m)	(deg)	01.0.7500.5 0.:
Tie-In	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.16	0.00		SLB_ZERO-Depth Only
Mud Line	77.50	0.00	0.00	77.50	0.00	0.00	0.00	0.00	0.16	0.16	0.00		SLB_ZERO
	182.42	2.71	71.37	182.38	2.45	0.79	2.35	0.77	0.43	0.42	0.99		SLB_MWD+DMAG
	210.69	4.37	68.61	210.60	4.19	1.40	3.99	1.77	0.52	0.51	0.99		SLB_MWD+DMAG
	240.38	6.29	65.93	240.16	6.94	2.47	6.53	1.96	0.63	0.61	0.99	153.47	SLB_MWD+DMAG
	269.55	8.46	63.88	269.08	10.68	4.07	9.91	2.25	0.76	0.71	0.99	152 14	SLB MWD+DMAG
	299.18	10.91	63.41	298.29	15.66	6.29	14.38	2.23	0.76	0.71	0.99		SLB MWD+DMAG
	328.89	13.72	61.49	327.31	22.00	9.23	19.99	2.40	1.07	0.92	0.99		SLB MWD+DMAG
	358.27	17.82	63.61	355.58	29.98	12.89	27.08	4.23	1.07	1.03	0.99		SLB_MWD+DMAG
	388.46	17.83	64.35	384.32	39.22	16.94	35.38	0.23	1.45	1.12	0.99		_
	300.40	17.03	04.33	304.32	39.22	10.94	33.30	0.23	1.43	1.12	0.99	132.10	SLB_MWD+DMAG
	417.21	21.75	64.50	411.37	48.95	21.14	44.16	4.09	1.65	1.20	1.00	152 38	SLB MWD+DMAG
	446.30	26.47	63.34	437.91	60.83	26.38	54.83	4.89	1.95	1.33	1.00		SLB_MWD+DMAG
	476.28	27.58	63.58	464.62	74.45	32.46	67.01	1.12	2.29	1.47	1.02		SLB MWD+DMAG
	505.67	26.63	62.50	490.78	87.84	38.53	78.95	1.09	2.56	1.54	1.02		SLB_MWD+DMAG
	534.94	25.97	64.51	517.02	100.80	44.32	90.55	1.14	2.77	1.57	1.04		SLB_MWD+DMAG
	334.34	25.51	04.51	317.02	100.00	44.52	90.55	1.14	2.11	1.57	1.00	102.00	OLD_IVIV D+DIVIAG
	564.20	25.07	64.48	543.43	113.41	49.75	101.93	0.92	2.99	1.61	1.09	152 95	SLB MWD+DMAG
	622.88	26.33	65.24	596.30	138.84	60.55	124.97	0.67	3.55	1.78	1.15		SLB_MWD+DMAG
	653.06	26.86	63.15	623.29	152.34	66.44	137.13	1.07	3.88	1.91	1.19		SLB MWD+DMAG
	682.20	27.68	61.89	649.19	165.69	72.60	148.97	1.03	4.19	2.03	1.23		SLB_MWD+DMAG
	711.65	27.35	62.23	675.31	179.30	78.97	160.99	0.37	4.49	2.12	1.27		SLB_MWD+DMAG
	711.00	27.00	02.20	07 5.51	173.50	70.57	100.55	0.57	4.43	2.12	1.21	102.00	OLD_IVIV D I DIVI/ (O
	740.89	27.59	61.54	701.25	192.78	85.33	172.89	0.41	4.78	2.22	1.32	152.83	SLB MWD+DMAG
	771.14	27.55	61.08	728.07	206.78	92.05	185.17	0.21	5.10	2.33	1.36		SLB_MWD+DMAG
	800.56	27.43	60.89	754.17	220.35	98.64	197.05	0.15	5.39	2.41	1.41		SLB_MWD+DMAG
	829.48	27.85	61.35	779.78	233.76	105.12	208.79	0.49	5.70	2.52	1.46		SLB_MWD+DMAG
	858.79	27.32	61.21	805.76	247.32	111.64	220.70	0.55	6.01	2.63	1.51		SLB_MWD+DMAG
	000.70	27.02	01.21	000.70	217.02	111.01	220.70	0.00	0.01	2.00	1.01	102.01	OLD_IIIIV D \ DIIII (O
	888.16	27.56	61.54	831.83	260.85	118.12	232.58	0.29	6.32	2.73	1.56	152 29	SLB_MWD+DMAG
	917.34	27.23	62.29	857.74	274.28	124.44	244.42	0.49	6.63	2.84	1.61		SLB MWD+DMAG
	947.31	27.18	62.67	884.39	287.98	130.77	256.57	0.18	6.92	2.94	1.66		SLB MWD+DMAG
	975.78	28.05	62.94	909.62	301.18	136.81	268.31	0.93	7.23	3.06	1.72		SLB_MWD+DMAG
	1005.05	27.38	63.78	935.53	314.79	142.91	280.48	0.79	7.55	3.18	1.77		SLB_MWD+DMAG
								-					
	1034.76	27.21	62.92	961.93	328.41	149.02	292.65	0.43	7.85	3.27	1.82	152.25	SLB MWD+DMAG
	1064.70	27.86	61.70	988.48	342.25	155.45	304.91	0.86	8.17	3.39	1.88		SLB_MWD+DMAG
	1094.42	27.04	62.76	1014.85	355.95	161.84	317.03	0.96	8.48	3.51	1.93		SLB MWD+DMAG
	1143.32	25.87	63.39	1058.63	377.73	171.70	336.45	0.74	8.93	3.60	1.97		SLB_MWD-STD
	1155.24	25.60	63.14	1069.37	382.91	174.03	341.07	0.73	9.03	3.60	1.98		SLB_MWD-STD
	1100.21	20.00	00.11	1000.07	002.01	17 1.00	011.01	0.70	0.00	0.00	1.00	102.20	OLD_MITTE OTE
	1184.95	25.36	62.55	1096.19	395.69	179.87	352.45	0.35	9.28	3.61	1.99	152.25	SLB MWD-STD
	1214.47	26.04	61.37	1122.79	408.49	185.88	363.74	0.86	9.53	3.62	2.00		SLB MWD-STD
	1244.37	26.98	60.10	1149.55	421.82	192.41	375.38	1.10	9.80	3.63	2.02		SLB_MWD-STD
	1273.71	27.90	59.30	1175.59	435.32	199.23	387.06	1.01	10.08	3.65	2.02		SLB_MWD-STD
	1303.22	28.28	59.93	1201.62	449.19	206.26	399.04	0.49	10.08	3.68	2.05		SLB_MWD-STD
	1303.22	20.20	55.55	1201.02	773.13	200.20	555.04	0.43	10.37	5.00	2.00	151.90	OLD_WWV D-O I D
	1333.07	28.34	61.42	1227.90	463.34	213.19	411.38	0.71	10.67	3.71	2.07	151 05	SLB_MWD-STD
	1362.30	28.22	62.76	1253.64	477.18	219.68	423.62	0.66	10.07	3.74	2.07		SLB MWD-STD
	1392.46	27.26	63.75	1280.33	491.22	225.99	436.16	1.06	11.27	3.74	2.09		SLB_MWD-STD
	1332.40	21.20	03.73	1200.33	431.22	225.99	430.10	1.00	11.27	3.77	۷.۱۱	132.01	OLD_IVIVV D-O I D

	1421.70	25.28	65.76	1306.55	504.15	231.52	447.86	2.23	11.56	3.82	2.13	152.12 SLB_MWD-STD
	1451.62	22.71	67.51	1333.89	516.29	236.35	459.02	2.67	11.83	3.86	2.15	152.25 SLB_MWD-STD
	1481.39	20.37	68.53	1361.58	527.18	240.45	469.15	2.39	12.07	3.91	2.17	152.38 SLB_MWD-STD
	1511.23	17.28	67.57	1389.82	536.77	244.04	478.08	3.12	12.29	3.95	2.19	152.46 SLB_MWD-STD
	1540.81	13.06	64.38	1418.36	544.49	247.16	485.16	4.36	12.47	3.98	2.20	152.46 SLB_MWD-STD
	1570.48	10.61	59.84	1447.40	550.57	249.99	490.55	2.65	12.61	4.02	2.22	152.37 SLB_MWD-STD
	1600.19	8.73	58.08	1476.68	555.55	252.55	494.83	1.92	12.72	4.05	2.23	152.31 SLB_MWD-STD
	1629.88	8.74	67.66	1506.03	560.04	254.60	498.83	1.47	12.82	4.08	2.24	152.48 SLB_MWD-STD
	1658.96	8.56	72.15	1534.78	564.38	256.10	502.93	0.72	12.92	4.12	2.25	152.60 SLB_MWD-STD
	1688.35	8.90	69.06	1563.83	568.80	257.59	507.13	0.59	13.02	4.13	2.26	152.61 SLB_MWD-STD
	1717.96	8.56	61.83	1593.10	573.28	259.45	511.22	1.16	13.12	4.13	2.27	152.51 SLB_MWD-STD
	1747.50	8.58	55.23	1622.31	577.66	261.74	514.97	1.00	13.21	4.17	2.29	152.37 SLB_MWD-STD
	1777.39	8.69	54.55	1651.86	582.11	264.32	518.64	0.15	13.31	4.19	2.30	152.30 SLB_MWD-STD
	1789.31	8.74	56.02	1663.64	583.90	265.35	520.12	0.57	13.35	4.19	2.30	152.30 SLB_MWD-STD
Projected to TD	1810.00	8.74	56.02	1684.09	587.02	267.11	522.73	0.00	13.91	4.47	2.37	151.81 SLB_BLIND+TREND

Survey Type: Definitive Survey

NOTES: Only depth error sources are used from surface to mud-line.


Structure Uncertainty:

0.00 m Included 0.00 m Included Slot Uncertainty: Hole Diameter: 12.25 in Include Global Error Sources Used: Along-Hole Depth Uncertainty: At survey stations 12.25 in Included

Survey Error Model: SLB ISCWSA version 24 *** 3-D 95.00% Confidence 2.7955 sigma Surveying Prog:

Surveying Frog.			
MD From (m)	<u>MD To (m)</u>	EOU Freq Survey Tool Type	Borehole -> Survey
0.00	77.18	Act-Stns SLB_ZERO-Depth Only	West Seahorse-3 -> West Seahorse-3 Final Dmag
77.18	77.50	Act-Stns SLB_ZERO	West Seahorse-3 -> West Seahorse-3 Final Dmag
77.50	1094.42	Act-Stns SLB_MWD+DMAG	West Seahorse-3 -> West Seahorse-3 Final Dmag
1094.42	1789.31	Act-Stns SLB_MWD-STD	West Seahorse-3 -> West Seahorse-3 Final Dmag
1789.31	1810.00	Act-Stns SLB_BLIND+TREND	West Seahorse-3 -> West Seahorse-3 Final Dmag

Performance Drilling Report

BHA 1 / Bit 2

17 ½" (445 mm) Steerable Motor Assembly 125m – 1123m MD

BHA

17 ½" Hughes MXL-T1V Tooth Bit (3 x 20 jets)
9 5/8 PowerPak Motor (5:6 lobe, 4.0 stage, 17 ¼ sleeve and 1.5° bend)
17" String Stab
Crossover Sub
Float Sub
3 x 8" Pony NMDC
Crossover Sub
PowerPulse MWD (800-1200 gpm)
2 x 8" NMDC
8 ¼" Spiral Drill Collars (5 joints)
Hydraulic Jar
8 ¼" Spiral Drill Collar (2 joints)
Crossover Sub
5 ½" HW Drill Pipe (12 joints)
5 ½" Drill Pipe to Surface

Drilling Summary

Drilled cement and float equipment, cleaned out rat hole. Rotary drilled to kick off point at 172m. The kick off section was directionally drilled, mainly sliding (and rotating when required), building at 3°/30m to 27.4°.

At 386m, in the kick off section, a full stand was back reamed and reamed down once between 386m to 350m to smoothen and reduce a higher than expected dogleg severity. The dogleg severity was reduced from 5.3°/30m to 4.2°/30m and this process took about 1 hour of rig time which involved racking back a stand which was already made to drill ahead.

The tangent section was rotary drilled with minor slides (7-10m every 2-3 stands) to counter the general dropping tendency of 0.3° to $0.6^{\circ}/30m$ and there was also a slight right hand walk.

From 0° - 8° the motor was able to build at 2.5 °/30m. From 8° - 27° the motor was able to build at 3.8 °/30m.

Reactive torque was about 30° with 25 klbs WOB

No hole problems were encountered or reported and all directional requirements were met. Trip out of the hole was uneventful. Hole was cased and cemented.

Drilling Performance

Interval	Distance (m)	Time (hrs)	ROP (m/hr)
Total Drilled	998	28.81	34.64
Total Drilled in rotary	668	20.88	31.99
Total Drilled in slide mode	330	7.93	41.61
Bit Graded	2 – 2 – WT – A – E – In – BT - TD		

Section Breakdown

Section	Rotary m (%)	Slide m (%)
Start of run to KOP (125-170m)	45 (100%)	-
KOP to EOC (170-465m)	48 (16%)	247 (84%)
EOC to section TD (465-1123m)	575 (87%)	83 (13%)

BHA 2 / Bit 3

12 ¼" (311 mm) Rotary Steerable Assembly 1123m – 1810 m MD (687m)

BHA

12 ¼" Reed Hycalog RSX616 MA 16 PDC Bit (3 x 15 & 3 x 16 jets)
PowerDrive 900 X5 (without flow restrictor)
PowerDrive 900 Receiver (with ported float) and Flex Collar
8 ¼" GVR
PowerPulse MWD (600-1200 gpm)
1 x 8" NMDC
8 ¼" Spiral Drill Collar
Hydraulic Jar
8 ¼" Spiral Drill Collar
Crossover Sub
5 ½" HW Drill Pipe (12 joints)
5 ½" Drill Pipe to Surface

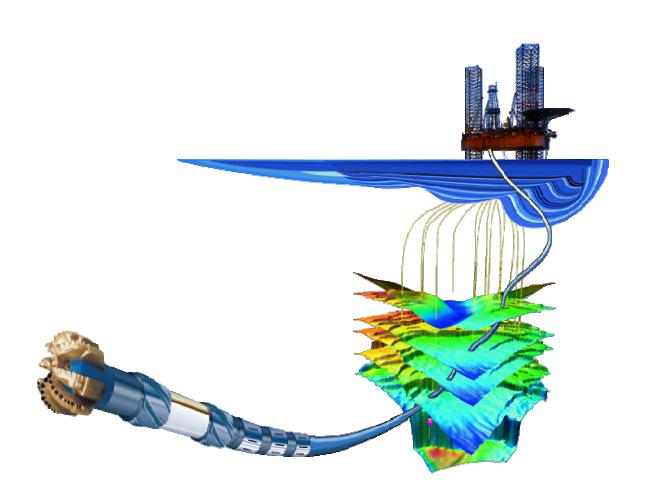
Drilling Summary

The cement was tagged early at 285m and drilled out, drilling the float equipment was difficult and time consuming. Three meters of new formation was drill out and a formation integrity test was performed.

Once out of the shoe the PowerDrive assembly had a slight dropping tendency in neutral steering mode. The rate of penetration was held to about 30 m/hr until the BHA was clear of the shoe and rat hole and then the drilling parameters were increased. A 50% steering ratio was required to hold the assembly in the tangent section. A rate of penetration of about 60 m/hr was achieved for most of the tangent section and the start of the drop section.

At the start of the drop section the tool was initially placed in a 25% drop with a right bias to counteract a left turn tendency. The drop rate was much lower than expected so steering ratio was increased to eventually 100% low side. Drop rates of only low 2 °/30m was achieved in the Lakes Entrance formation. Once into the Latrobe Group formation drops rates increased to low 4 °/30m and the required drop angle could be achieved. The rate of penetration was held back to 30 m/hr for logging purposes and this may have helped to improve the drop rate.

Once the drop was achieved the PowerDrive was placed in Inclination Hold mode for the remainder of the tangent section to TD at 1810m MDRT. Both geological targets were successfully penetrated within the allowed tollerance.


A moderate stick-slip was observed for most of the run but it did not affect the steering ability. Stick-slip was considerably lower in the Latrobe Group formation.

The bit was graded as 3-1-CT-A-X-I-WT-TD.

Drilling Performance;

Interval	Distance (m)	Time (hrs)	ROP (m/hr)
Rotary mode	687	19.62	35.0

BHA Reports

BHA Data Sheet

3D Oil Ltd - West Seahorse-3

BHA#	17 1/2" Motor BHA
Field	3D Oil - West Seahorse
Structure	West Seahorse

Date	April 28, 2008
Well	West Seahorse-3
Borehole	West Seahorse-3

				Fish. Neck					Cum.
		Vendor/		OD (in)/	OD (in)/	Max OD	Bottom/	Length	Length
Item	Name	Model	Serial #	Length (m)	ID (in)	(in)	Top Connection	(m)	(m)
1	17 1/2 " Bit	Hughes Christense	60654689		8.75	17.50		0.41	0.41
		MXL T1V			3.75		7.63 Reg Pin		
2	PowerPak Motor (1.5 deg)	Schlumberger	5659		9.63	17.25	7.63 Reg Box	10.10	10.51
		A962M5640XP			7.88		7.63 Reg Box		
3	17" String Stab	Schlumberger	OSS06117	2 <u>A</u>	9.50	17.00	7.63 Reg Pin	2.42	12.93
					3.00		7.63 Reg Box		
4	Crossover	Seadrill	SSD7124	8.00	9.50	9.50	7.63 Reg Pin	1.23	14.16
				0.62	3.00		6.63 Reg Box		
5	Float Sub	Schlumberger	ASQ 8037		8.00	8.00	6.63 Reg Pin	0.80	14.96
					2.88		6.63 Reg Box		
6	8" Pony NMDC	Schlumberger	7505		7.94	7.94	6.63 Reg Pin	2.45	17.41
					2.88		6.63 Reg Box		
7	8" Pony NMDC	Schlumberger	ASQ 8020		8.00	8.00	6.63 Reg Pin	3.00	20.41
					2.88		6.63 Reg Box		
8	8" Pony NMDC	Schlumberger	9504216		7.88	7.88	6.63 Reg Pin	1.55	21.96
					2.81		6.63 Reg Box		
9	Cross over sub	Schlumberger	42755		8.50	8.50	6.63 Reg Pin	0.47	22.43
					2.88		6.63 FH Box		
10	PowerPulse HF MWD	Schlumberger	VA77		8.25	8.25	6.63 FH Pin	8.49	30.92
		PowerPulse HF			5.90		6.63 Reg Box		
11	8" NMDC	Schlumberger	N688		8.00	8.00	6.63 Reg Pin	8.65	39.57
					2.81		6.63 Reg Box		
12	8" NMDC	Schlumberger	SBD 5555		8.25	8.25	6.63 Reg Pin	9.45	49.02
					3.25		6.63 Reg Box		
13	8" Collar (5 joints)				8.00	8.00	6.63 Reg Pin	46.99	96.01
					2.81		6.63 Reg Box		
14	Hydraulic Jar	Dailey Petroleum S	1762-1339		8.00	8.00	6.63 Reg Pin	9.68	105.69
		HDL-100			3.00		6.63 Reg Box		
15	8" Collar (2 joints)				8.00	8.00	6.63 Reg Pin	18.90	124.59
					2.81		6.63 Reg Box		
16	Crossover	Seadrill	SSD 7131		8.25	8.25	6.63 Reg Pin	1.22	125.81
					2.81		5.50 XT57 Box		
17	5 1/2" HWDP (12 joints)				5.50	7.00	5.50 XT57 Pin	112.84	238.65
					3.25		5.50 XT57 Box		
18	5-1/2 " 24.70 DPS, 10% Wear				5.42	7.00	5.50 XT57 Pin	to surface	
					4.67		5.50 XT57 Box		
			1						
			-			eight (lbf)	84063	Total Len.	238.65
					Belo	w Jar (lbf)	48666.7		

BHA Comments:

Stabilizer		
Blade Length (m)		Mid-Pt. To Bit (m)
	0.46	1.13
	0.60	11.54
		Bend To Bottom
Bent Housing Angle (deg)		Connection (m)
	1.50	2.78

Sensor	
Туре	Distance To Bit (m)
D&I	26.56

Bit Nozzles		
Count	Size(1/32 in)	
3	20.00	
TFA (in2)	0.92	

Quality Control		
Created By:	PSellathurai	
Checked By:		

		Cum. Len. (m)
ſĪ	5-1/2 " 24.70 DPS, 10% Wear	to surface
	5 1/2" HWDP (12 joints)	238.65
	Crossover	125.81
	8" Collar (2 joints)	124.59
	Hydraulic Jar	105.69
	8" Collar (5 joints)	96.01
	8" NMDC	49.02
	8" NMDC	39.57
	PowerPulse HF MWD	30.92
	Cross over sub	22.43
	8" Pony NMDC	21.96
Н	8" Pony NMDC	20.41
	8" Pony NMDC	17.41
	Float Sub	14.96
	Crossover	14.16
	17" String Stab	12.93
74	PowerPak Motor (1.5 deg)	10.51
	17 1/2 " Bit	0.41

3D Oil Ltd West Seahorse-3 West Seahorse 3D Oil - West Seahorse West Seahorse-3 17 1/2" Motor BHA

BHA DESCRIPTION				
ELEMENT	LENGTH (m)	OD (in)	ID (in)	MAX OD (in)
17 1/2 " Bit	0.41	17.50	3.75	17.50
PowerPak Motor (1.5 deg)	10.10	9.63	7.88	17.25
17" String Stab	2.42	9.50	3.00	17.00
Crossover	1.23	9.50	3.00	9.50
Float Sub	0.80	8.00	2.88	8.00
8" Pony NMDC	2.45	7.94	2.88	7.94
8" Pony NMDC	3.00	8.00	2.88	8.00
8" Pony NMDC	1.55	7.88	2.81	7.88
Cross over sub	0.47	8.50	2.88	8.50
PowerPulse HF MWD	8.49	8.25	5.90	8.25
8" NMDC	8.65	8.00	2.81	8.00
8" NMDC	9.45	8.25	3.25	8.25
8" Collar (5 joints)	46.99	8.00	2.81	8.00
Hydraulic Jar	9.68	8.00	3.00	8.00
8" Collar (2 joints)	18.90	8.00	2.81	8.00
Crossover	1.22	8.25	2.81	8.25
5 1/2" HWDP (12 joints)	112.84	5.50	3.25	7.00
5-1/2 " 24.70 DPS, 10% We	to surface	5.42	4.67	7.00
Bit to Direction & Inclination Sensor = 26.56 m				

DRILLING OVERVIEW

During the kickoff from 0° - 8° the motor was able to build at 2.5 °/30m, and from 8° - 27° the motor was able to build at 3.8 °/30m.

The tangent section was rotary drilled with minor slides (7-10m every 2-3 stands) to counter the general dropping tendency.

Depth in:	125.00 m	Depth out:	1123.00 m
Inclination in:	0.83°	To:	27.05°
Direction in:	65.83°	To:	63.32°
Total Drilled	998.00 m	Dogleg:	3.0

Schlumberger

Quality Control

Created by: PSellathurai Date:

Checked by: Date:

28/04/2008

BHA Data Sheet

3D Oil Ltd - West Seahorse-3

BHA#	12 1/4" RSS/LWD BHA
Field	3D Oil - West Seahorse
Structure	West Seahorse

Date	May 02, 2008	
Well	West Seahorse-3	
Borehole	West Seahorse-3	

				Fish. Neck					Cum.
		Vendor/		OD (in)/	OD (in)/	Max OD	Bottom/	Length	Length
	Name	Model	Serial #	Length (m)	ID (in)	(in)	Top Connection	(m)	(m)
1	12 1/4 " PDC Bit	Reed Hycalog	218662		8.00	12.25		0.30	0.30
		RSX616 MA 16			3.25		6.63 Reg Pin		
2	PD 900 AA 12 1/4"	Schlumberger	51330		9.25	11.80	6.63 Reg Box	4.20	4.50
		PD 900 AA 12 1/4"			3.00		6.63 Reg Box		
3	PD900 Receiver w/float	Schlumberger	49245	8.38	9.50	9.50	6.63 Reg Pin	1.87	6.37
				0.48			6.63 FH Box		
4	PD900 Flex Collar	Schlumberger	51767		8.25	8.25	6.63 FH Pin	2.95	9.32
					5.00		6.63 FH Box		
5	GVR-8	Schlumberger	034		8.25	12.13	6.63 FH Pin	4.22	13.54
		RAB-8			3.90		6.63 FH Box		
6	PowerPulse HF	Schlumberger	VA77		8.25	8.49	6.63 FH Pin	8.49	22.03
		PowerPulse HF			5.90		6.63 Reg Box		
7	8" NMDC	Schlumberger	N688		8.00	8.00	6.63 Reg Pin	8.65	30.68
					2.81		6.63 Reg Box		
8	1 x 8" Collar				8.00	8.00	6.63 Reg Pin	9.45	40.13
					2.81		6.63 Reg Box		
9	Hydraulic Jar	Dailey Petroleum S	1762-1339		8.00	8.00	6.63 Reg Pin	9.68	49.81
ı		HDL-100			3.00		6.63 Reg Box		
10	1x 8" Collar				8.00	8.00	6.63 Reg Pin	9.44	59.25
Ī					2.81		6.63 Reg Box		
11	Crossover		SSD7131		8.00	8.00	6.63 Reg Pin	1.22	60.47
Ī					2.81		5.50 XT57 Box		
12	12 x 5 1/2" HWDP (12 joints)				5.50	7.00	5.50 XT57 Pin	112.84	173.31
l					3.25		5.50 XT57 Box		
13	5-1/2 " 24.70 DPS, 10% Wear (184				5.42	7.00	5.50 XT57 Pin	To surface	
ı					4.67		5.50 XT57 Box		
l									
1									
				1					
ľ									
				İ					
				İ					
ľ									
	_			•——	Total W	eight (lbf)	218389	Total Len.	1936.71
						w Jar (lbf)			

BHA Comments:	

Stabilizer		
Blade Length (m)		Mid-Pt. To Bit (m)
	0.20	5.25
		Bend To Bottom
Bent Housing Angle (deg)		Connection (m)
	,	

Distance To Bit (m)
2.66
10.49
11.13
17.67

Bit Nozzles	
Count	Size(1/32 in)
3	15.00
3	16.00
TFA (in2)	1.11

Quality Control	
Created By:	PSellathurai
Checked By:	

			_
ſĪ	5-1/2 " 24.70 DPS, 10% Wear (Cum. Len. (m)	
	5 2 5 5, 10,0 Wear (to carraco	
	12 x 5 1/2" HWDP	173.31	
	Crossover	60.47	
	Crossover	60.47	
Ш			
Ш	1x 8" Collar	59.25	
Ш			
Ü			
Ш	Hydraulic Jar	49.81	
Ш			
Ш			
Ш	1 x 8" Collar	40.13	
Ш			
Ш			
Ш	8" NMDC	30.68	
Ш			
	PowerPulse HF	22.03	
74	GVR-8	13.54	
	PD900 Flex Collar	9.32	
	PD900 Receiver w/float	6.37	
	PD 900 AA 12 1/4"	4.50	
	12 1/4 " PDC Bit	0.3	
			-

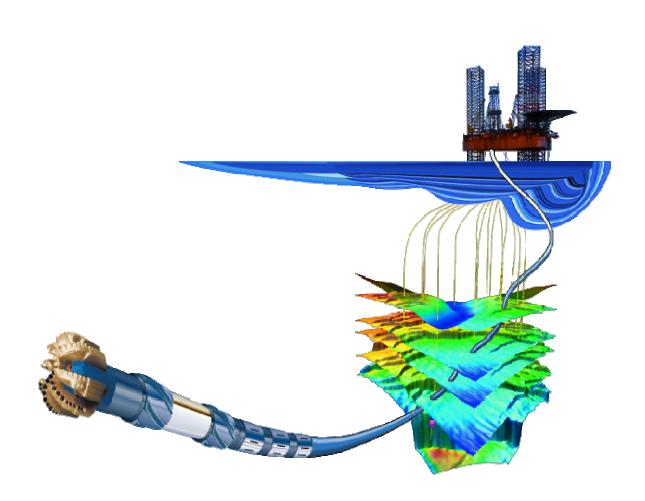
3D Oil Ltd West Seahorse-3 West Seahorse 3D Oil - West Seahorse West Seahorse-3 12 1/4" RSS/LWD BHA

BHA DESCRIPTION				
ELEMENT	LENGTH (m)	OD (in)	ID (in)	MAX OD (in)
12 1/4 " PDC Bit	0.30	12.25	3.25	12.25
PD 900 AA 12 1/4"	4.20	9.25	3.00	11.80
PD900 Receiver w/float	1.87	9.50	6.00	9.50
PD900 Flex Collar	2.95	8.25	5.00	8.25
GVR-8	4.22	8.25	3.90	12.13
PowerPulse HF	8.49	8.25	5.90	8.49
8" NMDC	8.65	8.00	2.81	8.00
1 x 8" Collar	9.45	8.00	2.81	8.00
Hydraulic Jar	9.68	8.00	3.00	8.00
1x 8" Collar	9.44	8.00	2.81	8.00
Crossover	1.22	8.00	2.81	8.00
12 x 5 1/2" HWDP	112.84	5.50	3.25	7.00
5-1/2 " 24.70 DPS, 10% W	ear (184 joints	5.42	4.67	7.00
Bit to MWD D&I Sensor =	17.67 m			
Bit to RAB Resistivity Sens	sor = 11.13 m			
Bit to PD Inclination Senso				
DRILLING OVERVIE	W			

 Depth in:
 1123.00 m
 Depth out:
 1810.00 m

 Inclination in:
 25.87°
 To:
 8.75°

 Direction in:
 63.90°
 To:
 55.97°


 Total Drilled
 687.00 m
 Dogleg:
 0.09 to 4.38 deg/30m

Schlumberger

Quality Control

Created by: PSellathurai Date: 2/05/2008 Checked by: Date:

Drilling Parameter Sheets

WELL# West Seahorse-3 DATE: 26-Apr-08 Depth In: 125.0 m MD Pump Output: 5.850 Gal/stk Planned Angle: 27.4° Page 1 of 3 Motor Speed: 0.11 Rev / Gal Planned Direction: 63.0°

BHA: 17 1/2" Bit, PowerPak Motor (1.5 deg), 17" String Stab, XO, Float Sub, 3x8" Pony NMDC, XO, PowerPulse, 2x8" NMDC, 5x8" DC's, Hydraulic Jar, 2x8" DC, XO, 12x5 1/2" HWDP, DP to surface BHA#

SURVEY SPACING = 26.56 m MD Last Casing: 20" @122mRT DLS 1=°/100Ft, 2=°/30Mts, 3=°/10Mts: 2

	DR	ILLING	TIME	M	SURVEY	TENDENCY °/30mts				30mts STF		FLOW	Surf	Motor			ROP	PRES	SURE	REMARKS				
R/S	START	STOP	SUM	FROM	то	Meters Rotated	Meters Slide	Tool Face	DEPTH	INCL	AZM	B/D	TR	Dogleg		RATE		RPM	WOB	TORQ	(m/hr)	Off Bottom	On Bottom	
S	4:15	4:24	0:09	115	121	Rotated	6		88.57	0.26					111	649	0	71			40	800		Tag cement at 121 mRT
R	4:27	4:56	0:29	121	122	1			98.46	0.42					121	708	35	78	3-6	1-3	2	800	850	Drill out shoe
R	4:56	4:59	0:03	122	125	3									135	790	35	87	3		60		1,200	Drill out rat hole
R	4:59	5:15	0:16	125	143	18			126.00	0.27					154	901	52	99	3-4	2-3	68	1,400	1,450	Drill new formation
R	6:35	6:41	0:06	143	154	11			140.93	0.49					159	930	70	102	3-5	2-3	110	1,520	1,570	Drill new formation
R	6:55	7:10	0:15	154	170	16			154.20	0.83	65.83	0.16	12.81	0.16	160	936	70	103	3-7	2-4	64	1,550	1,600	Drill new formation
S	7:15	7:40	0:25	170	181		11	60							144	842		93	3-7		26	1,400	1,350	170-175m 45M, 175-181m 81M
S	7:59	8:12	0:13	181	197		16	62	182.42	2.72	71.56	2.01	6.09	2.02	144	842		93	6-7		74	1,350	1,400	181-187m-77M, 187-197m 53M
R	8:15	8:25	0:10	197	210	13									144	842	40	93	3-5	2-4	78	1,350	1,400	
S	8:47	8:58	0:11	210	228		18	53	210.69	4.37	68.83	1.75	-2.90	1.76	162	948		104	4-5		98	1,730	1,780	Increase flow to 950 gpm
R	8:59	9:05	0:06	228	237	9									162	948	40	104	4-5	2-5	90	1,730	1,780	
S	9:25	9:48	0:23	237	262		25	HS	240.38	6.29	66.14	1.94	-2.72	1.96	172	1006		111	6		65	2,000	,	237-240m 30L; 240-262m HS-L
R	9:48	9:56	0:08	262	266	4									172	1006	40	111	2	3-5	30	2,000	2,050	
S	10:09	10:29	0:20	266	292		26	HS	269.55	8.46	64.16	2.23	-2.04	2.25	172	1006		111	6		78	2,000	2,050	
R	10:29	10:35	0:06	292	296	4									172	1006	40	111	2-3	3-5	40	2,000	2,050	
S	10:50	11:10	0:20	296	323		27	25L	299.18	10.92	63.65	2.49	-0.52	2.49	160	936		103	5		81	1,750	1,800	
R	11:10	11:20	0:10	323	326	3									158	924	40	102	10	5-7	18	1,750	1,800	
S	11:34	12:10	0:36	326	355		29	10L	328.89	13.72	61.80	2.83	-1.87	2.85	149	872		96	10		48	1,600	,	Reduce flow to enhance build
S	12:34	13:00	0:26	355	386		31	HS	358.27	17.82	63.93	4.19	2.17	4.23	140	819		90	10-25		72	1,500		Reduce flow to enhance build
R	14:30	14:45	0:15	386	392	6			388.46	17.84	64.65	0.02	0.72	0.22	170	995	40	109	10	5-7	24	2,000	,	Ream full stand prior to drilling ahead
S	14:45	15:10	0:25	392	415		23	HS							162	948		104	15		55	1,925	1,975	
R	15:23	15:26	0:03	415	419	4			417.21	21.76	64.94	4.09	0.30	4.09	163	954	40	105	5	5-7	80	1,925	1,975	
S	15:30	16:08	0:38	419	444		25	HS	116.00	26.40		4.00		4.00	141	825	40	91	10-15	2.5	39	1,600	1,675	
R	16:20	16:25	0:05	444	449	5	1.0	251	446.30	26.49	63.72	4.88	-1.26	4.90	141	825	40	91	12	3-5	60	1,600	1,675	
S 16:27 16:50 0:23 449 465 16 25L 141 R 16:50 17:10 0:20 465 473 8													825	40	91	10-30	2.5	42	1,600	1,700				
	R 17:30 17:35 0:05 473 477 4 476.28 27.59 64.07 1.10 0.35 1.11 153 895 70 98 10 3-5 48 1,800 1,900 1,900 1,735 17:47 0:12 477 489 12 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:12 477 489 17:35 17:47 0:																							
R 17:35 17:47 0:12 477 489 12 1 172 1006 70 111 10 3-5 60 2,100 2,200 TIME BREAKDOWN: (for new formation only)																								
	1 1 IVI	L DKEA		ated Time:		1 <u>y)</u>	Meters	Rotated	: 117						Rotatir	g ROP:	51.2	m/hr						

247 Sliding ROP: 57.0 m/hr Slide Time: 4.33 Meters Slide : Total Time: 6.62 Meters Drilled: 364 Average ROP: 55.0 m/hr WELL# West Seahorse-3 DATE: 26-Apr-08 Depth In: 125.0 m MD Pump Output: 5.850 Gal/stk Planned Angle: 27.4° Page 2 of 3 Motor Speed: 0.11 Rev / Gal Planned Direction: 63.0° BHA#

BHA: 17 1/2" Bit, PowerPak Motor (1.5 deg), 17" String Stab, XO, Float Sub, 3x8" Pony NMDC, XO, PowerPulse, 2x8" NMDC, 5x8" DC's, Hydraulic Jar, 2x8" DC, XO, 12x5 1/2" HWDP, DP to surface

SURVEY SPACING = 26.56 m MD Last Casing: 20" @122mRT DLS 1=°/100Ft, 2=°/30Mts, 3=°/10Mts: 2

DRILLING TIME Motor Work Sheet Tool									SURVEY	1		TE	NDENCY °/30	Omts	STK /	FLOW	Surf	Motor			ROP	PDES	SURE	REMARKS
R/S	START	STOP	SUM	FROM	TO TO	Meters Rotated	Meters Slide	Face	DEPTH	INCL	AZM	B/D	TR	Dogleg			RPM	RPM	WOB	TORO	(m/hr)	Off Bottom	On Bottom	
R	17:47	18:03	0:16	489	503	14	Slide							88	171	1000	70	110	10	2-4	53	2,100	2,200	
R	18:15	18:38	0:23	503	533	30			505.67	26.62	62.93	-0.99	-1.16	1.12	188	1100	80	121	10-15	2-4	78	2,500	2,650	PU 145, SO 129, Rot WT 142, Rot tor 1.3
R	18:52	19:13	0:21	533	562	29			534.94	25.98	64.99	-0.66	2.11	1.14	205	1199	90	132	5-10	2-4	83	2,900	2,950	Limited ROP to 90 m/hr
R	19:22	19:46	0:24	562	592	30			564.20	25.09	64.81	-0.91	-0.18	0.92	203	1188	85	131	5	2-4	75	2,900	2,950	Limited ROP to 100 m/hr
S	19:58	20:06	0:08	592	607		15	20L							203	1188	-	131	20	-	113	2,950	3,050	
R	20:06	20:19	0:13	607	622	15									203	1188	80	131	5-15	2-4	69	2,950	3,050	PU 158, SO 130, Rot WT 144
R	20:30	20:52	0:22	622	651	29			622.88	26.34	65.72	0.64	0.47	0.67	203	1188	60	131	20-25	3-5	79	2,950	3,100	
S	21:03	21:15	0:12	651	666		15	45L	653.06	26.88	63.47	0.54	-2.24	1.14	188	1100	-	121	25	-	75	2,700	2,850	Reduced flow rate due to losses over shaker
R	21:15	21:26	0:11	666	680	14									188	1100	60	121	15-20	4-6	76	2,700	2,800	
R	21:42	22:14	0:32	680	710	30			682.20	27.67	62.30	0.81	-1.20	0.98	188	1100	60	121	20-25	4-6	56	2,650	2,850	PU 165, SO 132, Rot WT 151, Rot tor 2.4
R	22:27	22:48	0:21	710	739	29			711.65	27.35	62.78	-0.33	0.49	0.40	188	1100	60	121	25	4-6	83	2,650	2,850	
S	23:04	23:12	0:08	739	746		7	30L	740.89	27.59	61.96	0.25	-0.84	0.46	188	1100	-	121	20	-	53	2,700	2,850	
R	23:13	23:32	0:19	746	769	23									188	1100	60	121	25	4-6	73	2,750	2,900	
R	23:46	0:18	0:32	769	798	29			771.14	27.57	61.42	-0.02	-0.54	0.25	188	1100	60	121	25	6-7	54	2,700	2,850	PU 173, SO 132, Rot WT 153
R	0:40	0:46	0:06	798	804	6			800.56	27.44	61.28	-0.13	-0.14	0.15	188	1100	60	121	20	4-7	60	2,700	2,850	Problem to start slide, rotate 5-6m
S	0:55	1:22	0:27	804	814		10	HS							188	1100	-	121	25-30	-	22	2,700	2,850	BHA hung up at 808m, difficult TF control
R	1:23	1:40	0:17	814	828	14									188	1100	60	121	25-30	5-7	49	2,700	2,950	PU 171, SO 140
R	1:55	2:42	0:47	828	857	29			829.48	27.87	61.73	0.45	0.47	0.50	203	1188	95	131	30	8-10	37	3,050	3,300	
R	2:53	3:48	0:55	857	886	29			858.79	27.34	61.53	-0.54	-0.20	0.55	203	1188	95	131	30	7-9	32	3,100	3,350	
S	4:01	4:27	0:26	886	893		7	HS	888.16	27.56	61.95	0.22	0.43	0.30	203	1188	-	131	30	-	16	3,150	3,400	
R	4:28	5:25	0:57	893	915	22									203	1188	100	131	35	7-9	23	3,150	3,400	
R	5:38	7:17	1:39	915	944	29			917.34	27.22	62.80	-0.35	0.87	0.53	203	1188	100	131	35	8-9	18	3,150	3,350	
R	7:30	7:40	0:10	944	947	3									203	1188	100	131	35	8-10	18	3,150	3,350	
S	7:45	8:40	0:55	947	960		13	30L							203	1188		131	20-35		14	3,200	3,400	
R	8:40	9:24	0:44	960	970	10			947.31	27.19	62.99	-0.03	0.19	0.09	203	1188	40	131	35	8-10	14	3,200	3,400	
R	9:44	9:58	0:14	970	974	4									203	1188	100	131	35	12-14	17	3,200	3,400	MWD tool shutting down. P/U recycle @ reduced flow
R	10:16	12:15	1:59	974	1003	29			975.78	28.07	63.33	0.93	0.36	0.94	196	1147	100	126	28-34	9-10	15	2,900	3,100	Reduce flow to 1150 to prevent further shutdown of MWD.
R	12:33	14:10	1:37	1003	1032	29			1005.05	27.39	64.28	-0.70	0.97	0.83	196	1147	100	126	35	7-9	18	2,950	3,100	
TIME BREAKDOWN: (for new formation only) Patrick Times 12.22 Many Patrick 476																								

Rotated Time: 13.32 Meters Rotated : 476 Rotating ROP: 35.7 m/hr

Slide Time : 2.27 Meters Slide : 67 Sliding ROP: 29.6 m/hr Total Time: 15.58 Meters Drilled: 543 Average ROP: 34.8 m/hr

		WELL# West Seahorse-3 DATE: 26-Apr-08 Depth In: 125.0 m MD Pump Output: 5.850 Gal/stk Planned Angle: 27.4°																						
WELL#	West Se	eahorse-3	DATE:	26-Apr-08		Dept	th In :	125.0	m MD						_	-						-		Page 3 of 3
BHA#	2		BIT#	2		вна ·	17 1/2'	' Rit Por	verPak Moto	or (1.5 d	leg) 17"	String St	ah XO	Float Su				Rev / Ga				Direction :		x8" DC, XO, 12x5 1/2" HWDP, DP to surface
ВПА #		-	DII#		•	DIIA.	1/1/2	Dit, 10	well ak Mou	л (1.5 ц	icg), 17	Jung 50	ao, 70,	i ioai su	U, JAO 1	Olly 1414	ibc, A	O, I OWEII	uise, zac	NINDC	, 3.00 DC	o, Hydra	une sar, 2	70 DC, 70, 1273 1/2 11WD1, D1 to surface
SURV	EY SPA	CING =	26.56	m MD	Last	Casing:	20" @1	22mRT	-				DLS 1	=°/100Ft	t, 2=°/30	Mts, 3=	/10Mts	2	1					
				_				1																DEMARKS
		RILLING		1	lotor Wor	Meters	Meters	Tool	SURVEY				ENDENCY °/3		4	FLOW					ROP		SURE	REMARKS
R/S	START		SUM 1:20	FROM	то 1048	Rotated	Meters Slide	Face 20L	DEPTH 1034.76	_			1	Dogleg	-	RATE		RPM	WOB	TORQ	(m/hr)	Off Bottom	On Bottom	
S	14:30		-	1032		10	16	20L	1034.76	21.23	03.27	-0.16	-1.02	0.50	196	1147	- 41	126	25-30	- 0.10		2,950	3,100	
R R	15:50 16:23	_	0:33 0:22	1048 1058	1058 1063	10									196 196	1147 1147	41 100	126 126	35 35	9-10 9-10	18 14	2,950 2,950	3,100 3,100	
	16:25		-	-		30			1064.70	27.00	62.07	0.65	-1.20	0.86	-				35		14			
R R	19:14	19:01 21:26	2:06 2:12	1063 1093	1093 1122	29			1004.70				1.26	1.02	196 196	1147 1147	100	126 126	35	9-10 7-9	13	2,940 2,900	3,100 3,050	PU 200, SO 150, Rot WT 173, Rot tor 4-9
R	21:41		0:04	1122	1123	1			1094.42	27.03	03.32	-0.64	1.20	1.02	196	1147	100	126	35	7-10	15	2,900	3,100	TD 1123m MD
K	21.41	21.43	0.04	1122	1123	1									190	1147	100	120	33	7-10	13	2,900	3,100	TD 1123III NID
				1																				
				1																				
				-																				
				-																				
	TIM	IE BREA		: (for new for		nly)																		
			Re	otated Time :	5.28		Meters	Rotated	: <u>75</u>						Rotatii	ng ROP:	14.2	m/hr						
				CILL TEL	1.22		3.7	ar.	16						cu: ::	DOT	12.6							
				Slide Time : Total Time :				ers Slide rs Drilled								ng ROP: ge ROP:								
L				Loui Time .	0.02		.,10,001	. Dimet	. /1						217C1A	Se MOI .	13.0	-14 111						1

 WELL#
 West Seahorse-3
 DATE:
 3-May-08
 Depth In:
 1123.0 m MD
 Pump Output:
 5.85
 Gal / stk
 Planned Angle:
 27.00°
 Page 1 of 2

 BHA #
 3
 BIT# 3
 12.25
 BHA:
 12 1/4" PDC Bit, PD 900, Receiver, 6 5/8" In Line Flex, XO, GVR8, PowerPulse MWD, 8 1/4" NMDC, 8" Collar, Hydraulic Jar, 8" collar, 12 x 5 1/2" HWDP, DP to surface

WD SURVEY SPACING = 17.67 m Last Casing: 13 3/8" @ 1117m DLS 1=°/100Ft, 2=°/30Mts, 3=°/10Mts: 2

PD SURVEY SPACING = 2.66 m														- 7.00. 0	, == 700	, 0=	, , , , , , , , , , , , , , , , , , , ,	 ,					
	DR	ILLING	TIME	RSS V	Work Sheet	t	Des	Steer	SURVEY			TE	NDENCY °/30	Imts	STK/	FLOW	Surf			ROP	PRES	SURE	REMARKS
R/S	START	STOP	SUM	FROM	то	Dist	T/F	%	DEPTH	INCL	AZM	B/D	TR	Dogleg	MIN	RATE	RPM	WOB	TORQ	(m/hr)	Off Bottom	On Bottom	
R	13:35	13:40	0:05	1123	1126	3			1125.63	26.35					170	995	50	5-10	5-8	36	1,400	1,425	CBU.
R	15:30	15:35	0:05	1126	1128	2									170	995	50	5-10	5-8	24	1,400	1,425	DL PD Steer 219
R	15:46	16:00	0:14	1128	1132	4	0	0							170	995	80	10-25	5-10	17	1,400	1,425	Control ROP @ 30 m/hr
R	16:10	16:15	0:05	1132	1135	3	0	0							170	995	80	10-15	5-10	36	1,400	1,425	
R	16:15	16:21	0:06	1135	1141	6	0	0							170	995	100	8-10	5-10	60	1,400	1,425	
R	16:21	16:29	0:08	1141	1144	3	0	0	1143.32	25.87	63.90	-0.72	0.70	0.78	170	995	140	8-10	5-12	23	1,400	1,425	
R	16:58	17:16	0:18	1144	1155	11	0	25							170	995	140	8-10	5-12	37	1,400	1,425	
R	17:16	17:28	0:12	1155	1162	7	0	25	1155.24	25.58	63.60	-0.73	-0.76	0.80	162	948	140	8-10	5-12	35	1,300	1,325	Loosing mud over shakers. Reduce flow by 50 gpm
R	17:44	18:10	0:26	1162	1174	12	0	50							170	995	150	9-15	9-10	28	1,400	1,425	P/U 184; S/O 136
R	18:25	18:38	0:13	1174	1181	7									170	995	150	7	5-11	32	1,475	1,450	
R	18:38	19:03	0:25	1181	1203	22	0	75	1184.95	25.36	62.41	-0.22	-1.20	0.56	170	995	150	10-12	6-11	53	1,475	1,450	P/U 189, S/O 136, RotWT 163
R	19:22	19:53	0:31	1203	1233	30			1214.47	26.03	61.94	0.68	-0.48	0.71	170	995	150	10-12	9-14	58	1,500	1,500	P/U 193, S/O 136, RotWT 166, Rot Tor 4-11
R	20:04	20:35	0:31	1233	1263	30			1244.37	26.97	60.72	0.94	-1.22	1.09	170	995	150	6-12	2-16	58	1,500	1,500	P/U 193, S/O 138, Rot Tor 0-10
R	20:46	20:54	0:08	1263	1270	7									170	995	150	8-10	8-15	53	1,525	1,525	
R	20:54	21:20	0:26	1270	1293	23	36R	50	1273.71	27.88	59.68	0.93	-1.06	1.05	170	995	150	8-10	7-11	53	1,525	1,525	P/U 202, S/O 140, RotWT 167
R	21:31	21:39	0:08	1293	1302	9									170	995	150	8-9	4-13	68	1,575	1,575	
R	21:39	22:00	0:21	1302	1322	20			1303.22	28.07	60.45	0.19	0.78	0.41	170	995	150	7-8	5-12	57	1,575	1,550	P/U 193, S/O 136, RotWT 169, Rot Tor 3-12
R	22:12	22:42	0:30	1322	1352	30			1333.07	28.34	61.52	0.27	1.08	0.58	170	995	150	7-8	5-12	60	1,575	1,575	P/U 207, S/O 135, RotWT 170, Rot Tor 1-12
R	22:53	23:01	0:08	1352	1360	8									170	995	150	7-10	4-12	60	1,600	1,600	
R	23:01	23:10	0:09	1360	1368	8	135R	25	1362.30	28.20	62.55	-0.14	1.06	0.52	170	995	150	7-11	4-12	53	1,600	1,600	
R	23:10	23:24	0:14	1368	1381	13	135R	35							170	995	150	7-11	4-13	56	1,600	1,600	P/U 207, S/O 142, RotWT 171, Rot Tor 2-13
R	23:36	23:46	0:10	1381	1392	11									170	995	150	7-8	5-13	66	1,600	1,600	
R	23:46	0:07	0:21	1392	1411	19	162R	75	1392.53	27.26	63.55	-0.93	0.99	1.04	170	995	150	8	6-13	54	1,600	1,600	
R	0:23	0:42	0:19	1411	1429	18			1421.70	25.27	66.37	-2.05	2.90	2.42	170	995	150	7-8	5-13	57	1,600	1,600	4th May
R	0:42	0:56	0:14	1429	1440	11	180	100							180	1053	150	9-11	3-13	47	1,800	1,800	P/U 210, S/O 142, RotWT 175
R	1:20	1:42	0:22	1440	1461	21			1451.65	22.20	68.06	-3.08	1.69	3.15	180	1053	150	11	5-13	57	1,800	1,800	
R	1:42	1:52	0:10	1461	1470	9	168L	100							180	1053	150	10-11	5-13	54	1,800	1,800	P/U 209, S/O 145, RotWT 175
R	2:06	2:16	0:10	1470	1480	10									180	1053	150	8-10	5-12	60	1,850	1,825	
	TIN	ME BRE	AKDOWN	: (for new form	nation only	y)																	

Rotated Time: 7.07 Meters Rotated: 357 Rotating ROP: 50.5 m/hr

Total Time: 7.07 Meters Drilled: 357 Average ROP: 50.5 m/hr

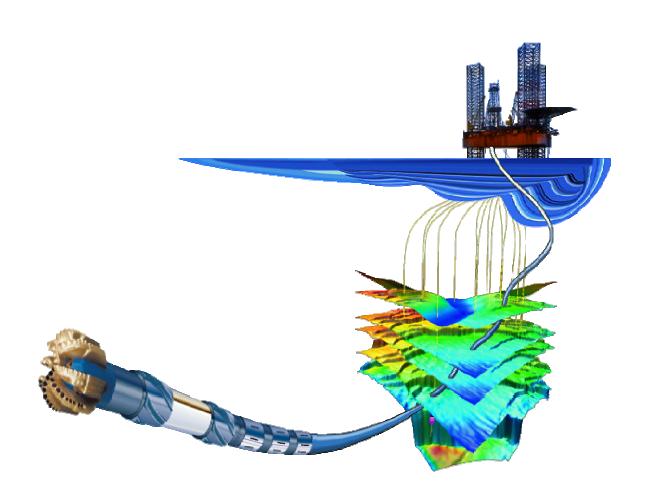
WELL#	West Se	eahorse-3	DATE:	4-May-08	_	Dept	th In :	1123.0	m MD						Pump	Output:	5.850	Gal / stk				ed Angle :		Page 2 of 2
BHA#	3		BIT# 3	12.25		BHA:	12 1/4"	PDC Bi	r PD 900 Re	eceiver 6	5/8" In I	ine Flex	XO G	VR8 Po	werPulse	. MWD	8 1/4" 1	NMDC: 8'	" Collar 1		Planned D			WDP, DP to surface
		-	211 0	12.20	_	D11.1 1	12 1, .	T D C D.	., 1 2 700, 10		0,0 1111								conur, i	. I y ar a a a r	Jul , 0 C 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 1/2 11	
WD SURV				_ m	Last	Casing :	13 3/8"	@ 1117n	1				DLS 1:	=°/100Ft	, 2=°/30I	Mts, 3=°	/10Mts:	2						
PD SURV		.CING = :ILLING		m pcc	Work Sheet		Des	Ctoom	SURVEY			TE	NDENCY °/30	mte	CTIZ /	FLOW	Surf				DOD	PRES	CUDE	REMARKS
R/S	START	STOP	SUM	FROM	TO	Dist	T/F	Steer %	DEPTH	INCL	AZM	B/D		Dogleg		RATE			WOB	TORO	ROP (m/hr)	Off Bottom	On Bottom	KLWAKKS
R	2:16	2:40	0:24	1480	1500	20	156L	100	1481.39	20.36	68.27	-1.86	0.21	1.86	180	1053	150		10-11	6-14	50	1,850	1,825	
R	2:52	4:03	1:11	1500	1530	30	1301	100	1511.23	17.26	67.69	-3.12	-0.58	3.12	180	1053	150		7-8	6-14	25	1,825		Limit ROP to 30 m/hr for LWD logs
R	4:18	4:43	0:25	1530	1542	12			1540.81	13.04	64.12	-4.28	-3.62	4.38	180	1053	150		5-6	5-13	29	1,875	1,875	
R	4:43	5:16	0:33	1542	1559	17	144L	50	15 10.01	15.0.	012	1,20	5.02	1.00	180	1053	150		6-7	6-13	31	1,875		Shut in well due to gas and some flow P/U 209; S/O 159
R	6:35	7:20	0:45	1559	1579	20			1570.48	10.60	59.53	-2.47	-4.64	2.64	180	1053	150		6-7	6-13	27	1,875	1.875	
R	7:20	7:45	0:25	1579	1589	10	180	50							180	1053	150		6-7	6-13	24	1,900	1,900	P/O 218; S/O 160
R	8:05	8:20	0:15	1589	1593	4									180	1053	150		6-7	6-13	16	1,900	1,900	Stick slip level 3 on PD. Increase RPM
R	8:20	8:32	0:12	1593	1597	4									180	1053	160		6-7	6-13	20	1,900	1,900	
R	8:32	9:26	0:54	1597	1608	11	25R	IH	1600.19	8.72	58.21	-1.90	-1.33	1.91	180	1053	170		6-7	6-13	12	1,900	1,900	Hard drilling interval @ 1598m. Red RPM and inc WT=25
R	9:26	9:55	0:29	1608	1618	10	50R	IH							180	1053	140		6-7	6-13	21	1,900	1,900	Inclination hold. 50 right
R	10:10	10:17	0:07	1618	1624	6	50R	IH							180	1053	160		6-7	6-13	51	1,900	1,900	
R	10:17	11:10	0:53	1624	1648	24	144	50	1629.88	8.74	68.10	0.02	9.99	1.52	180	1053	160		5-10	7-15	27	1,800	1,825	
R	11:25	12:11	0:46	1648	1670	22	0	IH	1658.96	8.55	72.75	-0.20	4.80	0.75	180	1053	160		5-10	7-15	29	1,900	1,900	
R	12:11	12:30	0:19	1670	1673	3	0	IH							180	1053	140		25	7-20	9	1,900	1,900	Hard drilling interval @ 1673m lower RPM and inc WT=25
R	12:30	12:40	0:10	1673	1678	5	0	IH							180	1053	160		5-10	7-15	30	1,900	1,900	P/U235 S/O 162
R	13:10	13:20	0:10	1678	1682	4	0	IH							180	1053	160		5-10	7-15	24	1,900	1,900	
R	13:20	14:35	1:15	1682	1706	24	270	25	1688.35	8.90	69.00	0.36	-3.83	0.68	180	1053	160		5-10	7-15	19	1,900	1,900	
R	14:45	15:59	1:14	1706	1736	30	270	25	1717.96	8.56	61.35	-0.34	-7.75	1.22	180	1053	165		5-10	7-15	24	1,925	1,925	P/U238 S/O 163 ROT=200
R	16:05	16:20	0:15	1736	1742	6	270	25							171	1000	165		2-5	7-12	24	1,700	1,700	46gpm drop recognises DL (5% flow reduction)
R	16:20	17:15	0:55	1742	1766	24	0	IH	1747.50	8.59	54.77	0.03	-6.68	1.00	171	1000	160		2-5	7-12	26	1,800	1,800	Inc. Hold. No Azimuth
R	17:30	18:19	0:49	1766	1796	30	0	IH	1777.39	8.68	54.87	0.09	0.10	0.09	171	1000	160		2-5	7-12	37	1,800	1,800	60 m/hr. Stick slip. Reduce ROP to 40 m/hr in stages.
R	18:29	19:00	0:31	1796	1810	14	0	0	1789.31	8.75	55.97	0.18	2.77	0.45	171	1000	160		11	6-20	27	1,725	1,725	TD at 1810m MD, set PD to neutral
	TII	ME BRE	AKDOW	N: (for new for	mation only	<u>v)</u>																		

Rotating ROP: 26.3 m/hr

Average ROP: 26.3 m/hr

Rotated Time: 12.55

Total Time: 12.55


Meters Rotated :

Meters Drilled:

330

330

Drilling Tool Run Reports

Schlumberger

Inline Filter:

No

30-Apr-2008 8:38AM

Company: 3D OIL AND GAS Job Number: O8ASO0005 Rig Name: West Triton Company Rep: Shaughan Corless Location: MEA-APG-ASQ Well Name: West Seahorse-3

Run Number:

Run Information

Date Out Drilling Distance: 998.00 m **Drilling Hours:** 28.81 hrs Date In 25-Apr-2008 10:30PM 28-Apr-2008 8:30AM Rotary Drilling Distance: 668.00 m Rotary Drilling Hrs: 20.88 hrs Sliding Distance: 330.00 m Sliding Hours: 3.00 hrs Depth (MD): 122.0 m to 1123.2 m Reaming Distance: 29.00 m Reaming Hours: 0.45 hrs Depth (TVD): 122.0 m to 1040.3 m Hrs Below Rotary: 58.00 hrs 0.00 deg Inclination: to 27.05 deg Total Pumping Hrs: 36.90 hrs Azimuth: 0.00 deg to 63.32 deg Hole Size: 17.50 in Min DLS: 0.15 deg/30 m North Ref Used: Grid North Max DLS: 4.89 deg/30 m Last Casing Size: 20.000 in Magnetic Dec: 12.844 deg Max DLS Depth: 446.3 m Last Casing Depth: 122.0 m (MD) **Grid Correction:** -0.383 deg Surface Screen: No DFS Used: Tool Face Arc: **Total Correction:** -13.227 deg No

Est. Mag. Int:

Rig Information

Total Face Angle:

Rig Type: Jack Up Pump Type: Triplex

Pulse Damp Press: psi Water Depth: 39.50 m Number of Pumps: 3 Air Gap: 38.00m Pump Line ID: 6.50 in RKB Height: 38.00 m

Pump Output: 0.14 galUS/stroke Ground Elevation: -39.50 m

Pump Stroke Len: 14.00 in

Run Objective

RIH with MWD and Steerable motor assembly. Tag cement, and drill to 180mMD and kick off, then build to 27degrees inclination at 453mMDand hold to 1126m MD.

163.50 deg

D&M Crew List: Cell Manager: Jun Ikeda

Max Pulse Width:

0.45 deg

Crew: San thida Aung, MWD

Patrick Dassens, DD Jun Ikeda, Cell Manager Punniamoorthy Sellathurai, DD

deg

Kevin Stroud, DD

DH Motor Information RSS Information

Manufacturer: D&M Bit to Bend Dist: 2.78 m RSS Manufacturer: Motor Type: PowerPak Bearing Play In: RSS Type: in Motor Size: 9.50 Bearing Play Out: in RSS SN: 1.5003 deg Serial No.: 5659 Bent Sub Angle: RSS Size: Lobe Config: 5:6 Bent HSG Angle: Pulse Ht Threshold: deg Min Pulse Width:

Stage Length: 4.00 m Rubber: RM100

Conn Phase Angle: Sleeve Position: 17.25 in Rise Time Const: Sleeve Size: Bearing Type: Mud Lubricated Fall Time Const:

Digit Time:

MWD Configuration

Mod Type: QPSK Int Tool Face Offset: 165.00 deg Bit Rate: Slimpulse Pulser Config: 3 bps

Mod Gap: 0.12500 in Turbine Config: 600-1200 galUS/min Frequency: 12 Hz Pred Sig Strength @ TD: psi

SPT Type: HA

Schlumberger

3-May-2008 8:38AM

%

Job Number: O8ASO0005 Company: 3-D OIL AND GAS Rig Name: West Triton Company Rep: Shaughan Corless Location: MEA-APG-ASQ

Run Number:

Well Name: West Seahorse-3

Checkshot Type:

Percent Oil:

Drilling	Parameters
----------	-------------------

	<u>Min</u>	<u>Max</u>	<u>Avg</u>	Total DH Shocks (k):	0 k
BH Temperature:	52.55 degC	32.73 degC	32.73 degC	Max Shock Level:	3
Surface RPM:	0.00 rpm	97.00 rpm	54.83 rpm	Max Shock Duration:	0 sec

ROP: 13.92 m/hr 48.85 m/hr 34.64 m/hr Surface Torque: 2.10 kft.lbf 10.66 kft.lbf 6.13 kft.lbf

Checkshot Depth: m 830.00 galUS/min 1,160.00 galUS/min 1,055.33 galUS/min Flow Rate: Checkshot Incl: deg Checkshot Azim: deg

WOB Sliding:

H2S In Well: Nο

Average Pump Pressure: psi

5.00 cp

Turbine RPM @ Min Flow Rate: 2,851 rpm Min Flow Rate: 830.00galUS/min SPP Off Bottom: psi Turbine RPM @ Max Flow Rate: 4,101 rpm Max Flow Rate: 1,160.00galUS/min SPP On Bottom: 1,452.10 psi

Mud Information

Mud Clean: Yes Mud Type: Water Base pH: 8.00 Mud Company: Baroid Fluid Services LCM Type: Chlorides:

16,000.00 ppm

Mud Brand: LCM Size: Sand Content: 0.50 % lbs/bbl 4.10 % Funnel Viscosity: 36.00 s/qt LCM Concentration: Solids:

Weighting Material:

Yield Point: 15.00 lbm/100ft2 Mud Weight: 9.2 lbm/galUS

Mud Resistivity: ohm-m

IADC Bit Grading

Plastic Viscosity:

Manufacturer: Hughes Christersen Total Revs: IADC Code: 115 Model: 6064689 Stick/Slip: Jets (/ 32 in): 3X20 Type: Milltooth Reason Pulled: Total Depth/Casing Depth Bit TFA: 0.92 in2

> Outer Row **Dull Char** Location Gauge Other Chars Inner Row Bearings/Seals E 2.00 2.00 WT Α 1 BT

End of Run - Summary

Sync Hours: 26.43 hrs Downhole Noise: No Run Failed: No Jamming: No 0.00 hrs Surface System Failure: No D&M Trip: No

Surface Vibration: No Low Oil Flag: No 0.00 hrs Surface Noise: No

If not, why?:

Trans Fail: No H2S in Well: No Filter Screen/Plug Shear: No

Client Inconvenience: No Lost Time:

Reason for POOH: Total Depth/Casing Depth D&M Run Obj Met? [DD and MWD/LWD]: Yes

Brief Run Summary:

Start drilling at 4:20 am (26 April). At first the signal flucuated because of pressure from the motor. The signal come back to normal at 142m MD. Began first slide at 172m MD, and successfully completed build section on plan. Experienced one stand of high dogleg of 5.45 degrees. Reamed back and reamed down, and reduced dogleg by 1 degree. This did however cause some difficulty in building subsequently, but this was overcome with no adverse affects on the plan. Experienced 2 losses of tool signal at 977m MD. Initially thought that high flow was turning the tool off, but after analyzing the traces, realized that the two losses of signal were actually motor stalls. Continued rotating to td with occasional slide corrections. TD at 1123m MD.

Schlumberger

8:38AM

Job Number: 08ASQ0005 Company Rep: Shaughan Corless

Company: 3-D OIL AND GAS **Location**: MEA-APG-ASQ

Rig Name: West Triton Well Name: West Seahorse-3

8.25 in

Run Number:

Equipment on the Run

	Pump I	Hours		
Equipment	Start	Cumulative	Software Version	Tool Size
A962M-5659	0.00 hrs	36.90 hrs		9.00 in
FS800-ASQ8037	0.00 hrs	36.90 hrs		8.25 in
MDC-DE-VA77	0.00 hrs	36.90 hrs	9.2CO2	8.25 in
MSSB-JB-42755	0.00 hrs	36.90 hrs		8.25 in
NMDC800L-N688	0.00 hrs	36.90 hrs		8.25 in
NMDC800S-7505	0.00 hrs	36.90 hrs		8.25 in
NMDC800S-9504216	0.00 hrs	36.90 hrs		8.25 in
NMDC800S-ASQ8020	0.00 hrs	36.90 hrs		8.25 in
NMDC825L-SBD5555	0.00 hrs	36.90 hrs		8.25 in

36.90 hrs

0.00 hrs

Services on the Run

SZSS-IBSP-17A-OSS 061172A

				Real Time					
Equipment	Service	Tool Name	Hours	Failed	Depth	Hours	Failed	Depth	CAF
MOTORS	PowerPak	PowerPak	36.90 hrs		998.0 m	hrs			
MWD	Shock and Vibration	TeleScope	36.90 hrs		998.0 m	58.00 hrs		998.0 m	
MWD	Cont D&I	TeleScope	36.90 hrs		998.0 m	hrs			
MWD	D&I	TeleScope	36.90 hrs		998.0 m	58.00 hrs		998.0 m	

BHA Report

30-Apr-2008 8:39AM

Schlumberger

Job Number: 08ASQ0005

Company Rep: Shaughan Corless **Run Number:** 1

Company: 3-D OIL AND GAS **Location:** MEA-APG-ASQ

BHA Type: Steerable Motor

Rig Name: West Triton
Well Name: West Seahorse-3

								Fishii	ng Neck	Stab	Bottom	Connection	Top Co	onnection		
Item	Description	Vendor	Tool Name	Serial Number	Length	OD	ID	OD	Len, m	OD	Size	Туре	Size	Туре	Cumul Le	n
1	BIT		Milltooth	6064689	0.41 m	17.50							7 5/8"	REG PIN	0.41	m
2	MOTORS	D&M	PowerPak	5659	10.10 m	9.00	7.88				7 5/8"	REG BOX	7 5/8"	REG BOX	10.51	m
3	STABILIZER	D&M	Stabilizer	OSS 061172A	2.42 m	8.25	3.00				7 5/8"	REG PIN	7 5/8"	REG BOX	12.93	m
4	CROSSOVER	ADA		SSD7124	1.23 m	9.50	3.00				7 5/8"	REG PIN	6 5/8"	REG BOX	14.16	m
5	FLOAT SUB	D&M	Float Sub	ASQ8037	0.80 m	8.25	2.88				6 5/8"	REG PIN	6 5/8"	REG BOX	14.96	m
6	MONEL	D&M	NMDC	ASQ8020	7.00 m	8.25	2.88				6 5/8"	REG PIN	6 5/8"	REG BOX	21.96	m
7	CROSSOVER	D&M	X/O	42755	0.47 m	8.25	2.88				6 5/8"	REG PIN	6 5/8"	FH BOX	22.43	m
8	MWD	D&M	TeleScope	VA77	8.49 m	8.25	5.90				6 5/8"	FH PIN	6 5/8"	REG BOX	30.92	m
9	DRILL COLLAR - NONMAG	D&M	NMDC	N688	8.65 m	8.25					6 5/8"	REG BOX	6 5/8"	REG PIN	39.57	m
10	DRILL COLLAR - NONMAG	D&M	NMDC	SBD5555	9.45 m	8.25					6 5/8"	REG BOX	6 5/8"	REG PIN	49.02	m
11	DRILL COLLAR	ADA		ADA	46.99 m						6 5/8"	REG BOX	6 5/8"	REG PIN	96.01	m
12	JAR	Daileys		Daileys	9.68 m						6 5/8"	REG BOX	6 5/8"	REG PIN	105.69	m
13	DRILL COLLAR	ADA		ADA	18.90 m						6 5/8"	REG BOX	6 5/8"	REG PIN	124.59	m
14	CROSSOVER	ADA		ADA	1.22 m						5 1/2"	XT57	5 1/2"	XT57	125.81	m
15	HWDP	ADA		ADA	112.84 m							XT57		API FH BOX	238.65	m
Predic	ted BHA Tendency:								Hookload Out:	1	116		Wt Below	Jars:		
									Pickup Out:				Wt Above	Jars:		
									Slack Weight:				Total Air	Wt:		
		Mid Pt		Blade		Gauge										
Stab E	Description	to Bit	Туре	Len Width	Len	In	Out	В	it to Read Out P	ort		Bit to	o Measure	ment Port		
							_	- N	MOTORS-PowerP	ak	0.40	m Tele	Scope-D&I	26	5.56 r	n
								N	/IWD-TeleScope		24.20	m				

Daily Drilling Activity Report

30-Apr-2008 8:41AM

Job Number: Company Rep: O8ASQ0005 Shaughan Corless **Company:** 3D OIL AND GAS **Location:** MEA-APG-ASQ

Rig Name: West Triton **Well Name:** West Seahorse-3

Run No: 1

			Depth	inm		
From	То	Elapsed	From	То	IADC Activity	Description
26-Apr-2	008					
00:00	01:47	1.78	0.0	17.0	Other	Pick up BHA and measured tool face,
01:47	04:20	2.55	17.0	122.0	PU / LD BHA / Tripping	Continue Picking up BHA to top of float collar
04:20	05:18	0.97	122.0	142.0	Drilling	Start drilling with 650 gpm and 76 pumps stroke each
05:18	18:00	12.70	142.0	503.0	Drilling	Drilling ahead with 110 strokes per minutes in each pump
18:00	21:46	3.77	503.0	687.0	Drilling	Drilling ahead , at depth 677m MD built and turned to maintain tangent, current ROP is maximum 90
21:46	00:00	2.23	687.0	775.5	Drilling	Continue Drilling ahead
27-Apr-2	800					
00:00	03:00	3.00	775.5	861.0	Drilling	Mid night depth is 785mMD. Sliding to build at 812 mMD, Drilling ahead with good signals, total flow rate is 1175, CRPM 94, Stick slip is 9
03:00	21:50	18.83	861.0	1123.2	Drilling	TD @ 1123.16mMD, @ 977 mMD , Lost the communication from the tool and check the flow rate , recycle again . Signal back @979m MD

Drilling Parameters Report

Schlumberger

30-Apr-2008 8:42:47AM

Job Number:08ASQ0005Company:3D OIL AND GASRig Name:West TritonCompany Rep:Shaughan CorlessLocation:MEA-APG-ASQWell Name:West Seahorse-3

Run Number: 1

	27-Apr-2008 10:40 PM	27-Apr-2008 1:03 PM	27-Apr-2008 11:03 AM	27-Apr-2008 1:10 AM	26-Apr-2008 2:58 PM	26-Apr-2008 8:20 AM
Field Engineer	San thida Aung	Jun Ikeda	Jun Ikeda	San thida Aung	Jun Ikeda	San thida Aung
Depth	1,123.00 m	1,010.00 m	989.00 m	808.00 m	404.00 m	204.00 m
Avg ROP	14.49 m/hr	14.49 m/hr	14.49 m/hr	14.49 m/hr	27.23 m/hr	27.23 m/hr
On Bottom ROP	15.93 m/hr	15.93 m/hr	15.93 m/hr	15.93 m/hr	33.23 m/hr	33.23 m/hr
Flow Rate	1,150.00 galUS/min	1,160.00 galUS/min	1,146.00 galUS/min	1,099.00 galUS/min	947.00 galUS/min	830.00 galUS/min
Turbine RPM	4,101 rpm	4,101 rpm	4,101 rpm	3,945 rpm	3,320 rpm	2,851 rpm
Surface RPM	95 rpm	95 rpm	97 rpm			42 rpm
WOB Rotating	35.00 klbm	37.00 klbm	31.00 klbm			
WOB Sliding						
DH WOB						
Surface Torque	7.30 kft.lbf	7.30 kft.lbf	7.10 kft.lbf	10.66 kft.lbf	2.30 kft.lbf	2.10 kft.lbf
DH Torque						
Hookload	173 klbm	170 klbm	168 klbm	159 klbm	127 klbm	116 klbm
PickUp Weight						
Slack Weight						
Friction						
SPP On Bottom	3,122.00 psi	3,061.00 psi	3,092.00 psi	2,855.10 psi	1,954.00 psi	1,452.10 psi
SPP Off Bottom						
Diff Pressure						
BH Temperature						
Total Shocks (k)						
Max Shock Level		3				
Max Shock Duration						
Torsional Vib						
Lateral Vib						
Axial Vib			1			
СКРМ			100 rpm	1 rpm		42 rpm
Stick/Slip			27		45	
Formation	Limestone	Limestone	Limestone	Limestone	Limestone	Limestone
Signal Strength	40.00 psi	58.00 psi	40.00 psi	67.00 psi	34.00 psi	31.00 psi
Percent Signal Conf	70 %	66 %	70 %	94 %	95 %	96 %

Time Description Report

Schlumberger

8:46AM

Job Number: 08ASQ0005 Company: 3D OIL AND GAS Rig Name: West Triton

Company Rep: Shaughan Corless Location: MEA-APG-ASQ Well Name: West Seahorse-3 Run Number: 1

Date/Time		Depth		Description
26-Apr-2008	1:46AM	0.0	m	Measured Tool face correction
26-Apr-2008	4:20AM	115.0	m	Start drilling , take SHT , flow rate 650gpm
26-Apr-2008	4:40AM	120.0	m	Signal fluctuation because of motor
26-Apr-2008	5:16AM	142.0	m	Come back to normal signal with pump1=76 and pump2=78, total flow rate is 900
26-Apr-2008	7:36AM	179.0	m	Sliding with MTF tool face
26-Apr-2008	8:05AM	186.0	m	Drilling ahead with ROP 90, pumps stroke 71 each,
26-Apr-2008	8:35AM	209.0	m	Drilling ahead
26-Apr-2008	9:56AM	267.5	m	First Stand of Drill Pipe Drilled Down
26-Apr-2008	2:07PM	385.0	m	Experienced High Dogleg of 5.45 degrees in 1 stand. Repeated Survey, with same result. Informed Company man, and reamed back 1 stand. Repeated Previous survey, same result as previous survey. Reamed back down, and Repeated 385m survey. Inclination decreased by 1 degree. Continued drilling with reduced slides and higher flow rate.
26-Apr-2008	4:58PM	460.0	m	End of Curvature section. Commenced Rotating.
26-Apr-2008	6:55PM	540.0	m	Drilling ahead with pump strokes 101 each, total flow rate is 1101.52
26-Apr-2008	7:37PM	583.0	m	Drilling ahead with pump1 99 and pump2 101 spm,
26-Apr-2008	8:40PM	637.0	m	Drilling ahead with 60 rpm, with good signal
26-Apr-2008	9:24PM	677.0	m	Drilling ahead , building and turn to maintain tangent
26-Apr-2008	11:51PM	775.0	m	Drilling ahead
27-Apr-2008	12:00AM	785.0	m	Rotating for Sliding
27-Apr-2008	1:18AM	812.2	m	Sliding with flow rate 1105, pump pressure is 2918 psi
27-Apr-2008	1:59AM	830.0	m	Rotating with 60 RPM, flow rate 1101
27-Apr-2008	2:58AM	859.3	m	Drilling ahead (build) with RPM93 , pump strokes 101 spm,
27-Apr-2008	3:37AM	881.8	m	Rotating with RPM 93 ,
27-Apr-2008	4:32AM	894.0	m	Start Sliding at 886 m MD, Rotating with RPM 91
27-Apr-2008	7:34AM	947.0	m	Start Sliding at 947 m MD
27-Apr-2008	8:42AM	959.0	m	Resumed rotation at 40 rpm
27-Apr-2008	8:44AM	960.0	m	Experienced low level shocks and stick slip due to low rpm. Reduced WOB after connection
27-Apr-2008	9:32AM	977.0	m	MWD tool turned off. Recycled pumps and tool turned back on.
27-Apr-2008	9:47AM	979.0	m	MWD tool turned off again. Suspected that the increase in mud weight from 9.2 ppg to 10.5 ppg may have increased turbine rpm to tool turn off point. Informed company man and reduced flow by 50 gpm. Recycled pumps and regained tool signal. Tool did not turn off following reduction in flow.
27-Apr-2008	2:27PM	1034.0	m	Commenced Slide
27-Apr-2008	3:46PM	1048.0	m	Completed Slide, picked up of bottom and resumed drilling with rotation at 40rpm
27-Apr-2008	9:47PM	1123.2	m	TD @ 1123.16m MD
27-Apr-2008	10:50PM	1123.0	m	Circulating bottoms up

Schlumberger

3:44PM

O8ASQ0005 Company: 3-D OIL AND GAS Job Number: Rig Name: West Triton Location: MEA-APG-ASQ West Seahorse-3 **Company Rep:** Shaughan Corless Well Name:

Run Number:

Run Information

Date 1	[n		Date O	<u>Out</u>	Drilling Distance:	687.0	0 m	Drilling Hours:	31.00 hrs
2-May-2008	5:30PM		5-May-2008	6:00AM	Rotary Drilling Distance:	687.0	0 m	Rotary Drilling Hrs:	31.00 hrs
Depth (MD):	1123.0 m	to	1810.0 m		Sliding Distance:	0.0	0 m	Sliding Hours:	0.00 hrs
					Reaming Distance:	474.0	0 m	Reaming Hours:	10.48 hrs
Depth (TVD):	1040.3 m	to	1684.1 m					Hrs Below Rotary:	60.50 hrs
Inclination:	27.05 deg	to	8.75 deg					Total Pumping Hrs:	41.48 hrs
Azimuth:	63.32 deg	to	55.97 deg						
Hole Size:	12.25 in							Min DLS:	0.15 deg/30 m
st Casing Size:	13.380 in				North Ref Used:	Grid North		Max DLS:	4.38 deg/30 m
3		(MD)			Magnetic Dec:	12.844	deg	Max DLS Depth:	1,540.8 m
Casing Depth:	1117.0 m	(MD)			Grid Correction:	-0.383	deg	Surface Screen:	No
Tool Face Arc:					Total Correction:	-13.227	deg	DFS Used:	No
al Face Angle:	deg	9			Est. Mag. Int:	0.37	deg	Inline Filter:	No

Rig Information

Rig Type: Jack Up

Water Depth: 39.50 m Air Gap: m

RKB Height: 38.00 m Ground Elevation: -39.50 m

Run Objective

RIH to 1093 m and drill out cement to 1126m.

Pull back into shoe, and circulate until mud weight is even.

Conduct FIT to 13.6 ppg EMW with drill water.

Drill ahead as per DD's instructions, dropping to 9.15 degrees inclination through reservoir.

Drill to predicted TD of 1985m MD.

Pump Type: Triplex

Pulse Damp Press: psi 3 Number of Pumps: Pump Line ID: 6.50 in

> Pump Output: 0.14 galUS/stroke

Pump Stroke Len: 14.00 in

D&M Crew List:

Cell Manager: Jun Ikeda

Crew: San thida Aung, MWD

Patrick Dassens, DD Jun Ikeda, Cell Manager Punniamoorthy Sellathurai, DD

Kevin Stroud, DD

DH Motor Information				RSS Information		
Manufacturer:		Bit to Bend Dist:	m	RSS Manufacturer:	D&M	
Motor Type:		Bearing Play In:	in	RSS Type:	PowerDrive X5	
Motor Size:		Bearing Play Out:	in	RSS SN:	49461	
Serial No.:		Bent Sub Angle:	deg	RSS Size:		9.00
Lobe Config:		Bent HSG Angle:	deg	Pulse Ht Threshold:		
Stage Length:	m			Min Pulse Width:		
Rubber:				Max Pulse Width:		
Sleeve Position:				Conn Phase Angle:	120.00 deg	
Sleeve Size:	in			Rise Time Const:		
Bearing Type:				Fall Time Const:		
				Digit Time:		

MWD Configuration

Int Tool Face Offset: Slimpulse Pulser Config: Mod Type: QPSK deg Bit Rate: 6 bps

Mod Gap: 0.12500 in Turbine Config: 600-1200 galUS/min 13.5 Hz Pred Sig Strength @ TD: Frequency: psi

SPT Type: HA

Checkshot Azim:

Schlumberger

quipment Run Summary Report

3:44PM

deg

Job Number:O8ASQ0005Company:3-D OIL AND GASRig Name:West TritonCompany Rep:Shaughan CorlessLocation:MEA-APG-ASQWell Name:West Seahorse-3

Run Number: 2

Drilling Parameters

WOB Sliding:

<u>Min</u> Max <u>Avq</u> Total DH Shocks (k): 0 k BH Temperature: Max Shock Level: 2 46.70 degC 58.00 degC 51.64 degC Surface RPM: 65.00 rpm 171.00 rpm 138.00 rpm Max Shock Duration: 0 sec

ROP: 1.50 m/hr 33.40 m/hr 22.16 m/hr

Average Pump Pressure: psi H2S In Well: No

Turbine RPM @ Min Flow Rate: 3,427 rpm Min Flow Rate: 982.00galUS/min SPP Off Bottom: psi
Turbine RPM @ Max Flow Rate: 3,671 rpm Max Flow Rate: 1,046.00galUS/min SPP On Bottom: 1,447.00 psi

Mud Information

Mud Type: Water Base Mud Clean: Yes pH: 9.00

Mud Company: Baroid Fluid Services LCM Type: Chlorides: 36,000.00 ppm

Mud Brand: LCM Size: Sand Content: 1.00 %

Funnel Viscosity: 44.00 s/qt LCM Concentration: lbs/bbl Solids: 5.10 %

Plastic Viscosity: 44.00 s/qt LCM Concentration: ibs/bbi Soilds: 5.10 %

Plastic Viscosity: 10.00 cp Weighting Material: Percent Oil: %

Yield Point: 25.00 lbm/100ft2 Mud Weight: 9.60 lbm/galUS

Mud Resistivity: ohm-m

IADC Bit Grading

 Manufacturer:
 Hycalog
 Total Revs:
 IADC Code:
 M422

 Model:
 RSX616 MA 16
 Stick/Slip:
 Jets (/ 32 in):
 3X15 3X16

Type: PDC Reason Pulled: Total Depth/Casing Depth Bit TFA: 1.11 in2

Inner Row Outer Row Dull Char Location Bearings/Seals Gauge Other Chars

End of Run - Summary

Sync Hours: 51.56 hrs Downhole Noise: No Run Failed: No Jamming: No 0.00 hrs Surface System Failure: No D&M Trip: No

Surface Vibration: No Surface Noise: No Low Oil Flag: No 0.00 hrs

If not, why?:

Trans Fail: No H2S in Well: No Filter Screen/Plug Shear: No

Client Inconvenience: No Lost Time: hrs

Reason for POOH: Total Depth/Casing Depth D&M Run Obj Met? [DD and MWD/LWD]: Yes

Brief Run Summary:

RIH to top of float collars, but experienced some difficulty in drilling them out. Experimented with different drilling parameters, until finally passing through float collars. Drilled 3 metres into new formation before conducting FIT using Halliburton unit and side entry sub. Following FIT, commenced drilling new formation. Drilled ahead to TD, occasionally pulling off bottom and increasing RPM in order to minimize stick-slip. TD called at 1810m MD.

Schlumberger

3:44PM

Job Number: O8ASQ0005 Company Rep: Shaughan Corless Company: 3-D OIL AND GAS

Location: MEA-APG-ASQ Rig Name: West Triton Well Name: West Seahorse-3

Run Number:

Equipment on the Run

Pump Hours

Equipment	Start	Cumulative	Software Version	Tool Size
MDC-DE-VA77	36.90 hrs	78.38 hrs	9.2CO2	8.25 in
NMDC800L-N688	36.90 hrs	78.38 hrs		8.25 in
PDSC9-BA-49461	0.00 hrs	41.48 hrs		9.00 in
PLF9C-AA-51767	0.00 hrs	41.48 hrs		9.00 in
RBDC-CA-034	0.00 hrs	41.48 hrs		8.25 in

Services on the Run

			Real Time						
Equipment	Service	Tool Name	Hours	Failed	Depth	Hours	Failed	Depth	CAF
RSS	PowerDrive X5	PowerDrive X5	41.48 hrs		687.0 m	hrs			
RSS	D&I	PowerDrive X5	41.48 hrs		687.0 m	hrs	;		
RSS	T/F	PowerDrive X5	41.48 hrs		687.0 m	hrs	:		
RSS	Cont D&I	PowerDrive X5	41.48 hrs		687.0 m	hrs			
RSS	Stick/Slip risk	PowerDrive X5	41.48 hrs		687.0 m	hrs	;		
RSS	E-Mag Link	PowerDrive X5	41.48 hrs		687.0 m	hrs			
LWD	Ring Resistivity	GeoVision	41.48 hrs		687.0 m	60.50 hrs	:	687.0 m	
LWD	Button Resistivity	GeoVision	41.48 hrs		687.0 m	60.50 hrs		687.0 m	
LWD	GammaRay	GeoVision	41.48 hrs		687.0 m	60.50 hrs		687.0 m	
MWD	Shock and Vibration	TeleScope	41.48 hrs		687.0 m	60.50 hrs		687.0 m	
MWD	Cont D&I	TeleScope	41.48 hrs		687.0 m	hrs	·		
MWD	D&I	TeleScope	41.48 hrs		687.0 m	60.50 hrs		687.0 m	

7-May-2 3:4

Schlumberger

Job Number: O8ASQ0005 Shaughan Corless Company Rep:

Run Number:

2

Company: 3-D OIL AND GAS Location: MEA-APG-ASQ

BHA Type: Rotary Steerable

Rig Name: West Triton Well Name: West Seahorse-3

							_	Fishing	Neck	Stab	Bottom	Connection	Top C	Connection	
Item	Description	Vendor	Tool Name	Serial Number	Length	OD	ID	OD	Len, m	OD	Size	Туре	Size	Туре	Cumul Ler
1	BIT	Hycalog	PDC	218662	0.30	m 12.25	3.25						6 5/8"	REG PIN	0.30
2	RSS	D&M	PowerDrive X5	49461	4.20	m 9.25	3.00				6 5/8"	REG BOX	6 5/8"	REG BOX	4.50
3	FLEX COLLAR	D&M		51767	4.82	m 8.25	5.00	8.38	0.48		6 5/8"	REG PIN	6 5/8"	FH BOX	9.32
4	LWD	D&M	GeoVISION	034	4.22	m 8.25	3.90				6 5/8"	FH PIN	6 5/8"	FH BOX	13.54
5	MWD	D&M	TeleScope	VA77	8.49	m 8.25	5.90				6 5/8"	FH PIN	6 5/8"	REG BOX	22.03
6	DRILL COLLAR - NONMAG	D&M	NMDC	N688	8.65	m 8.25	2.81				6 5/8"	REG PIN	6 5/8"	REG BOX	30.68
7	DRILL COLLAR	SeaDrill	Drill Collar	Sea Drill	9.45	m 8.00	2.81				6 5/8"	REG PIN	6 5/8"	REG BOX	40.13
8	JAR	Dailey	Hydraulic Jar	Dailey	9.68	m 8.00	3.00				6 5/8"	REG PIN	6 5/8"	REG BOX	49.81
9	DRILL COLLAR	Sea Drill	Drill Collar	Sea Drill	9.44	m 8.00	2.81				6 5/8"	REG PIN	6 5/8"	REG BOX	59.25
10	CROSSOVER	Sea Drill	Cross Over	Sea Drill	1.22	m 8.00	2.81				6 5/8"	REG PIN	5 1/2"	XT57BOX	60.47
11	HWDP	Sea Drill	HWDP	Sea Drill	112.84	m 5.50	3.25				5 1/2"	XT57PIN	5 1/2"	XT57BOX	173.31
Predict	red BHA Tendency:							Pi	ookload Out: ckup Out: ack Weight:		116		Wt Below Jars: Wt Above Jars: Total Air Wt:		
		Mid Pt		Blade		Gauge									
Stab D	escription	to Bit	Туре	Len Wi	dth Len	In	Out	Bit t	to Read Out Po	rt		Bit	to Measurem	ent Port	
								LWI	D-GeoVISION		10.50	m Te	eScope-D&I	17	.67 r
								MW	D-TeleScope		15.30	m Ge	oVISION-Ring	Resistivity 10	.75 r
								RSS	-PowerDrive X5	5	0.30	m Ge	oVISION-Butt	on Resistivity11	.13 r

TeleScope-D&I	17.67	r
GeoVISION-Ring Resistivity	10.75	r
GeoVISION-Button Resistivit	311.13	r
GeoVISION-GammaRay	10.49	r
PowerDrive X5-D&I	2.34	r
PowerDrive X5-T/F	2.34	r
PowerDrive X5-Cont D&I	2.34	r
PowerDrive X5-Stick/Slip risk	<2.34	r

Time Description Report

Schlumberger

7-May-2008 3:53PM

Job Number: Company Rep: O8ASQ0005 Shaughan Corless Company: 3-D OIL AND GAS

Location: MEA-APG-ASQ

Rig Name: West Triton
Well Name: West Seahorse-3

Run Number:

Date/Time		Depth		Description
29-Apr-2008	12:00AM			
1-May-2008	12:00AM	0.0	m	continue Fishing
1-May-2008	10:30AM	0.0	m	Pressure Testing Casing
1-May-2008	11:00AM	0.0	m	Experienced Pressure Loss
1-May-2008	12:00PM	0.0	m	Test Mud Line Hanger Seals
1-May-2008	1:00PM	0.0	m	Install Adjustable Landing Ring
1-May-2008	1:30PM	0.0	m	Attempt to close wellhead running tool
1-May-2008	4:00PM	0.0	m	Raise Texas Deck
1-May-2008	7:30PM	0.0	m	Begin Nippling up BOP and Choke line
2-May-2008	12:00AM	0.0	m	Continue Nippling up BOP and overshot, but experienced problem with choke line.
2-May-2008	2:30AM	0.0	m	Trouble shooting choke line.
2-May-2008	4:00PM	0.0	m	Picking up BHA
2-May-2008	5:30PM	0.0	m	Bit Below Rotary Table
2-May-2008	7:20PM	35.0	m	Conducted Shallow hole test. Experienced lack of signal from Powerdrive due to emag interference from casing and rotary table. Brought tool above rotary and tool began communicating. Successful shallow hole test.
2-May-2008	10:45PM	319.5	m	Still Cementing, stuck with cementing in the hole
3-May-2008	12:30AM	526.5	m	Stuck cementing in the hole,
3-May-2008	4:55AM	1056.4	m	Still tripping in and circulating
3-May-2008	5:26AM	1103.0	m	Began drilling Plugs.
3-May-2008	6:00AM	1103.0	m	Experienced difficulties drilling out plugs. torque fluctuations seen. DD attempted to vary parameters, but was instructed to return to written parameters.
3-May-2008	12:56PM	1105.0	m	Drilled through plugs, and out of shoe to 1125.99m MD, before pulling back into shoe to conduct FIT
3-May-2008	1:45PM	1126.0	m	Conduct FIT
3-May-2008	3:46PM	1132.0	m	Downlink for changing MTF to GTF
3-May-2008	4:58PM	1144.0	m	Downlink for changing Steering ratio 0∼ 25%
3-May-2008	5:44PM	1162.0	m	Downlink for changing Steering ratio 25~ 50%
3-May-2008		1215.6	m	Drilling ahead with total flow rate 982 with pump strokes 84 for each pump.
3-May-2008	8:07PM	1235.0	m	Drilling ahead with good signal,
3-May-2008	9:18PM	1292.2	m	Drilling ahead with good signal and downlink the powerdrive tool at 20:50 pm.
3-May-2008	10:35PM	1344.0	m	Drilling ahead with 145 rpm, 84 pump strokes each, with good signal
3-May-2008	11:02PM	1360.0	m	Drilling ahead with RPM 150, ROP 60, total flow rate is 988, 330 psi loss for MWD tool
3-May-2008	11:59PM	1392.0	m	Mid night depth, RPM 143, with 84 pump stroke each.
4-May-2008	12:32AM	1420.0	m	Drilling ahead with flow rate 994, ROP 60, RPM is 145, stick slips 52
4-May-2008	12:51AM	1438.0	m	Stick slips is 72 and higher than a few minutes ago
4-May-2008	1:08AM	1440.0	m	stop rotating @ 1am due to high stick slips. Commenced SCR's
4-May-2008	1:34AM	1453.0	m	Stick slip between 72~84, told DD, off bottom a while xoz of high stick slips
4-May-2008	2:22AM	1484.0	m	Drilling ahead with high stick slips 81, downlink at @2:13 am
4-May-2008	3:05AM	1506.0	m	Drilling ahead with stand pipe pressure 1857, 15 SWOB, ROP 30
4-May-2008	6:17AM	1558.0	m	Shut in well due to gas in mud.
4-May-2008	7:28AM	1577.0	m	Downlinked to PD to change TF desired to 180 and Steering % to 50
4-May-2008		1592.0	m	Observed high stick slip (144 stickslip 141 crpm). Informed DD, who then Picked up off bottom and increased RPM to 170.
4-May-2008	8:11AM	1592.0	m	Drill water down.
4-May-2008	8:13AM	1592.0	m	Drill water back on.
4-May-2008	8:28AM	1596.0	m	Downlinked to PD to change to inclination hold, and steering % to 25

Date/Time	Depth	Description
4-May-2008 9:28AM	1608.0 m	Downlinked to PD to change Steering % to 50
4-May-2008 10:08AM	1620.0 m	Downlinked to PD to change TF Desired to 144 degrees.
4-May-2008 10:41AM	1636.0 m	Observed high stick slip. Informed DD who then advised Driller to PU off bottom and increase rpm to 170, then feather down to bottom again.
4-May-2008 10:55AM	1638.0 m	Decreased flow rate due to temporary loss of 1 generator.
4-May-2008 12:55PM	1677.0 m	Conducted SCR's
4-May-2008 1:11PM	1679.0 m	Downlinked to PD
4-May-2008 3:00PM	1711.0 m	Observed high stick slip. Informed DD who then advised driller to increase RPM.
4-May-2008 4:18PM	1740.0 m	Downlinked to PD
4-May-2008 5:22PM	1766.0 m	Decision to call TD at 1810m MD
4-May-2008 7:02PM	1810.0 m	TD, download PD to reset at neutral
5-May-2008 6:00AM	0.0 m	Above Rotary Table.

Drilling Parameters Repo

Rig Name: West Triton

Well Name: West Seahorse-3

7-May-2 3:51:3

Schlumberger

Job Number: O8ASQ0005 Shaughan Corless Company Rep:

3-D OIL AND GAS Company: Location: MEA-APG-ASQ

Run Number: 2

	05-May-2008	04-May-2008	04-May-2008	03-May-2008	03-May-2008
	12:29 AM	8:23 AM	4:24 AM	9:19 PM	9:46 AM
Field Engineer	San thida Aung	Jun Ikeda	San thida Aung	San thida Aung	Jun Ikeda
Depth	1,810.00 m	1,595.00 m	1,532.07 m	1,292.64 m	1,103.59 m
Avg ROP		17.42 m/hr	17.42 m/hr	11.21 m/hr	11.21 m/hr
On Bottom ROP		22.00 m/hr	22.00 m/hr	14.54 m/hr	14.54 m/hr
Flow Rate	1,000.00 galUS/min	1,046.00 galUS/min	1,046.00 galUS/min	982.00 galUS/min	994.00 galUS/min
Turbine RPM	3,476 rpm	3,671 rpm	3,710 rpm	3,427 rpm	3,398 rpm
Surface RPM	160 rpm	171 rpm	146 rpm	148 rpm	65 rpm
WOB Rotating	11.00 klbm	14.00 klbm	14.00 klbm	15.00 klbm	5.60 klbm
WOB Sliding					
DH WOB					
Surface Torque	12.00 kft.lbf	5.60 kft.lbf	11.26 kft.lbf	7.70 kft.lbf	.06 kft.lbf
DH Torque					
Hookload					
PickUp Weight					
Slack Weight					
Friction					
SPP On Bottom	1,725.00 psi	1,873.00 psi	1,937.00 psi	1,595.00 psi	1,447.00 psi
SPP Off Bottom					
Diff Pressure					
BH Temperature	58.00 degC	50.22 degC	46.70 degC		
Total Shocks (k)					
Max Shock Level	2				
Max Shock Duration					
Torsional Vib					
Lateral Vib					
Axial Vib					
СПРМ	160 rpm	168 rpm	148 rpm	148 rpm	71 rpm
Stick/Slip	100	21	24	75	100
Formation	Siltstone	Other	Other	Other	Other
Signal Strength	48.00 psi	48.00 psi	46.00 psi	41.00 psi	40.00 psi
Percent Signal Conf	86 %	86 %	84 %	92 %	86 %

Daily Drilling Activity Report

Schlumberger

7-May-2008 3:49PM

Job Number: Company Rep: O8ASQ0005 Shaughan Corless Company: 3-D OIL AND GAS

Location: MEA-APG-ASQ Rig Name: West Triton Well Name: West Seahorse-3

Run No:

			Depth i	n m		
From	То	Elapsed	From	То	IADC Activity	Description
28-Apr-20		-				
00:00	02:30	2.50	1070.0	739.0	PU / LD BHA / Tripping	Contiue to POOH with 5.5" Drillpipe
02:30	06:30	4.00	739.0	124.0	PU / LD BHA / Tripping	Contiue POOH with 5.5" drillpipe. Pump 20bbl
06:30	09:00	2.50	124.0	38.0	PU / LD BHA / Tripping	Continue POOH with 17.5" and laid out string stabilizer
09:00	12:00	3.00	0.0	0.0	PU / LD BHA / Tripping	Make up jet sub, RIH to 87m , Jet landing ring, clear RIH floor of excess equip, RIG for runnning 13 3/8" casing
12:00	14:00	2.00	0.0	0.0	Run casing / cement	Continue rigging up to run 13 3/8" casing , change bails, install elevators and flush
14:00	23:54	9.90	0.0	0.0	Run casing / cement	mounted slips. remove diverter and insert Run casing as per tally to 854m MD, install centrailsers as required fill every joint. break circulation at 650m MD, and washdown through tight spot
29-Apr-20	08					
00:00	02:00	2.00	0.0	0.0	PU / LD BHA / Tripping	Continue RIH with 13 3/8" casing 854m to 1029 m MD
02:00	02:30	0.50	0.0	0.0	PU / LD BHA / Tripping	Pick up MLS, break out and make up . change out FMS
02:30	03:03	0.55	0.0	0.0	PU / LD BHA / Tripping	Contunue RIH with 13 3/8" CSG
03:03	05:30	2.45	0.0	0.0	PU / LD BHA / Tripping	RIH down casing spiders, break out circ tool , chec , change bills to drill pipe bails and 5.5" manual elevators
05:30	09:30	4.00	0.0	0.0	Run casing / cement	RIH , continue circulat to clean the hole and make up cement head, rig up cement
09:30	12:00	2.50	0.0	0.0	Run casing / cement	Wash down wellhead and landed off, circulate and condition mud , test cementing lines to 4000psi/5 mins. commence cement job.
12:00	14:00	2.00			Run casing / cement	Continue with cement job as per program,
14:00	00:00	10.00			Nipple up BOPs	Rig up BOP, lay out overshot and drill pipe
30-Apr-20	08					
00:00	04:30	4.50	0.0	0.0	PU / LD BHA / Tripping	continue lay out diverter , pick up wellhead assy, break out 17.5" BHA
04:30	12:00	7.50	0.0	0.0	Run casing / cement	Make up 13 3/8" water boshing conductor, attempt to rotary from MLS
12:00	16:30	4.50	0.0	0.0	Run casing / cement	Water bushing in top of 13 $3/8$ " casing, attempt to reach out mud line , unable to readh out top drive , toruble shoot
16:30	20:30	4.00	0.0	0.0	Run casing / cement	Prepare to make up 13 3/8" casing spear , bumper sub, RIH same
20:30	00:00	3.50	0.0	0.0	Run casing / cement	latch onto 13 3/8" casing @ 48 m , reach out landing ring @89m, pull to surface and attempt to unlatch spear from casing , not success
1-May-200	<u>08</u>					
00:00	02:30	2.50	0.0	0.0	Fishing	Continue to Retrieve Landing String
02:30	10:30	8.00	0.0	0.0	Run casing / cement	RIH w/ spare MLH , tack welding casing joints
10:30	11:00	0.50	0.0	0.0	Other	Prepare to pressure test casing
11:00	12:00	1.00	0.0	0.0	Other	Experienced Pressure Loss
12:00	13:00	1.00	0.0	0.0	Other	Test Mudline Hanger Seals
13:00	13:30	0.50	0.0	0.0	Other	Install Adjustable landing ring
13:30	16:00	2.50	0.0	0.0	Other	Attempt to Close Well Head running tool
16:00	19:30	3.50	0.0	0.0	Other	Raise Deck on Texas Deck
19:30	00:00	4.50	0.0	0.0	Nipple up BOPs	Nipple up BOP and Rig up Choke Line
2-May-20(0 <u>8</u>					
00:00	02:30	2.50	0.0	0.0	Nipple up BOPs	Continue Nippling Up BOP and Overshot. Problem with Choke Connection.
02:30	12:00	9.50	0.0	0.0	Test BOP	Trouble Shoot Choke Hose Connection. Multiple Attempts
12:00	12:30	0.50	0.0	0.0		Continue testing BOP
12:30	14:30	2.00	0.0		Lubricate rig / Service	Service TDS
14:30	15:00	0.50	0.0		Repair rig	Held PJSM change out tugger
11.50	13.00	0.50	0.0	0.0	repairing	ricia i soi i change out tagger

Daily Drilling Activity Report

Schlumberger

7-May-2008 3:49PM

Job Number: Company Rep: O8ASQ0005 Shaughan Corless **Company:** 3-D OIL AND GAS **Location:** MEA-APG-ASQ

Rig Name: West Triton
Well Name: West Seahorse-3

Run No: 2

			Depth i	n m		
From	То	Elapsed	From	То	IADC Activity	Description
15:00	16:00	1.00	0.0	0.0	Other	Install Nominal Bore Protector
16:00	19:00	3.00	0.0	35.0	PU / LD BHA / Tripping	Pick up 12.25 in BHA
19:00	19:30	0.50	35.0	35.0	MWD/LWD service quality	Shallow Hole Test MWD/LWD tools
19:30	21:00	1.50	35.0	200.0	PU / LD BHA / Tripping	Install Auto Elevators and RIH with HWDP to 200 m
21:00	22:00	1.00	200.0	285.0	PU / LD BHA / Tripping	Continue RIH to 285m
22:00	00:00	2.00	285.0	486.0	Reaming / Hole opener / Unc	Wash down & ream from 285 to 468 and confirm cement returns
3-May-200	<u> </u>					
00:00	02:34	2.57	526.0	585.0	PU / LD BHA / Tripping	Cementing stuck in the hole about 200 m and still tripping in.
02:34	03:31	0.95	585.0	850.0	PU / LD BHA / Tripping	Continue Tripping in.
03:31	05:30	1.98	850.0	1100.0	Reaming / Hole opener / Unc	Continue washdown and ream from 468m to 1100 @ 100spm, 585gpm , 40 rpm , 700 psi $$
05:30	12:00	6.50	1100.0	1123.0	Reaming / Hole opener / Unc	Commence drill out cementing plugs and float from 1100, displacing well to 900 psi, 26 kWOB, and continue drilling out float. Then drill out cement to casing shoe @1117m, then continue to end of rathole @1123mMD
12:00	14:00	2.00	1123.0	1126.0	Drilling	Drill 3 m of new formation to 1126m
14:00	15:30	1.50	1126.0	1132.0	Drilling	Rig up lines, flush same test to 2000 psi. Perform FIT with 9.4 ppg mud to TSO psi. @1035m, First down link to powerdrive@15:45
15:30	00:00	8.50	1132.0	1392.0	Drilling	Commence drilling 12.25" hole from 1126 m to 1392m as per DD instructions, Take survey every stands
4-May-200	<u>)8</u>					
00:00	05:00	5.00	1392.0	1559.0	Drilling	Drilling ahead 12.25" from 1392 m to 1559m MD as per DD instruction
05:00	12:00	7.00	1559.0	1660.0	Drilling	Continuous drilling from 1559m to 1660m MD , 180 spm, 1050 gpm,1900 psi,150rpm, 10WOB
12:00	19:00	7.00	1660.0	1810.0	Drilling	Continue drilling as per DD instruction up to TD
19:00	00:00	5.00	1810.0	1530.0	PU / LD BHA / Tripping	POOH from 1810-1530m MD, wipe trip
5-May-200	<u>)8</u>					
00:00	03:00	3.00	1530.0	173.0	PU / LD BHA / Tripping	Continue POOH
03:00	06:00	3.00	173.0	0.0	PU / LD BHA / Tripping	Lay out BHA

Schlumberg	DOWN-HOLE MOTOR RUN REPORT
RUN Nº 1	Motor Size 9 5/8" Serial No 5659 Measurements are in M
Company 3D Oil Ltd. Operator Australian I	Well West Seahorse-3 Slot n/a Field Wildcat / exploration Location Rass Strait, Gippsland Rasin Country Australia Australia Australia Date 25-Apr-08
Bit Size Make 17 1/2 Hughes Chris Inner Row Out	Type IADC Jets Jets Jets TFA
Schlumberger 9	Model / Type Rot/Stat', Stages Serial No Hsg Stab OD *Bent Hsg *Bent Sub 5/8* A962M5640XP 5/6 4.0 5659 17 1/4* 1.5 nii erable; 3 = Double Bend 2 Rotor S/№ 5224 Stator S/№ 6230 0.70 Drlg Hrs 27.80 Circ Hrs 8.40 Total Motor Circ Hrs 36.90
	ed cement and float equipment, cleaned out rat hole. Rotary drilled to kick off point at 180m. Kick off building at 3º/30m to 27.4ºm along the nuth of 62.96º azimuth. Continue drilling tangent section to casing point @ 1125m MDDF.
BHA# 17 1/2" Bit PowerPak Motor (1.5 deg) 17" String Stab Crossover Float Sub 3x8" Pony NMDC	Depth In 125.00 Depth Out 1123.00 Inter'l Drid 998.00 Date In 25-Apr-08 Date Out 28-Apr-08 Inter'l ROP 34.60 Time In 22:30 Time Out 8:30 Time BRT 58.00 Hrs
Cross over sub PowerPulse HF MWD 2x8" NMDC 8" Collar (5 joints) Hydraulic Jar 8" Collar (2 joints)	Surveys MD IN 154.20 Inclin 0.83 Azim 65.83 MD OUT 1094.42 Inclin 27.05 Azim 63.32
Crossover 5 1/2" HWDP (12 joints) 5-1/2" DP	Flow Rate Off Bttm Press On Bttm Press RPM WOB GPM PSI PSI Surface KLbs 1150 2900 3100 100 35
	Mud Type Seawater - Bentonite Mud Wt 9.4 ppg Mud Grad' n/a Vis 36 sec PV 5 cP Filtrate n/a % Solids 4.1 pH 8 YP 15 % Oil/Water n/a % Sand 0.5 Circ Temp 53 deg C
FAILURE? No	Slide (m) 330 Previous Hrs 0 Cumulative Hrs 36.90
Remarks / Failure Report.	Did Motor Stall? In 3.0 mm Out 3.0 mm Out 3.0 mm Condition

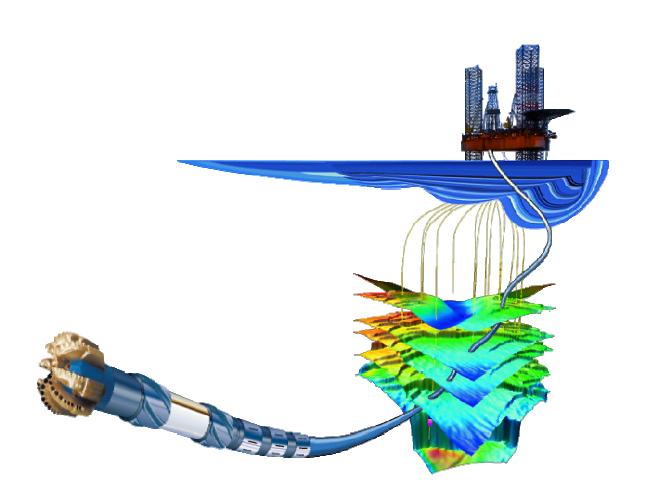
PowerDrive X5 Summary

Rev 3: Please do not make any changes to this form !!! DATE IN DATE OUT PowerDrive Run # MWD Run # Rig Bit Run # PD Engineer **Shaughan Corless** 08ASQ005 17-Sep-07 17-Sep-07 Moorthy / Pat Xtra Receiver # CLIENT Hole Depth - FROM lex/ILF SN (ft/m) Control Unit # 3D Oil Ltd 1123.0 m MD 1810.0 m MD 51767 49245 958 RIG NAME Ext Sub # Seadrill - West Triton 25.87 dea 8.75 deg 49461 51368 51330 WELL NAME Azimuth - FROM TΩ Bit Mfa Bit Type Bit SN West Seahorse-3 63.90 deg 55.97 deg Reed RSX616-A16 218662 LOCATION Bit to PD D&I Hole Size Bit to D&I Dull Grade - IADC Cutting Structure **Bass Strait** 17.67 m 2.66 m 12 1/4" Mag Dec / Grid Cor / Total Corr. Map file name Connector Phase Angle On Bottom Hours ast Casing size/wt / depth Downlink response ? 12.844 - 0.383 13.227 13 3/8' 1117 m n/a (fast downlink) 120 Good 19.62 Bit to Bottom of BU Pad Ave. RPM Off Bottom Circulating Hours t / M Drilled this run Bit to Midpoint of Stab Flex Lgth Ave. WOE 0.60 m 2.95 m 20 150 8 19.58 3.67 m 687.0 MWD Min/Max Flow Rating PD MIN/MAX Initial / Final Battery Voltage PM MINI / MAX Below Rotary Table Hours PD ft/M Drilled (Operating) 1483 3.78 50 160 Ave ROP Pulse Width MIN/MAX Actual Flow MIN / MAX PowerDrive Operating Hours On Btm ROP Pulse height thre Digit Time Pump Output / Type **Triplex** 950 1055 5.85 39.20 35.0 35.0 n/a n/a 18 sec Tool Response Run Objective Stab gauge before/after run 12 1/8 12 1/8 Maintain 27 deg tangent then drop to 9 deg at target and TD Max DLS Max BUR 4.3 Max Turn Rt OFTWARE VERSION Reason for POOH Comms mod CMF523H15 Sensor mod SMV507RN MWD 9.2C02 IDEAL 13 0c 08 TD well TSIM Bit Hydraulics Calculations PowerDrive Serial No. **PUMP HOURS Motor Run Information** Bit Nozzle Size and TFA START PART PFIX Enter data in blue areas Motor type Seiral numbe / 32 Pump Flow 1055 Nozzle TFA Control Unit N/A 15 Mud Weight 9.7 0.173 Control Collar 49461 СС 39.20 Bend type Bend Anale 0.00 15 12.25 Bit Diameter 2 0.173 Ext Sub ES 51368 0.00 39.20 N/A N/A 15 Bit Flow 1038 3 0.173 Bias Unit BU 51330 0.00 39.20 Stab type Stab Gauge 785 4 16 N/A N/A Bit Pressure Drop 0.196 Flex/ILF PD9RX-A 51767 0.00 39.20 16 Hydraulic HP 475 5 0.196 Xtra Receiver Off Bottom pressure 49245 0.00 39.20 On Bottom pressure HSI 4.0 6 16 0.196 Upper Torquer 49846 N/A N/A 0.00 39 20 Impact Press 1419 7 Lower Torquer 34624 Total Reaming Hours 0.00 39.20 Backreaming Hours 8 Comms Module 0.00 N/A N/A 730 39.20 Note: Rock compressive 9 Bearing Play after run (mm) N/A strength should be greater **Mud properties** 10 than the Impact Pressure. Motor Bit TFA = 1.107 **Downward Telemetry Calculations** Mud Company Flow Restrictor Pressure Drop Enter data in the blue areas KCL Polymei MW at start of run 9.7 ppg Nozzle size (32nd) TFA Press. Drop Digit Time 18 secs MW at end of rur 9.7 ppg Falling Time Constant (FTC) n/a secs Total Pressure Drop Below PowerDrive Funnel Viscosity 44 sec Rising Time Constant (RTC) n/a Plastic Viscosity 785 psi 1000 Driller's Pulse - High / Low 900 25 lbs/100ft^2 Yeild Poin Driller's Pulse Height 5-10 Note: If the box above is red, the total pressure drop below the n/a % Maximum DH Temp. deg C 58 degC Pulse Amplitude PowerDrive is not in the optimal range for pad operation. Confirm estrictor and bit nozzle selection is correct such that the total Sand 9 .00 % Minimum Recoverable Puls n/a % pressure drop below the PowerDrive is between 500 psi an Soild % .10 % Minimum Threshold n/a %

Run Summary

Drilled out cement and float equipment without any problems. Three meters of new formation was drill out and a formation integrity test was performed.

Once out of the shoe the PowerDrive assembly had a slight dropping tendency in neutral steering mode. The rate of penetration was held to about 30 m/hr until the BHA was clear on the shoe and rat hole and then drilling parameters were increased. A 50% steering ratio was required to hold the assembly in the tangent section. A rate of penetration of about 60 m/hr was achieved for must of the tangent section and the start of the drop section.


At the start of the drop section the tool was initially placed in a 25% drop with a right bias to counteract a left turn tendency. The drop rate was much lower than expected so steering ratio was increased to eventually 100% low side. Drop rates of only low 2 °/30m was achieved in the Lakes Entrance formation. Once into the Latrobe Group formation drops rates increased to low 4 °/30m and the required drop angle could be achieved. The rate of penetration was held back to 30 m/hr for logging purposes and this may of helped to improve the drop rate.

Once the drop was achieved the PowerDrive was placed in Inclination Hold mode for the remainder of the tangent section to TD at 1810m MDRT. Both geological targets were successfully penetrated.

A moderate stick-slip was observed for most of the run but it did not affect the steering ability. Stick-slip was considerably lower in the Latrobe Group formation.

The bit was graded as 3-1-CT-A-X-I-WT-TD

Drill Bit Gradings

ROCK BIT GRADING CHART

BIT RUN DATA # 2

Bit Size:	17 1/2"
Manufacturer:	Hughes Christensen
Bit Type:	MXL-T1V
Serial Number:	60654689
New Bit:	Yes
IADC Code:	1-1-5
Number of Nozzles:	3
Size of Nozzles:	3 x 20
T.F.A. (sq. in):	0.91
W.O.B. :	5-35
Depth Out:	1123.0
Depth In:	125.0
Meters Drilled:	998.0
Drilling Hours:	28.80

WELL DATA

Date:	28-Apr-08
Drilling Supervisor:	Shaughan Corless/Ro
Platform:	West Triton
Well Number:	West Seahorse-3
Rig Contractor:	Seadrill
Final Hole Angle:	27.0°
Date in:	25-Apr-08
Date Out:	28-Apr-08
BHA#	2

MUD AND LITHOLOGY DATA

Majority Formation:	Limestone
Other Formation:	
% Formation:	
Mud Type:	Seawater - Bentonite
Mud Weight:	9.4 ppg
PV:	5 cP
YP:	15 lbs/100 ft^2
% Solids:	4.10
% Oil / Water:	n/a
Circulating Temperature (deg c):	53 deg C

COMMENTS:

IADC ROCK BIT GRADING

(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)
2	2	WT	A	E	I	ВТ	TD

GRADING CHART AS PER IADC NOMENCLATURE

CUTTING STRUCTURE				Cone		RI	EMARKS
INNER	OUTER	DULL	LOCATION	BEARING	GAUGE	OTHER	REASON
ROWS	ROWS	CHAR.		/ SEALS		CHAR.	PULLED
(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)

(A) Inner cutting structure = all inner rows. (A) Outer cutting structure = gauge row only.

In columns 1 and 2 (A), a linear scale from 0 to 8 is used to describe the condition of the cutting structure according to the following -

Steel Tooth Bits - A measure of lost tooth height due to abrasion and or damage. 0 = No loss of tooth height, 8 = total loss of tooth height.

Insert Bits - A measure of total cutting structure reduction due to lost, worn and broken inserts. 0 = As new, 8 = all inserts lost, worn and / or broken.

(A)

0 No Wear

8 No Cutting structure

(B)		
	BC *	Broken Cone
	BF	Bond Failure
	BT	Broken Teeth/Cutters
	BU	Balled Up
	CC *	Cracked Cone
	CD *	Cone Dragged
	CI	Cone Interference
	CR	Cored
	CT	Chipped Cutters
	ER	Erosion
	FC	Flat Crested Wear
	HC	Heat Checking
	JD	Junk Damage
	LC *	Lost Cone
	LN	Lost Nozzle
	LT	Lost Teeth / Cutters
	OC	Off-Center Wear
	PB	Pinched Bit
	PN	Plugged Nozzle /
		Flow Passage
	RG	Rounded Gauge
	RO	Ring Out
	SD	Shirttail Damage
	SS	Self-Sharpening Wear
	TR	Tracking
	WO	Washed Out Bit
	WT	Worn Teeth / Cutters
	NO	No Dull Characteristics

N - Nose Row
M - Middle Row
G - Gauge Row
A - All Rows

CONE #
1
2
3

NON - SEALED BEARINGS
A linear scale estimating bearing life.
0 - No life used,
8 - No bearing life remaining.

SEALED BEARINGS
E - Effective bearings
F - Failed Bearings

(E) In - In gauge, 1 - 1/16", 2 - 2/16", 3 - 3/16" UG etc

(F)	
BHA	Change BHA
CM	Condition mud
CP	Core Point
DMF	Downhole Motor Fail
DP	Drill Plug
DSF	Drill String Failure
DST	Drill Stem Test
DTF	Downhole Tool Fail
FM	Formation Change
HP	Hole Problems/ LIH
HR	Hours on Bit
LIH	Lost in Hole
LOG	Run Logs
PP	Pump Pressure
PR	Penetration Rate
PR	Penetration Rate
RIG	Rig Repair
TD	Total Depth
TQ	Torque
TW	Twist-Off
WC	Weather Conditions
WO	Washout/Drill String
	-

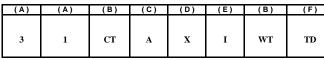
^{*} Show cone number or numbers under location (C) .

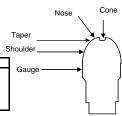
PDC GRADING CHART

BIT RUN DATA #3 BHA 3

Bit Size:	311mm ([12 1/4")	
Manufacturer:	Re	ed	
Bit Model:	6-A16		
Serial Number:	218662		
New Bit:	Yes		
IADC Code:	M422		
Number of Nozzles:	6		
Size of Nozzles:	3 x 15 3 x 16		
Number of Blades:	6		
Number of Cutters:	59		
Size of Cutters:	16,13		
T.F.A. (sq ins):	1.1	10	
W.O.B. :	5-25	Klfbs	
Depth In:	1123.0	m	
Depth Out:	1810.0	m	
Meters Drilled:	687.0	m	
Rotating Hours:	39.20	hrs	
Metres Rotary:	687.00	m	
On bottom hours	19.62	hrs	
Average R.O.P:	35.00	m/hr	
Circulation Rate:	1055	GPM	
R.P.M. at Bit:	160	rpm	
Motor Used:	N	0	
Motor Size:	N/	/a	
Bit Good for Rerun:	N	0	

WELL DATA


Date: 5-May-08
Rig: West Triton Well Number: West Seahorse-3 Rig Contractor: Seadrill
Well Number: West Seahorse-3 Rig Contractor: Seadrill
Rig Contractor: Seadrill
Hole Angle: 27.00°
Date in: 3-May-08
Date Out: 5-May-08
SLB BHA # 2


MUD AND LITHOLOGY DATA

Majority Formation:	Silt stone
Other Formation:	
% Formation:	
Mud Type:	KCL Polymer
Mud Weight:	9.7
PV:	10 cP
YP:	25 lbs/100ft^2
Corrected solid:	5.10
% Oil / Water:	n/a
Circulating Temperature:	58 deg C

COMMENTS:

PDC GRADING CHART AS PER IADC NOMENCLATURE

	CUTTING STRUCTURE				G	REM	ARKS
INNER	OUTER	DULL	LOC	BRING	GAUGE	OTHER	REASON
ROWS	ROWS	CHAR.	ATION.	SEALS	1/16"	CHAR.	PULLED
(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)

(A)	0	No Wear
	8	No Cutting structure
(B)	BT	Broken Cutters
	BU	Balled Up
	CR	Cored
	CT	Chipped Cutters
	ER	Erosion
	HC	Heat Checking
	JD	Junk Damage
	LN	Lost Nozzle
	LT	Lost Cutters
	OC	Off-Center Wear
	PN	Plugged Nozzle/
		Waterway Passage
	RG	Rounded Gauge
	RO	Ring Out
	WO	Washed Out - Bit
	WT	Worn Cutters
	NO	Bit is Green
	IM	Impact
	DEL	Delamination
	SPL	Spalling
	BF	Bond Failure
1		
(C)	С	Cone
	N	Nose
	Т	Taper

Shoulder Gauge All Angles

(D)	Χ	Fixed Cutter Bits
(E)	1	In Gauge
	1/16	1/16" Undergauge
	2/16	1/8" Undergauge etc.

(F)	BHA	Change BHA
	DMF	Downhole Motor Fail
	DSF	Drill String Fail
	DST	Drill Stem Test
	DTF	Downhole Tool Fail
	LOG	Run Logs
	RIG	Rig Repair
	CM	Condition mud
	CP	Core Point
	DP	Drill Plug
	FM	Formation Change
	HP	Hole Problems
	HR	Hours
	PP	Pump Pressure
	PR	Penetration Rate
	TD	Total Depth
	TQ	Torque
	TW	Twist-Off
	WC	Weather Conditions
	WO	Washout/Drill String
		· ·

Attachment 8 Activity Summary Reports

Wellname: West Seahorse-3 Drilling Co.: Seadrill Rig: West Triton

Water Depth: 39.5m Long: 147 Deg 37 Min 9.810 Sec Spud Time: 04.15 Release Time: 16.30

Well History

Well: West Seahorse-3

#	Date	Depth	24 Hour Summary
1	22 Apr 2008		Commence contract to 3D Oil at 10.30 hrs. Tow rig to new location at West Seahorse-3, jack rig up to 1.5m and commence preloading.
2	23 Apr 2008		Preload rig, jack rig up to 15m air gap, skid cantelever deckout and install Texas deck. Make up R/tool in W/head together with 13 3/8" cement plugs and lay out. Commence picking up 36" BHA.
3	24 Apr 2008	125.0m	Make up 36" BHA, tag seabed @ 77.5m and drill ahead from 77.5m to 125m. Make wiper trip and fill hole with inhibited mud from last well. Run 30" conductor pipe to 122m, suspend pipe at CTU and cut 30" above CTU. Lay out top 2 jnts pipe.
4	25 Apr 2008	125.0m	Cement 30" conductor and POOH stinger. RIH with 26" bit on DP and tag buttweld landing ring in 30" conductor. Install adjustment nut on 18 3/4" w/head assy. Cut and dress top of 30" conductor at CTU. Install diverter system onto 30" conductor. Commence pick up 17 1/2" BHA.
5	26 Apr 2008	768.0m	Pick up and RIH with 17 1/2" BHA. Tag top of 20" shoe at 121m. Take survey and drill cement, shoe and rathole to 125m. Drill ahead from 125m to 768m. KOP at 172m, EOB at 465m.
6	27 Apr 2008	1123.0m	Continue drilling 17 1/2" hole from 768m to 1123m, circulate to clean hole, POOH to 1070m
7	28 Apr 2008	1123.0m	POOH with 17 1/2" drilling assy, RIH with jetting string and jet landing collar. Rig up and run 13 3/8" casing to 854m.
8	29 Apr 2008	1123.0m	Run 13 3/8" CSG, pick up w/head and land CSG at MLS landing collar in 30" conductor. Circulate and cement CSG. Attempt to back out W/head R/tool - back out 13 3/8" casing jnt just below 20" to 13 3/8" swage. Recover w/head with R/tool. Commence to pull diverter and riser assy.
9	30 Apr 2008	1123.0m	Lay out diverter and riser assy. Pick up W/head and break out R/tool, inspect and make up R/tool to W/head. Lay out same. Break out 17 1/2" BHA and lay out. Pick up 13 3/8" waterbushing, Screw into casing, rotate to right to unscrew R/tool from MLS, POOH - recover 2 jnts casing. RIH with spear, engage fish, rotate to right and unscrew R/tool from MLS, POOH with fish - all recovered.
10	01 May 2008	1123.0m	Recover and lay out balance of 13 3/8" landing string fished from hole. Pick up spare 13 3/8" MLS hanger and R/tool, break out R/tool from hanger and RIH with new 13 3/8" CSG landing string. Pick up W/head and make up 13 3/8" MLS R/tool to hanger at mudline. Attempt to pressure test CSG - max 2000psi bleeding off to 1200psi. Set adjusting nut on W/head. Back out W/head R/tool. Rig up and run BOP.
11	02 May 2008	1123.0m	Continue to test BOP and valves. Repair connection to choke line. Service TDS and change out V-door tugger line. Pick up 12 1/4" rotary steerable BHA. RIH to 200m. Test lower pipe rams 250/750psi. Continue RIH to 285m - taking weight on cement in CSG. Wash and ream cement inside CSG from 285m to 468m.
12	03 May 2008	1392.0m	Wash and ream cement inside 13 3/8" csg from 468m to 1103m - tag plugs. Drill plugs, shoe track, rathole and 3m new formation. Perform FIT to 13.65ppg. Drill ahead 12 1/4" hole from 1126m to 1392mMD.
13	04 May 2008	1810.0m	Drill 12 1/4" hole from 1392m to 1559mMD. Shut well in after driller detected 6bbl gain - no pressures. Open well, flowcheck, circ bottoms up - max gas 0.13%. Drill ahead from 1559m to 1810mMD - final TD of well. Circulate to clean well. POOH to 1530m.
14	05 May 2008	1810.0m	POOH from 1530m to 30m. Lay out MWD/LWD BHA. Rig up and run Schlumberger logs: run No 1 PEX-HRLT-BHC, run No 2 MDT.
15	06 May 2008	1810.0m	Complete MDT logging run. RIH MSCT - tool misfunction - POOH and rectify same. RIH MSCT, cut 14 cores, recover 12. Rig down Schlumberger. Clear rig floor. Install Sampson post and automatic elevators. Service TDS and travelling block. RIH with mule shoe on DP for bottom abandonment plug.
16	07 May 2008	1810.0m	RIH with mule shoe on DP from 1565m to 1770m. Tag fill, wash down to 1771m. Spot balanced cement plug #1A from 1771m to 1633m, pull back to 1633m and circulate out excess cement. Spot balanced cement plug #1B from 1633m to 1500m. Pull back to 1416m and circulate 1.5 x bottoms up. Lay out 5 1/2" DP from 1417m to 1238m. RIH and tag plug #1B at 1490m. POOH from 1490m to 1238m. Spot 50bbl hi vis, POOH to 1149m and spot cement plug #2 from 1149m to 1030m. POOH to 942m, circulate 1.5 x bottoms up, pump slug and POOH to 325m laying out DP. Pressure test plug #2 to 1500psi, POOH to 307m, spot 50bbl hi vis, POOH to 207m. Rig up and spot cement plug #3 from 207m to 130m.
17	08 May 2008	1810.0m	POOH with 5 1/2" DP after cement plug #3 to 130m. Reverse out and displace hole to seawater. POOH and flush BOP area, displace riser to seawater. Pick up and lay out diverter and riser jnts. Nipple down and stand back BOP. Retrieve nominal bore protector. Engage w/head with r/tool and back out MLS r/tool. Lay out w/head and 13 3/8" CSG landing string. RIH with 13 3/8" temporary abandonment cap, modify centraliser size and install MLS 13 3/8" TA cap. Make up 30" spear and latch into conductor CSG.
18	09 May 2008	1810.0m	Un-jay Quick-Jay connection at seabed, recover and lay out 30" conductor jnts. Set aside work platform on Texas deck, nipple down CTU. RIH 30" trash abandonment cap - ROV not functional. POOH trash cap. Transfer work platform to main deck & store CTU. Prepare and skid rig out to make lift of Texas deck extension off boat. *** END OF WELL ***

Wellname: West Seahorse-3 Drilling Co.: Seadrill Rig: West Triton

DFE above MSL: 38.0m Lat: 38 Deg 12 Min 25.077 Sec Spud Date : 24 Apr 2008

Water Depth: 39.5m Long: 147 Deg 37 Min 9.810 Sec Spud Time: 04.15

Release Time: 16.30

Release Date: 09 May 2008

Activity Report For West Seahorse-3

Date : 22 A	Apr 200	8			Daily Cost : US\$ 366000	Report Number : 1
Depth (m)	Phase	Cls	Ор	R.C. Hrs	Activity	
0.0	P1	Р	M2	7.5	**** ON CONTRACT TO 3D OIL AT 1 On tow to West Seahorse-3. Rig on lo	0.30 HRS 22 APRIL 2008 **** location at 17.58 hrs. Rig heading 137.21 deg
0.0	P1	Р	М3	1	Jack up to 1.5m airgap and connect d	eepwell pumps
0.0	P1	Р	М3	5	Hold PJSM and commence preloading	g. Release MV's Sirius Cove & Cambell Cove @ 19.45 hrs.

Date : 23 Apr 2008					Daily Cost : US\$ 650000	Report Number : 2
Depth (m)	Phase	Cls	Ор	R.C. Hrs	Activity	
0.0	P1	Р	МЗ	6	Continue preloading operation - full load at 04.00 hrs. Hold preload for 2 hours. Prepare rig for skid and spudding of well.	
0.0	P1	Р	МЗ	2	Dump preload water.	
0.0	P1	Р	МЗ	1	Jack rig to 15m air gap.	
0.0	P1	Р	M2	2	Hold JSA and skid cantelever deck or	ut to position.
0.0	P1	Р	M2	1.5	Install Texas deck, prepare stairs, ins	tall gumbo hose and skid rig to final position.
0.0	P1	Р	G1	5	Install service lines, stairs to Texas de P/up stand drill pipe and check CTU a	eck, CTU and platform, install mousehole, rig down BOP slings.
0.0	P1	Р	G1	4	M/up wellhead R/tool with 13 3/8" cen to 20" pup jnt below W/head. Lay out	nent plugs, M/up same to wellhead, install 20" x 13 3/8' X-over assy.
0.0	P2	Р	G6	2.5	Pick up 36" BHA including 26" bit and	36" H/opener, Anderdrift tool, float sub and 36" stab to 10m.

Date : 24 A	pr 2008	В			Daily Cost : US\$ 650000	Report Number : 3	
Depth (m)	Phase	Cls	Ор	R.C. Hrs	Activity		
0.0	P2	Р	G6	3.5	Continue picking up 36" BHA. Break in	new joints 9 1/2" & 8 1/4" DC's.	
77.5	P2	Р	G6	0.5	Jump ROV and observe tagging of sea	abed at 77.5m.	
105.0	P2	Р	D8	3	Take deviation survey at seabed with Anderdrift tool (0deg) and spud well at 04.15hrs drilling from 77.5m to 125m. Survey at 125m 0deg.		
125.0	P2	Р	F3	0.5	Pump 200bbl Hi Vis sweep, displace h	ole with inhibited mud from last hole.	
125.0	P2	Р	G8	0.5	POOH from 125m to 83m, RIH to 125r	m for wiper trip. No fill. Displace 200bbl inhibited mud.	
125.0	P2	Р	G8	1.5	POOH from 125m to surface.		
125.0	P3	Р	G1	2.5	Rig up to run 30" conductor. Change o	out bails and elevators.	
125.0	P3	Р	G9	9	Hold PJSM and run 30" conductor to 122m. Install Quick Jay joints at 46m complete with release cable. Install 30" guide plates in CTU and fit ICON support clamp for CTU. Land conductor with 90 000 lbs.		
125.0	P3	Р	G9	0.5	Make rough cut of 30" conductor 2m al	bove ICON clamp.	
125.0	P3	Р	G9	1	Lay out 2 jnts 30" conductor including of	cut-off.	
125.0	P3	Р	G1	1.5	Rig down 30" handling equipment, clea	ar rig floor, change out bails and install automatic elevators.	

Date : 25 Apr 2008						Daily Cost : US\$ 650000	Report Number : 4	
Depth (m)	Phase	Cls	Op	R.C.	Hrs	Activity		
125.0	P3	Р	G1		1	RIH with cement stinger and sting into 20" Sh	noe.	
125.0	P3	Р	F3		2	Rig up cement lines and cement 30" conductor with 1660sx (70.5 MT) and 204bbl Cacl mix water making 343bbl 15.9ppg slurry - over 200% excess. Observe returns on seabed with ROV - indications of cement returns to surface.		
125.0	P3	Р	F3		0.5	Check for backflow, unsting stinger and circu	late into conductor.	
125.0	P3	Р	G1		1	POOH with stinger.		

Wellname: West Seahorse-3 Drilling Co.: Seadrill Rig: West Triton

 DFE above MSL : 38.0m
 Lat : 38 Deg 12 Min 25.077 Sec
 Spud Date : 24 Apr 2008
 Release Date : 09 May 2008

 Water Depth : 39.5m
 Long : 147 Deg 37 Min 9.810 Sec
 Spud Time : 04.15
 Release Time : 16.30

Date : 2	5 Apr 20	08			Daily Cost : US\$ 650000	Report Number : 4
125.0	P3	Р	G8	1.5	RIH with 26" bit on DP to tag butt weld landing collar inside 30" conductor below Quick Jay connector Tag landing collar at 86.87m as expected. POOH with string.	
125.0	P3	Р	G10	3	Pick up 18 3/4" w/head assy. Break out at crossover joint. Install adjuster nut, re-assemble and lay w/head out.	
125.0	P3	Р	G1	5.5	Confirm space-out of low pressure riser / diverter system. Welder cut and dress 30" conductor at 19.2mRT (3.18m above CTU deck). Lay out cut conductor. Install BOP slings. Prepare to install diverter assy.	
125.0	P6	Р	G2	6.5	Pick up and make up diverter, intermediate jnt and overshot and land out same. Pressure up system Note: Slower than expected rigging up LP riser due to rig having only one riser handling clamp.	
125.0	P6	Р	P2	1	Pick up stand DP, fill riser, function diverter, flush lines and test diverter to 200 psi.	
125.0	P3	Р	G6	2	Hold pjsm. P/up 17 1/2" BHA including	motor, 2 NMDC's, float sub, X/O, 17" Stab.

Date : 26	Apr 200)8			Daily Cost : US\$ 650000	Report Number : 5
Depth (m)	Phase	e Cls	Ор	R.C. Hrs	Activity	
125.0	P3	Р	G6	4.5	Continue pick up 17 1/2" BHA and RIH	. Tag top of 20" shoe at 121m.Take checkshot survey 0.26°.
125.0	P3	Р	D1	0.5	Drill out 20" shoe and rathole to 125m.	Displace hole to flocculated gel mud.
768.0	P4	Р	D8	19	Continue drilling 17 1/2" hole from 125r - Incl 27.5°, Az 61°, hole 6m from desig	m to 768m. KOP#1 at 172m, EOB#1 at 465m. Status at 768m: yn line.

Date : 27 /	Apr 200	8				Daily Cost : US\$ 650000	Report Number : 6	
Depth (m)	Phase	Cls	Op	R.C. H	Irs	Activity		
1123.0	P4	Р	D8	2	2	Drill ahead 17 1/2" hole from 768m to 1123m as peat 2.5m to right and 4.5m below design line - 5.25m	•	
1123.0	P4	Р	F4	1		Circulate until shakers clean - 1200gpm, 100rpm and reciprocate pipe. Spot 430bbl inhibited mud from previous well.		
1123.0	P4	Р	G8	1		Flow check, POOH wet from 1123m to 1070m. Bar - 35 klbs O/pull	ck-ream and work tight spots from 1082m to 1076m	

Date : 28 Apr 2008						Daily Cost : US\$ 650000	Report Number : 7
Depth (m)	Phase	Cls	Ор	R.C.	Hrs	Activity	
1123.0	P4	Р	G8		2.5	Continue POOH from 1070m to 739m. Work tight spots at 1082m, 1076m, 994m & 759m to 739m. 35k lbs O/pull.	
1123.0	P4	Р	G8		3.5	Pump 20bbl slug and continue POOH from 739m to 125m (top of DC's). Work tight spots from 739m to 543m. Up to 35k lbs O/pull.	
1123.0	P4	Р	G10		0.5	Perform flowcheck, remove 10" diverte	er insert.
1123.0	P4	Р	G6		2.5	Continue POOH from 125m to surface	. Lay out 8 1/4" DC, bit and stab.
1123.0	P4	Р	G16		1.5	Make up jet sub, RIH to 87m and jet la	nding collar. POOH jetting string and clear rig floor.
1123.0	P5	Р	G1		3.5	Hold PJSM, rig up to run 13 3/8" casin elevators and flush mounted slips. Rer	g : R/U casing circulating tool, change bails, install 500T nove diverter elemement.
1123.0	P5	Р	G9		10	Hold PJSM. Pick up shoe and float into casing as per tally to 854m. Install cen	s and check floats. Bakerlock float to shoe joint. Run 13 3/8" tralisers as per programme.

Date : 29 /	Apr 200	8			Daily Cost : US\$ 920000	Report Number : 8
Depth (m)	Phase	e Cls	Op	R.C. Hrs	Activity	
1123.0	P5	Р	G9	2	Continue running 13 3/8" Csg from 854m collar jt.	to 1029m. Total of 90 joints run including shoe jt and float
1123.0	P5	Р	G9	0.5	Pick up MLS jnt, back out and make up to bushings.	o 2000ft-lb. Change out flush mounted slips and master

Date : 29	Apr 20	80				Daily Cost : US\$ 920000	Report Number : 8
1123.0	P5	Р	G9		1	Continue running 13 3/8" Csg landing	string from 1029m to 1091m (5 joints).
1123.0	P5	Р	G1		2	Rig down Csg circulating tool and char	nge over to DP elevators/bails. Rig down Csg spider.
1123.0	P5	Р	G9		1	Pick up and make up wellhead assembly. Break out wellhead landing ring and set aside. Pull master bushings.	
1123.0	P5	Р	G9		0.5	Commence lowering wellhead. Hole be (before making up wellhead, had 180k	ecoming sticky with 150klb down weight and 330klb up weight lb down weight and 280klb up weight).
1123.0	P5	Р	F4		1	Make up TDS. Circulate casing at 440 270klb up weight.	gpm / 300psi. Conditions improved to 200klb down weight,
1123.0	P5	Р	G9		0.5	Make up DP single and wash down to	1115mMD.
1123.0	P5	Р	G9		1	Make up x/o, cement head, x/o and DF	P pup joint.
1123.0	P5	Р	G9		0.5	Circulate down and land MLS hanger of 1117mMD.	on mudline landing ring with 13-3/8" casing shoe set at
1123.0	P5	Р	F4		1	Circulate casing with 700bbls mud at 5	25gpm. Concurrently hold PJSM for cement job.
1123.0	P5	Р	F4		0.5	Pressure test lines to 4000psi. Pump 6	Obbls seawater spacer.
1123.0	P5	Р	F4		1		e. Pump 13bbls seawater. No pressure increase observed to ball launcher to check - ball not held up in launcher. Pump indication of bottom plug release.
1123.0	P5	Р	F4		1	Cement 13-3/8" casing as follows - Lead: 460sx class G with 140bbls mix Tail: 290sx class G with 35bbls mix flu	
1123.0	P5	Р	F4		1.5	Pump a further 10bbls seawater with o	release with 2400psi after displacing dart with 2bbls seawater. ement unit. Switch to rig pumps and continue displacement ment plus half shoe track). Plug not bumped. Bled back 3bbls.
1123.0	P5	Р	G9		2	R/D cement lines. Rotate running strin tool. Unable to pull running tool free w	g with 12 LH turns using rig tongs to release wellhead running th up to 10klb overpull.
1123.0	P5	Р	G9		1.5	and re-attempt to break out wellhead r weight. String came free and commen	to previously above cement head into x/o at RT. Make up TDS unning tool - unsuccessful. Pick up with 15klb over string ced moving with 10klb more than previous string weight. POOH nning tool and backed out at the 13-3/8" BTC connection at the
1123.0	P5	TP	G1	TP	1.5	Laid out crossovers and DP above we	lhead assembly and laid out wellhead assembly.
1123.0	P5	Р	G12	RE	1	Install diverter bag, displace riser to to	S/water and flush overboard lines.
1123.0	P5	Р	G12	RE	3	Rig up and pull diverter - O/shot. Rack	back diverter - intermediate jnt & lay out overshot.

Date : 30 A	pr 2008	8				Daily Cost : US\$ 580000	Report Number : 9
Depth (m)	Phase	Cls	Ор	R.C.	Hrs	Activity	
1123.0	P5	Р	G12	RE	2	Continue laying out diverter and riser assy.	
1123.0	P5	TP	G12	TP	2.5	Pick up W/head, break out R/tool, inspect threads - OK, make up R/tool to W/head with chain tongs - R/tool function OK, inspect threads on pin of 13 3/8" casing - OK, lay down W/head.	
1123.0	P5	Р	G6		4	Lay out motor and excess 17 1/2" BHA.	
1123.0	P5	TP	G18	DH	3.5	Make up 13-3/8" water bushing (13-3/8"BTC x 4-1/2"IF crossover) on stand of DP and RIH to top of 13-3/8" casing at 24.9mRT (5.7m below top of 30" conductor). Pushed water bushing in line with casing and stabbed into connector. Made several attempts to make up into casing using chain tongs, rig tongs, iron roughneck and TDS without success. Water bushing either rolling around on threads or torquing up and stalling out.	
1123.0	P5	TP	G18	DH	0.5	POOH with water bushing and inspected BTC thread	ds - ok.
1123.0	P5	TP	G18	DH	1	RIH again with water bushing on DP made up to TD slowly. Made up slowly into connector with 2-4kft-lbs (1.5klb). String went down 10cm whilst making up an	s torque whilst maintaining neutral string weight
1123.0	P5	TP	G18	DH	1.5	Continued turning drillstring to the right. Holding 5klb 5kft-lbs torque and dropped another 2cm over 4 turn indicating possible backing out at the MLS running to	s. String then rose 9cm over approx 10 turns,
1123.0	P5	TP	G18	DH	0.5	Commenced POOH with 5klb over original string we	ight.

Date: 30) Apr 20	80				Daily Cost : US\$ 580000	Report Number : 9
1123.0	P5	TP	G11	RE	1	Unable to break out TDS. Breakout jaws only developing 25kft-lbs. ET work on and rectify probler	
1123.0	P5	TP	G18	DH	2.5	Continue POOH with two 13-3/8" casing joints to surface. Connection at bottom of first joint partially backed out. Pin connection at bottom of second joint gouged from being rotated off-centre on the below it. Break out water bushing. Lay out casing joints.	
1123.0	P5	TP	G18	DH	1.5	Pick up and make up 13 3/8" spear & b	umper sub and RIH same.
1123.0	P5	TP	G18	DH	3.5	jnts together, continue turning to right a all 3 remaining jnts recovered including	attached to mudline hanger. Rotate to right and screw casing and unscrew MLS running tool from hanger. POOH with fish pup jnt attached to MLS R/tool. Rack back HWDP, attempt ality of casing. Lay out bumper sub and x/o.

Water Depth: 39.5m Long: 147 Deg 37 Min 9.810 Sec Spud Time: 04.15 Release Time: 16.30

Activity Report For West Seahorse-3

Date : 01 N	/lay 200	8				Daily Cost : US\$ 563370	Report Number : 10
Depth (m)	Phase	Cls	Ор	R.C.	Hrs	Activity	
1123.0	P5	TP	G18	DH	2.5	Continue retrieving and laying down recover	ered 13 3/8" CSG and MLS R/tool.
1123.0	P5	TP	G9	DH	1	Original MLS R/tool threads observed damaged. Pick up back-up 13-3/8" MLS assembly, break out R/tool from hanger and lay out hanger section.	
1123.0	P5	TP	G9	DH	4	RIH with MLS R/tool and 13 3/8" CSG landing string. Place 28" centraliser on bottom of jnt above R/tool jnt. Tack weld top and bottom of all csg connecters.	
1123.0	P5	TP	G9	DH	1	Pick up W/head assy, make up to 13 3/8" CSG, check R/tool and install adjuster nut on W/head.	
1123.0	P5	TP	G9	DH	1	Pick up stand DP, make up top drive & RIH	d with W/head assy. Wash down to MLS hanger.
1123.0	P5	TP	G9	DH	1		veral attempts required landing R/tool onto hanger eads and making up. Observed 3" drop in running string orque.
1123.0	P5	TP	F3	DH	0.5	Attempted to pressure test 13 3/8" CSG / N 2000psi then bled back rapidly to 1200psi,	/ILS hanger to 2500psi. Casing pressured up uniformly to losing approx 1bbl/minute.
1123.0	P5	TP	F3	RE	1.5	Attempt to pressure test surface lines again leaks to several leaking manifold valves.	nst IBOP - leaking at 60psi/min. Fault find and trace minor
1123.0	P5	TP	F3	DH	0.5	Re-attempted original casing pressure test 1200psi.	. Pressure broke over at 1550psi and levelled out at
1123.0	P5	TP	G9	DH	0.5	Pick up 15klb over running tool string weig 30" conductor stub.	ht. Make up adjustable landing ring on wellhead down onto
1123.0	P5	TP	G9	DH	2	Rotate string to several positions and attention wellhead side outlet plug and release trapp	rder to back out. Unable to scope down running tool. npt to collapse tool with up to 20klb weight down. Back out led pressure. Scope down R/tool and back out R/tool from loug release dart found lodged in crossover above W/head
1123.0	P6	Р	G1		4	Raise platform on Texas deck. Install wellh Rig up BOP slings. Offline - Test shear rams to 250/5000psi 5	nead valves and blanking flanges. Prepare top of wellhead.
1123.0	P6	Р	G13		4.5	Nipple up BOP. Pick up O/shot & diverter.	Rig up to install choke line.

Date : 02 N	/lay 200	8				Daily Cost : US\$ 750000	Report Number : 11
Depth (m)	Phase	Cls	Ор	R.C.	Hrs	Activity	
1123.0	P6	Р	G13		2.5	Continue nipple up diverter, O/shot and c	hoke line.
1123.0	P6	Р	G13		2	M/up Dril-Quip BOP test tool and 2 stands HWDP below tool. RIH and land off in W/head. Troubleshoot choke hose connection.	
1123.0	P6	Р	G13		2	Pressure test BOP UPR- W/head connector - HCR - manual choke & kill valves. Troubleshoot leaks and test to 250/5000psi, 5/5mins. Continue troubleshoot choke hose connection.	
1123.0	P6	Р	G13		1	Break out and lay out test plug. Rack 5 1/	2 stands back in derrick.
1123.0	P6	Р	G13		1	Re-connect choke hose, pressure test co	nnection to 250/5000psi, 5mins.
1123.0	P6	Р	G13		5	Rig up and pressure test kelly hose, gray test 250/5000psi 5mins.	valve, TIW, upper and lower IBOP's. Rectify leaks. Obtain
1123.0	P6	Р	G11		0.5	Service TDS.	
1123.0	P6	Р	G11		1	Hold PJSM and change out cable on V-do	oor tugger.
1123.0	P6	Р	G12		1	Install nominal bore protector in W/head.	
1123.0	P5	Р	G6		3	Pick up 12 1/4" Powerdrive rotary steerab	ole BHA. Lay out one 8" DC and one NMDC.
1123.0	P5	Р	G6		0.5	Shallow test Powerdrive/MWD to 500psi	@ 700gpm, 700psi @ 800gpm - OK.
1123.0	P5	Р	G8		1.5	Install automatic elevators. RIH DC's & H	WDP to 200m.
1123.0	P6	Р	G13		0.5	Line up Halliburton and test lower pipe ra	ms to 250/750psi 5mins.
1123.0	P5	Р	G8		0.5	Continue RIH from 200m to 285m - taking weight at 285m (25k lbs).	
1123.0	P5	Р	D1		2	Wash and ream from 285m to 468m. Con	firm cement in returns.

Date : 03 N	/lay 200	8			Daily Cost : US\$ 750000	Report Number : 12
Depth (m)	Phase	Cls	Ор	R.C. Hrs	Activity	
1123.0	P5	Р	D1	5.5	Wash and ream cement inside 13 3/8" CSG from 468m to 1103m. Tag top of plugs above float at 1103m	
1123.0	P5	Р	D1	7.5	1 3	
1123.0	P5	Р	D1	1	Drill out shoe track (2-3klb WOB, 50rpm) a 3m new hole to 1126m. Pulled back inside	and float shoe to 1117m. Clean out rathole to 1123m. Drill 13-3/8" shoe.
1123.0	P5	P	E1	1.5		ent line. Test lines to 2000psi. Close upper pipe rams and 9.4ppg mud and shoe at 1034mTVD => 13.65ppg EMW
1392.0	P11	Р	D4	8.5	Drill 12 1/4" hole from 1126m to 1392mMD	as per DD requirements. Survey every stand.

Date : 04 N	<i>l</i> lay 200	8				Daily Cost : US\$ 750000	Report Number : 13
Depth (m)	Phase	Cls	Op	R.C.	Hrs	Activity	
1559.0	P11	Р	D4		3	Directionally drill 12-1/4" hole from 1392m to 1507mMD.	
1559.0	P11	Р	D4		2.5	Control drill from 1507m - 1559mMD at 30m/hr for LWD logs.	
1559.0	P11	TP	P3	WB	0.5	Investigate 6bbl gain observed by driller at same time as 0.27% gas peak (0.005% BGG) : Shut well in - no pressure on DP or casing side. Open well and flow check - no flow.	
1559.0	P11	TP	F4	WB	0.5	Circulate bottoms up. Max gas 0.13%.	
1810.0	P11	Р	D4		12.5	Drill ahead from 1559m - 1810mMD (TD),	control drilling at 30m/hr.
1810.0	P11	Р	F4		3	Circulate hole clean at 1050gpm, 2000psi, 150rpm whilst reciprocating string.	
1810.0	P11	Р	G8		2	Flowcheck (static). POOH 10 stnds wet fro 1582m,1572m, 1533m. Pump slug.	om 1810m to 1530m wiping tight spots at 1610m,

Date : 05 N	/lay 200	8			Daily Cost : US\$ 1350000	Report Number : 14
Depth (m)	Phase	Cls	Op	R.C. Hrs	Activity	
1810.0	P11	Р	G8	3.5	Continue POOH from 1530m to 30m. RBHA.	tack back BHA to DC below jars. Flowcheck at shoe and top of
1810.0	P11	Р	G6	2.5	Lay out Schlumberger LWD and rotary	steerable tools.
1810.0	P11	Р	E3	1	Rig up Schlumberger.	
1810.0	P11	Р	E3	1.5	Pick up tools for log #1. Hold toolbox ta	lk. Load RA sources.
1810.0	P11	Р	E3	1.5	RIH with log #1 : PEX-HRLT-BHC. Unable to pass 1775m. Hanging up wit	h full toolstring weight.
1810.0	P11	Р	E3	0.5	Pull back and log repeat section from 1	690m - 1540m.
1810.0	P11	Р	E3	0.5	RIH. Held up again at 1775m with full to success.	polstring weight. Made four attempts to pass 1775m without
1810.0	P11	Р	E3	2	Log up from 1775m to casing shoe. Co	ntinue logging GR to seabed.
1810.0	P11	Р	E3	1	POOH. Remove RA sources. Rig down	log #1 tools.
1810.0	P11	Р	E3	1	Rig up for log #2 : MDT.	
1810.0	P11	Р	E3	9	RIH to 1585m. Correlated depth. Cond- samples were taken at 1567m MD. Note: Approx 2/3bbl/hr static losses when the condition of the condition	uct 27 pre-tests. Obtain 3 pump out stations from which 4 nilst wireline logging.

Date : 06	May 2008			Daily Cost : US\$ 740000	Report Number : 15
Depth (m)	Phase Cl	s Op	R.C. Hrs	Activity	
1810.0	P11 P	E3	6	Continue with log No 2 - MDT. Attempt	further 5 pre-test positions. POOH logging tool - took 800 lb

Date : 06	May 20	08				Daily Cost : US\$ 740000	Report Number : 15
						O/pull at three places inside casing bet	tween shoe and 980m.
1810.0	P11	Р	E3		2	Pick up and make up tools for log #2 :	MSCT-GR.
810.0	P11	Р	E3		1.5	RIH MSCT. Correlated depth from 172	0m - 1640m. RIH to 1694m.
810.0	P11	TP	E3	TP	0.5	Attempt to take cores at 1694m and 16	886m. Tool failure at both depths due to mechanical failure
810.0	P11	TP	E3	TP	1.5	POOH with MSCT and check tool. Cor	ing extend mechanism blocked with sticky cuttings.
810.0	P11	Р	E3		5	RIH with MSCT, cut 14 cores.	
810.0	P11	Р	E3		2.5	MSCT at surface, recover 12 cores. La	y out logging tools and rig down Schlumberger.
810.0	P11	Р	G1		0.5	Clear rig floor, install Sampson posts, i	nstall automatic elevators.
810.0	P11	Р	G11		1	Service and grease TDS, travelling blo	ck.
810.0	P21	Р	G8		3.5	Make up mule shoe & RIH same on DF	P to 1565m

Date : 07 l	May 200	8				Daily Cost : US\$ 650000	Report Number : 16	
Depth (m)	Phase	Cls	Ор	R.C.	Hrs	Activity		
1810.0	P21	Р	G8		0.5	Continue RIH with mule shoe on DP from	n 1565m to 1770m - tag fill.	
1810.0	P21	Р	F1		2	Make up TDS & wash down from 1770m	to 1771m. Unable to work past 1771m.	
1810.0	P21	Р	F3		2	Hold PJSM. Rig up side entry sub and TIW valve on DP with mule shoe at 1770m. Pump 5bbl drill water & pressure test lines to 1000psi OK. Pump 6bbl drill water. Mix and pump 74bbl cement slurry at 15.8ppg and follow with 2bbl drill water. Displace plug with 102bbl mud for balanced plug #1A from 1770m to 1630m. Rig down side entry sub.		
1810.0	P21	Р	G8		0.5	POOH from 1770m to 1633m.		
1810.0	P21	Р	F4		0.5	Make up TDS and circulate bottoms up.	Dump cement contaminated returns at surface.	
1810.0	P21	Р	F3		1.5	pressure test lines to 1000psi OK. Pump	second stage of bottom cement plug. Pump 5bbl drill water & 6bbl drill water. Mix and pump 78bbl cement slurry at Displace plug with 92bbl mud for balanced plug #1B from lb.	
1810.0	P21	Р	G8		0.5	POOH to 1416m.		
1810.0	P21	Р	F4		1.5	Circulate 1.5 x bottoms up. No cement in	returns.	
1810.0	P21	Р	G2		2	POOH laying out drillpipe to 1237m (18 j Concurrently pulled Quik-Jay anti-rotatio	oints laid out). n pin from 30" Quik-Jay connector 2m above mudline.	
1810.0	P21	Р	F1		1.5	RIH from 1237m - 1416m. Make up TDS	. Wash down and tag top of plug #1B at 1490m with 8klb.	
1810.0	P21	Р	F3		1	POOH to 1249m. Spot 50bbls high vis from	om 1249m - 1149m.	
1810.0	P21	Р	G8		0.5	POOH to 1149m.		
1810.0	P21	Р	F3		1	1000psi OK. Pump 6bbl drill water. Mix a	olug #2. Pump 5bbl drill water & pressure test lines to and pump 65bbl cement slurry at 15.8ppg and follow with 2bbl for balanced plug #2 from 1149m to 1030m. Rig down side	
1810.0	P21	Р	G8		0.5	POOH seven stands to 942m.		
1810.0	P21	Р	F4		1	Circulate bottoms up. No cement in retur	ns.	
1810.0	P21	Р	G2		3.5	POOH laying out drillpipe to 325m. 63 jo	ints DP laid out. 78 stands remaining in derrick.	
1810.0	P21	Р	P1		2.5	Rig up circulating head, flush lines and p flush air out of DP.	ressure test plug #2 to 1500psi. Troubleshoot surface leaks,	
1810.0	P21	Р	G8		0.5	POOH from 325m to 307m. Spot 50bbl h	igh vis from 307m to 207m. POOH from 307m to 207m.	
1810.0	P21	Р	F3		1		olug #3. Pump 5bbl drill water & pressure test lines to and pump 38bbl cement slurry at 15.8ppg and follow with 5bbl m to 130m. Rig down side entry sub.	

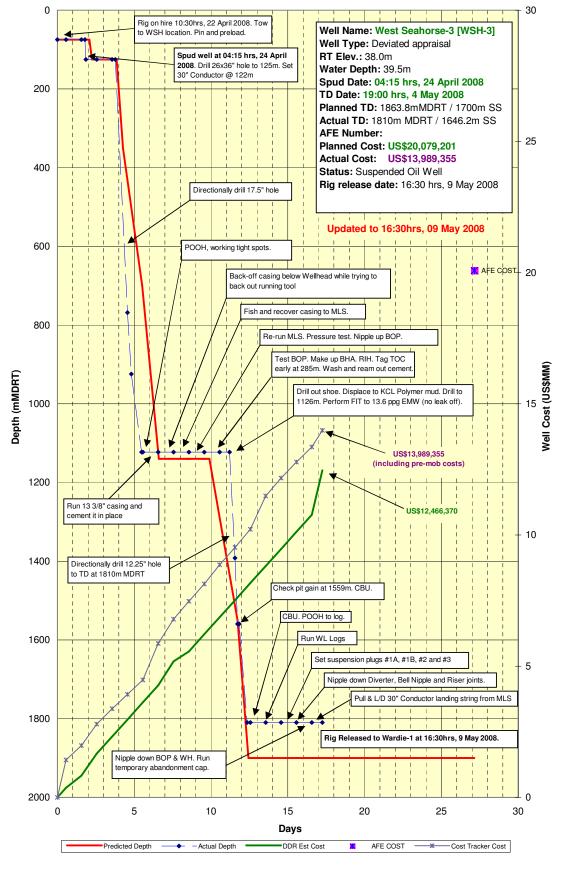
Date : 08	May 20	08			Daily Cost : US\$ 700000	Report Number : 17	
Depth (m)) Phas	e Cls	Op	R.C. Hrs	Activity		
1810.0	1810.0 P21 P G8 0.5				POOH from 207m to 130m. Rig up to reve	se circulate.	

Date : 08	May 20	08			Daily Cost : US\$ 700000	Report Number : 17
1810.0	P21	Р	F3	0.5	Reverse circulate excess cement and d	lisplace hole to seawater.
1810.0	P21	Р	G8	1	POOH from 130m to 30m. Make up TD stnd of DP.	S and jet BOP area and w/head with seawater. Stand back
1810.0	P21	Р	G13	2.5	Hold PJSM. Pick up diverter and overshriser.	not. Break out diverter and lay out same. Lay out overshot
1810.0	P21	Р	G13	1.5	Nipple down bell nipple/lower riser joint	and lay out same.
1810.0	P21	Р	G13	3	Nipple down and skid back BOP's.	
1810.0	P21	Р	G12	0.5	Retrieve nominal bore protector. Remov	ve valves on w/head.
1810.0	P21	Р	G12	1	Pick up w/head r/tool. M/U into w/head	and back out 13 3/8" MLS r/tool.
1810.0	P21	Р	G12	5		llhead at 20" crossover. Lay out wellhead. Cut and lay out 20" to cut and lay out 13 3/8" CSG landing string and MLS r/tool.
1810.0	P21	Р	G1	0.5	Rig down Weatherford and clear rig floo	or.
1810.0	P21	Р	G10	5	off each centraliser blade. RIH to 28.8m	nt cap and RIH. Unable to pass 28.8m. POOH. Grind 2.25cm n - unable to pass. POOH. Grind 3mm off each centralser G hanger and set cap. POOH and lay out abandonment cap
1810.0	P21	Р	G9	1	Pick up and make up 30" CSG spear.	
1810.0	P21	Р	G12	2	RIH 30" spear, latch onto conductor, tal Remove Icon clamp on 30" conductor C	ke weight of 30" conductor CSG and release tension on CTU. CSG.

Date : 09 N	May 200)8				Daily Cost : US\$ 1923130	Report Number : 18
Depth (m)	Phase	Cls	Op	R.C.	Hrs	Activity	
1810.0	P21	Р	G12		0.5	Continue removing Icon clamp and CTU insert.	
1810.0	P21	Р	G9		0.5	Back out Quick-Jay connection at seabed with 6k	ft-lb. Pull 30" conductor to surface.
1810.0	P21	Р	G9		2	Install 30" bushing. Attempt to remove 30" spear place.	- unsuccessful. Lay out first 30" jnt with spear in
1810.0	P21	Р	G1		1	Change out bails and 5 1/2" elevators for 30" elevators	vators.
1810.0	P21	Р	G9		2.5	Lay out 4 jnts 30" conductor including jnt with Qui	ick-Jay pin connection.
1810.0	P21	Р	G1		1	Rig down 30" handling equipment, change out ba	ils & install BOP slings.
1810.0	P21	Р	G1		2	Hold PJSM. Set aside work platform on Texas de	ck. Nipple down CTU & secure.
1810.0	P21	Р	G8		0.5	M/up 30" trash cap on r/tool & RIH to 71m.	
1810.0	P21	TP	G8	TP	1	ROV failure. POOH trash cap & rack back r/tool.	Troubleshoot ROV problem
1810.0	P21	Р	G9		2.5	Rig up BOP slings, clear equipment from CTU wo platform to main deck. Remove CTU to storage p Offline: Troubleshoot ROV	
1810.0	P21	Р	G1		3	Prepare rig for skidding. Hold PJSM. Pick up sling Rig down service lines. Skid rig out to position for Offline: Troubleshoot ROV	gs for making lift of CTU deck extension from boat. lift off boat.

^{*****} END OF WELL: WEST SEAHORSE - 3 *****

Attachment 9 Well Cost Summary


WEST SEAHORSE-3

	DRILLING COSTS		Plan (US\$)	Actual	(US\$)
RIG OPE	ERATIONS					
131111			\$4,950,000		\$4,736,016	
131113			\$33,000		\$8,625	
131114	Rig catering		\$32,400		\$31,050	
131117	Additional crew at 50%	Sub Total	\$35,462	\$5,050,862	\$33,984	\$4,809,675
DRILLIN	IG & COMPLETION MATERIALS & SUPPLIES			**,****		* 1,000,000
131121	Rig fuel lubes & water		\$318,240		\$304,980	
	Supply boat fuel, lubes & water		\$650,970		\$623,846	
131123	Consumables & software Drilling fluids		\$3,600 \$182,160		\$3,313 \$113,701	
	Wellheads & MLS		\$328,970		\$340,720	
	Bits/hole openers		\$111,647		\$111,669	
131127	Casing and liner		\$243,705		\$179,364	
	Casing accessories		\$29,706		\$24,092	
-	Conductor & surface casing Brines and completion/testing fluids		\$249,387 \$60,000		\$233,523 \$0	
	Cement, additives, spacers & ads		\$60,000 \$64,700		\$50,388	
101101	osmoni, adamios, spacero a ado	Sub Total	401,100	\$2,243,084	400,000	\$1,985,597
	IG & COMPLETION SERVICES					
	Downhole Drilling Tools		\$61,908		\$50,949	
	Wellhead Services - Rentals & Engineers Drilling /Completion Supervision		\$57,600 \$502,000		\$52,109 \$465,750	
	Shallow Gas Survey		\$0		\$0	
	Abandonment Equipment and Services		\$8,050		\$7,788	
131150			\$9,900		\$6,120	
131151	• .		\$2,722		\$2,722	
131153	0.		\$49,400 \$15,000		\$21,750 \$0	
	Solid control, filtration equipment Solids control/filtration/environmental engineers		\$15,000 \$0		\$0 \$0	
131156			\$4,001		\$5,135	
131157	•		\$17,507		\$18,438	
	ROV/diving		\$71,545		\$64,863	
	Mud engineering & Centrifuge services		\$72,572		\$71,517	
131161	The state of the s		\$59,153		\$48,103	
131162	Casing/tubing running - crew and equipment Cement engineer		\$137,643 \$41,781		\$108,642 \$34,800	
131164	ū .		\$31,320		\$24,618	
	H2S services		\$20,000		\$0	
131166	Fishing services		\$90,361		\$96,321	
131167	Directional services - d.driller & support		\$74,750		\$58,050	
131169	Directional drilling equipment - excl MWD/LWD - eval	Sub Total	\$441,672	\$1,768,884	\$292,817	\$1,430,491
EVALUA	ATION & TESTING	Sub i otai		\$1,768,884		\$1,430,491
	MWD/LWD personnel		\$69,560		\$42,120	
131171	Mud logging services (contract in A\$)		\$73,571		\$58,074	
	MWD/LWD logging		\$49,535		\$35,023	
	Electric logging, equipment and services		\$1,107,526		\$656,000	
131178	Performance management Daily reporting system		\$16,200 \$4,680		\$0 \$4,485	
131183			\$4,660 \$51,800		\$4,485 \$16,400	
	Operator sundries		\$8,000		\$0	
		Sub Total		\$1,380,871		\$812,101
LOGIST						
131201			\$1,549,269		\$1,463,154	
	Helicopters Shore Base Services		\$492,448 \$297,072		\$471,929 \$276,000	
	Mob/demob		\$12,960		\$0	
		Sub Total		\$2,351,749		\$2,211,083
OTHER						
131220	Miscellaneous	0.1.7	\$0	**	\$0	••
WELLD	ESIGN & MANAGEMENT	Sub Total		\$0		\$0
	Engineering planning & operations support		\$990,000		\$990,000	
	gg	Sub Total	*****	\$990,000	*****	\$990,000
OPERAT						
131261	Operator own costs (Insurance)		\$133,000		\$133,000	
		Sub Total		\$133,000		\$133,000
	TOTAL	DRILLING		\$13,918,450		\$12,371,947
	TESTING COSTS		Plan (US\$)	Actual	(US\$)
			(,000,	7.0144	(000)
	E-log processing			\$244,030		\$19,990
	Downhole testing tools			\$228,762		\$96,400 \$18,750
	Perforating Nitrogen services			\$75,454 \$0		\$18,750 \$0
	Acidising equipment, consumables & services	s		\$0		\$0
	Downhole monitoring - Gauges & PVT			\$96,788		\$114,540
131182	Drillstem Testing			\$203,226		\$107,380
	Fluid analysis			\$0		\$0
	Slickline services, plugs, tools & personnel			\$115,965		\$27,000
	Completion Assembly make up Rig Modifications (Testing)			\$0 \$30,000		\$0 \$30,000
	Completion/Testing Supervision			\$30,000		\$205,500
	Sedimentology			\$0		\$205,500
131191	Surface testing equipment			\$1,078,572		\$411,861
	Surface Sampling & Bottles			\$208,116		\$85,084
131193	Deluge System			\$90,960		\$61,350
	TOTAL	L TESTING		\$2,743,872		\$1,177,855
			Plan (US\$)	Actual	(US\$)
	TOTAL WELL COST		640.00	2 222	640.5	10 802
	TOTAL WELL COST		\$16,66	2,322	\$13,54	19,002

West Seahorse-3 EOW Cost Reconciliation Page 1 of 1

Time vs Depth Curve

Attachment 10 Description of Cuttings

3D OI

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
		914mm / 36" hole section drilled riserless to 125.0m MDRT. 762mm / 30" Conductor set at 122.0m MDRT.							
		444mm / 17½" hole section drilled from 125.0m MDRT commencing 05:04hrs, 26 April 2008.							
		20m sample interval.							
125-140	70	SHELL FRAGMENTS: Very coarse to granular < 5mm to common fine, abundant bivalves, bryozoans, gastropods, minor echinoderms, occasional microforaminifera.	FIP	-	Mnrl flu from shell frags only	-	-	-	-
	15	LOOSE SAND: Very coarse – granular < 2mm to fine sand, sub- angular to sub-rounded, rounded in part, abundant translucent to transparent, common orange, yellow, rose, minor fine muscovite and biotite flakes (possibly derived from Calcarenite), trace black carbonaceous material.	PIP	-	-	-	-	-	-
	15	CALCARENITE: Mottled very pale orange to white, hard, fine, translucent to transparent, subangular calcite and trace quartz, common fine muscovite and biotite flakes, highly calcareous, well cemented calcite cement, poor porosity.	PVP	-	<u>-</u>	-	-	-	-
	Tr	CEMENT: Contamination. Trace amounts.		-	-	-	-	-	-
		Calcimetry: Calcite: 21.9%; Dolomite: 16.7%							
140-160	80	SHELL FRAGMENTS: as above, common echinoderms, common microforaminifera, minor sponge spicules.	FIP	-	Mnrl flu from shell frags only	-	-	-	-
	15	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	5	LOOSE SAND: as above.	FIP	-	-	-	-	-	-
	-	CEMENT: Contamination, 5%		-	-	-	-	-	-
		Calcimetry: Calcite: 48.5%; Dolomite: 16.5%							
180	45	CALCARENITE: Mottled very pale orange to white, hard, fine, translucent to transparent, subangular calcite and trace quartz, common fine muscovite and biotite flakes, highly calcareous, well cemented calcite cement, poor porosity.	PVP			-	-	-	-
	30	SHELL FRAGMENTS: Very coarse to granular < 5mm to abundant fine, abundant bivalves, bryozoans, gastropods, common echinoderms, common microforaminifera, minor sponge spicules.	PIP	-	Mnrl flu from shell frags only	-	-	-	-
	25	LOOSE SAND: Abundant fine to very coarse quartz sand in part, sub-angular to sub-rounded in part, abundant translucent to transparent, common orange, yellow, rose, minor pale yellow to white sub-angular calcite, minor fine muscovite and biotite flakes (possibly derived from Calcarenite), trace black carbonaceous material.	GIP	-	-	-	-	-	-

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
		Calcimetry: Calcite: 60.8%; Dolomite: 16.4%							
200	60	•	PVP		Mnrl flu from shell frags only				
200	80	CALCARENITE: Mottled very pale orange to white, hard, fine, translucent to transparent, subangular calcite and trace quartz, common fine muscovite and biotite flakes, highly calcareous, well cemented calcite cement, poor porosity.	FVF	-	willi nu nom shell nags only	-	-	-	-
	20	SANDSTONE: Light olive grey to olive grey, friable to moderately hard in part, abundant very fine to fine, sub-angular quartz, fine shell fragments, minor black lithics and calcite grains, highly calcareous, moderately well cemented, good visible porosity	GVP	-	-	-	-	-	-
	15	SHELL FRAGMENTS: as above.	PIP	-	Mnrl flu from shell frags only	-	-	-	-
	5	LOOSE SAND: as above.	GIP	-	-	-	-	-	-
		Calcimetry: Calcite: 82.2%; Dolomite: 0.2%							
220	80	SANDSTONE: as above.	GVP	-	-	-	-	-	-
	15	SHELL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
	5	CALCARENITE: as above.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 58.3%; Dolomite: 0.3%							
240	70	SANDSTONE: as above.	GVP	-	-	-	-	-	-
	20	LOOSE SAND: as above.	GIP	-	-	-	-	-	-
	10	SHELL FRAGMENTS: as above.	PIP	-	Mnrl flu from shell frags only	-	-	-	-
		Calcimetry: Calcite: 55.0%; Dolomite: 6.0%							
260	60	SANDSTONE: Light olive grey to olive grey, friable, abundant very fine to fine, sub-angular calcite, quartz and fine shell fragments, minor black lithics, highly calcareous, moderately well cemented, good visible porosity.	GVP	-	-	-	-	-	-
	30	LOOSE SAND: as above, trace granular < 4mm, sub-angular translucent to yellow quartz.	GIP	-	-	-	-	-	-
	10	SHELL FRAGMENTS: very coarse to granular < 5mm to abundant fine, abundant bivalves, bryozoans, gastropods, common echinoderms, common microforaminifera, minor sponge spicules.	PIP	-	Mnrl flu from shell frags only	-	-	-	-
		Calcimetry: Calcite: 64.3%; Dolomite: 6.2%							
280	70	SHELL FRAGMENTS: very coarse to granular < 5mm, abundant bivalves, bryozoans, gastropods, common echinoderms, common microforaminifera, minor sponge spicules.	FIP	-	Mnrl flu from shell frags only	-	-	-	-

3D OIL

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	25	SANDSTONE: Light olive grey to olive grey, friable, abundant very fine to fine, sub-angular quartz and fine shell fragments, minor black lithics, highly calcareous, moderately well cemented, good visible porosity.	GVP	-	-	-	-	-	-
	5	LOOSE SAND: as above, trace granular < 4mm, sub-angular translucent to yellow quartz.	GIP	-	-	-	-	-	-
		Calcimetry: Calcite: 56.0%; Dolomite: 0.5%							
300	85	CALCARENITE: Mottled very pale orange to white, hard, fine, translucent to transparent, subangular calcite and trace orange, yellow, rose, quartz, common fine muscovite and biotite flakes, highly calcareous, well cemented calcite cement, poor porosity.	PVP	-	-	-	-	-	-
	10	SANDSTONE: Light olive grey to olive grey, friable, abundant very fine to fine, sub-angular quartz and minor calcite, fine shell fragments, minor black lithics, highly calcareous, moderately well cemented, good visible porosity.	GVP	-	<u>-</u>	-	-	-	-
	5	SHELL FRAGMENTS: Abundant fine to very coarse - granular < 2mm, abundant bivalves, bryozoans, gastropods, common echinoderms, common microforaminifera, minor sponge spicules.	PIP	-	Mnrl flu from shell frags only	-	-	-	-
		Calcimetry: Calcite: 57.4%; Dolomite: 0.5%							
320	80	CALCARENITE: Mottled very pale orange to white, hard, fine, translucent to transparent, subangular calcite and trace orange, yellow, rose, quartz, common fine muscovite and biotite flakes, highly calcareous, well cemented calcite cement, poor porosity.	PVP	-	<u>-</u>	-	-	-	-
	20	LOOSE SAND: Abundant fine to very coarse quartz sand in part, sub-angular to sub-rounded in part, abundant translucent to transparent, common orange, yellow, rose, minor pale yellow to white sub-angular calcite, minor fine muscovite and biotite flakes (possibly derived from Calcarenite), trace black carbonaceous material.	GIP	-	-	-	-	-	-
	Tr	SHELL FRAGMENTS: Abundant fine to very coarse - granular < 2mm in part, abundant bivalves, bryozoans, gastropods, common echinoderms, common microforaminifera, minor sponge spicules.	PIP	-	Mnrl flu from shell frags only	-	-	-	-
		Calcimetry: Calcite:75.8%; Dolomite: 0.8%							
340	65	CALCARENITE: Mottled very pale orange to white, hard, fine, translucent to transparent, subangular calcite and trace orange, yellow, rose, quartz, common fine muscovite and biotite flakes, highly calcareous, well cemented calcite cement, poor porosity.	PVP	-	-	-	-	-	-
	25	SANDSTONE: as above, soft in part, predominantly friable, hard in part.	GVP	-	-	-	-	-	-

WELL: WEST SEAHORSE-3

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	10	SHELL FRAGMENTS: Abundant fine to very coarse - granular < 2mm in part, abundant bivalves, bryozoans, gastropods, sponge spicules, common echinoderms, common microforaminifera.	PIP	-	Mnrl flu from shell frags only	-	-	-	-
		Calcimetry: Calcite: 71.7%; Dolomite: 7.3%							
360	70	CALCARENITE: Mottled very pale orange to white, hard, fine, translucent to transparent, subangular calcite and trace orange, yellow, rose, quartz, common fine muscovite and biotite flakes, highly calcareous, well cemented calcite cement, poor porosity.	PVP	-	-	-	-	-	-
	20	SANDSTONE: as above, soft in part, predominantly friable, hard in part.	GVP	-	-	-	-	-	-
	10	SHELL FRAGMENTS: Abundant fine to very coarse - granular < 2mm in part, abundant bivalves, bryozoans, gastropods, sponge spicules, common echinoderms, common microforaminifera.	PIP	-	Mnrl flu from shell frags only	-	-	-	-
		Calcimetry: Calcite: 64.3%; Dolomite: 5.9%							
380	75	CALCARENITE: Mottled very pale orange to white, hard, fine, translucent to transparent, subangular calcite and trace orange, yellow, rose, quartz, common fine muscovite and biotite flakes, highly calcareous, well cemented calcite cement, poor porosity.	PVP	-	-	-	-	-	-
	15	SANDSTONE: as above, soft in part, predominantly friable, hard in part.	GVP	-	-	-	-	-	-
	10	SHELL FRAGMENTS: Abundant fine to very coarse in part, abundant bivalves, bryozoans, gastropods, sponge spicules, common echinoderms, common microforaminifera, common skeletal fragments.	PIP	-	Mnrl flu from shell frags only	-	-	-	-
		Calcimetry: Calcite: 84.9%; Dolomite: 12.8%							
400	75	CALCARENITE: Yellowish grey to light olive grey to olive grey in part, moderately hard to hard calcite, very fine to fine and medium in part, angular to sub-angular, translucent, pale yellow to occasionally orange, minor black lithics, minor microforaminifera with glauconite-replaced cement, trace fine shell fragments, highly calcareous, well cemented, inferred calcite cement, poor porosity.	PVP			-	-	-	-
	15	SHELL & SKELETAL FRAGMENTS: Abundant fine to medium, abundant sponge spicules, common echinoderms, common microforaminifera, trace bryozoans, gastropods.	PVP			-	-	-	-
	10	LOOSE SAND: Abundant fine to medium quartz, sub-angular to angular and rounded fine in part, abundant translucent to transparent, common orange, yellow, rose, trace black carbonaceous material.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 86.7%; Dolomite: 5.7%							

3D OIL

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
420	80	CALCARENITE: Yellowish grey to light olive grey to white in part, moderately hard to hard, recrystallised calcite, very fine to fine and medium in part, angular to sub-angular, translucent, pale yellow to occasionally orange, minor black lithics, minor micro-foraminifera with glauconite-replaced cement, trace fine shell fragments, highly calcareous, well cemented, inferred calcite cement in part and recrystallised grain to grain contacts, poor visable porosity.	PVP	-	-	-	-	-	-
	10	LOOSE SAND: as above.	FIP	-	-	-	-	-	-
	10	SHELL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 78.8%; Dolomite: 9.8%							
440	80	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	10	LOOSE SAND: as above.	FIP	-	-	-	-	-	-
	10	SHELL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 88.5%; Dolomite: 4.4%							
460	80	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	10	LOOSE SAND: as above, trace cryptocrystalline pyrite.	FIP	-	-	-	-	-	-
	10	SKELETAL FRAGMENTS: as above, trace shell fragments.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 85.2%; Dolomite: 5.8%							
480	80	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	10	LOOSE SAND: as above, trace cryptocrystalline pyrite.	FIP	-	-	-	-	-	-
	10	SKELETAL FRAGMENTS: as above, trace shell fragments.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 82.5%; Dolomite: 5.5%							
500	75	CALCARENITE: Yellowish grey to light olive grey to olive grey in part, moderately hard to hard calcite, very fine to fine and medium in part, angular to sub-angular, translucent, pale yellow to occasionally orange, minor black lithics, minor microforaminifera with glauconite-replaced cement, trace fine shell fragments, highly calcareous, well cemented, inferred calcite cement, poor porosity.	PVP	-	-	-	-	-	-
	25	SKELETAL FRAGMENTS: Abundant fine to medium particles including abundant sponge spicules, common echinoderms, common micro-foraminifera, trace bryozoans.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 87.3%; Dolomite: 7.7%							
520	60	CALCARENITE: as above, locally traces containing common cryptocrystalline pyrite.	PVP	-	-	-	-	-	-

WELL: WEST SEAHORSE-3

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	40	SKELETAL FRAGMENTS: Abundant fine to medium particles including abundant sponge spicules (commonly black), common echinoderms, common microforaminifera, trace bryozoans.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 88.9%; Dolomite: 3.9%							
540	50	CALCARENITE: as above, locally traces containing common cryptocrystalline pyrite.	PVP	-	-	-	-	-	-
	50	SKELETAL FRAGMENTS: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 92.3%; Dolomite: 0.6%							
560	50	CALCARENITE: as above, locally with common cryptocrystalline pyrite (trace overall abundance).	PVP	-	-	-	-	-	-
	40	SKELETAL FRAGMENTS: as above.	-	-	-	-	-	-	-
	10	LOOSE SAND: Abundant fine to medium and coarse, sub-rounded in part, sub-angular to angular, abundant translucent to transparent, trace orange, yellow, and rose coloured grains.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 88.9%; Dolomite: 6.8%							
580	65	CALCARENITE: as above, coarsening slightly to medium to coarse sand in part and shows a porous texture due to partial dissolving of skeletal fragments.	FVP	-	-	-	-	-	-
	30	SKELETAL FRAGMENTS: as above.	FIP	-	-	-	-	-	-
	5	LOOSE SAND: as above.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 88.9%; Dolomite: 6.9%							
600	70	CALCARENITE: as above, locally trace medium green glauconite pellets.	FVP	-	-	-	-	-	-
	20	SKELETAL FRAGMENTS: as above.	-	-	-	-	-	-	-
	10	LOOSE SAND: Abundant fine to medium and coarse grains, sub-rounded in part, sub-angular to angular, abundant translucent to transparent, minor orange, yellow, trace cryptocrystalline pyrite.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 85.1%; Dolomite: 6.5%							
620	60	CALCARENITE: as above, locally trace medium green glauconite pellets.	FVP	-	-	-	-	-	-
	20	SKELETAL FRAGMENTS: Abundant fine to medium particles including abundant sponge spicules (commonly black), common echinoderms, common microforaminifera, trace bryozoans.	-	-	-	-	-	-	-
	15	LOOSE SAND: Abundant fine to medium and coarse grains, sub-rounded in part, sub-angular to angular, abundant translucent to transparent, minor orange, yellow, trace cryptocrystalline pyrite.	PIP	-	-	-	-	-	-

3D OI

WELLSITE SAMPLE DESCRIPTION

DEPTH m	%	LITHOLOGY DESCRIPTION and COMMENTS (classification, colour, hardness, texture, mineralogy, modifiers, cement)	POR	STAIN DIST COLOUR	FLUOR DIST INTEN COLOUR	CUT INTEN COLOUR	CUT FLUOR INTEN COLOUR	RES COLOUR	SHOW QUAL
	5	SANDSTONE: White, very hard, translucent to white quartz, fine to medium in part, sub angular, trace fine skeletal fragments, slightly to moderately calcareous, well cemented (recrystallised, calcite cement), poor visible porosity.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 75.3%; Dolomite: 5.5%							
640	45	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	20	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
	25	LOOSE SAND: as above.	PIP	-	-	-	=	-	-
	10	SANDSTONE: as above.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 76.9%; Dolomite: 6.2%							
660	45	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	25	SANDSTONE: as above.	PVP	-	-	-	-	-	-
	15	LOOSE SAND: as above.	PIP	-	-	-	-	-	-
	15	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 82.5%; Dolomite: 7.5%							
680	60	CALCARENITE: Light olive grey to olive grey in part, moderately hard to hard, very fine to fine and medium in part, angular to subangular, translucent, pale yellow to occasionally orange, minor black lithics, minor microforaminifera with glauconite-replaced cement, trace fine shell fragments, highly calcareous, well cemented, inferred calcite cement, poor porosity.	PVP	-	-	-	-	-	-
	20	SANDSTONE: White, very hard, translucent to white quartz, fine to medium in part, sub angular, trace fine skeletal fragments, slightly to moderately calcareous, well cemented (recrystallised, calcite cement), poor visible porosity.	PVP	-	-	-	-	-	-
	10	LOOSE SAND: Abundant fine to medium and coarse grains, sub-rounded in part, sub-angular to angular, abundant translucent to transparent grains, minor orange, yellow, trace cryptocrystalline pyrite.	PIP	-	-	-	-	-	-
	10	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 81.0%; Dolomite: 8.2%							
700	70	CALCARENITE: Light olive grey to olive grey in part, moderately hard to hard, very fine to fine and medium in part, angular to subangular, translucent, pale yellow to occasionally orange, minor black lithics, minor microforaminifera with glauconite- replaced cement, trace fine shell fragments, highly calcareous, well cemented, inferred calcite cement, poor porosity.	PVP	-	-	-	-	-	-

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	15	SANDSTONE: White, very hard, translucent to white quartz, fine to medium in part, sub-angular, trace fine skeletal fragments, slightly to moderately calcareous, well cemented (recrystallised calcite cement), poor visible porosity.	PVP	-	<u>-</u>	-	-	-	-
	15	LOOSE SAND: Abundant fine to medium and coarse grains, sub-rounded in part, sub-angular to angular, abundant translucent to transparent grains, minor orange, yellow, trace cryptocrystalline pyrite.	PIP	-	-	-	-	-	-
	10	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
	Tr	CALCILUTITE: White, soft, fine to medium, sub angular quartz, common fine skeletal fragments, common foraminifera, trace medium green glauconite, highly calcareous, weak silty matrix.	PVP- NVP	-	-	-	-	-	-
		Calcimetry: Calcite: 81.3%; Dolomite: 9.6%							
720	80	CALCARENITE: as above, common white colour.	PVP	-	-	-	-	-	-
	10	SANDSTONE: as above, poor visible porosity	PVP	-	-	-	-	-	-
	5	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
	5	LOOSE SAND: as above.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 82.6%; Dolomite: 13.6%							
740	75	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	10	SANDSTONE: as above.	PVP	-	-	-	-	-	-
	10	LOOSE SAND: Abundant very fine to medium, sub-angular to sub-rounded, abundant translucent to transparent grains, minor white, trace yellow.	PIP	-	-	-	-	-	-
	5	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 64.1%; Dolomite: 9.9%							
760	65	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	15	LOOSE SAND: as above.	GIP	-	-	-	-	-	-
	10	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
	10	SANDSTONE: as above.	PVP	-	-	-	-	-	-
	Tr	CALCILUTITE: as above.	PVP	-	-	-	=	-	-
		Calcimetry: Calcite: 63.2%; Dolomite: 5.5%							
780	70	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	10	LOOSE SAND: as above.	GIP	-	-	-	-	-	-
	10	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
	10	SANDSTONE: as above.	PVP	-	-	-	-	-	-

3D OI

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	Tr	CALCILUTITE: White, soft, fine to medium, sub angular quartz, common fine skeletal fragments, common foraminifera, trace medium green glauconite, highly calcareous, weak silty matrix.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 67.3%; Dolomite: 6.2%							
800	70	CALCARENITE: White to light olive grey, moderately hard to hard to recrystallised calcite, very fine to fine and medium in part, angular to sub-angular, translucent, pale yellow to occasionally orange, trace black lithics, minor microforaminifera with glauconite-replaced cement, trace fine skeletal fragments, highly calcareous, well cemented, inferred calcite cement in part and recrystallised grain-to-grain contacts, poor visible porosity.	PVP	-	-	-	-	-	-
	15	SKELETAL FRAGMENTS: abundant foraminifera, white and bluish black sponge spicules, echinoderm.	PIP	-	-	-	-	-	-
	10	CALCILUTITE: White to olive grey, soft, fine to medium, sub angular quartz, common fine skeletal fragments, common foraminifera, trace medium green glauconite, highly calcareous, weak silty matrix.	PVP	-	-	-	-	-	-
	5	LOOSE SAND: Translucent to transparent, very coarse to granular < 2mm and very fine, sub-rounded quartz.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 69.0%; Dolomite: 4.8%							
820	85	CALCARENITE: as above, white to light grey.	PVP	-	-	-	-	-	-
	15	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
	Tr	LOOSE SAND: Translucent to transparent, very coarse to granular < 2mm and very fine, sub-rounded quartz.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 68.4%; Dolomite: 5.8%							
840	80	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	15	SKELETAL FRAGMENTS: abundant foraminifera, white and bluish black sponge spicules, echinoderm.	PIP	-	-	-	-	-	-
	5	LOOSE SAND: as above.	PIP	-	-	-	-	-	-
	Tr	CALCILUTITE: White to olive grey, soft, fine to medium, sub angular quartz, common fine skeletal fragments, common foraminifera, trace medium green glauconite, highly calcareous, weak silty matrix.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 71.1%; Dolomite: 3.8%							
860	65	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	15	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-

3D OIL

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	10	SANDSTONE: Translucent to white, very hard, fine to medium in part, sub angular quartz, slightly to moderately calcareous, fine white inferred calcite cement in part (recrystallised), poor visible porosity.	PVP	-	-	-	-	-	-
	5	LOOSE SAND: as above.	PIP	-	-	-	-	-	-
	5	CALCILUTITE: as above.	PVP	-	-	-	-	-	-
		Calcimetry: Calcite: 62.9%; Dolomite: 4.4%							
880	60	CALCARENITE: as above.	PVP	-	-	-	=	-	-
	15	CALCILUTITE: as above.	PVP	-	-	-	-	-	-
	10	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
	10	SANDSTONE: as above, locally with abundant cryptocrystalline pyrite (trace overall abundance).	PVP	-	-	-	-	-	-
	5	LOOSE SAND: as above.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 66.3%; Dolomite: 4.5%							
900	40	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	35	CALCILUTITE: White to light olive grey, soft, amorphous, locally trace with very fine transparent quartz.	NVP- PVP	-	-	-	-	-	-
	15	SKELETAL FRAGMENTS: as above, occasionally with local glauconite-infilled cement	PIP	-	-	-	-	-	-
	10	SANDSTONE: as above, locally with abundant cryptocrystalline pyrite (trace overall abundance).	PVP	-	-	-	-	-	-
	Tr	LOOSE SAND: as above.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 67.0%; Dolomite: 3.4%							
920	50	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	40	CALCILUTITE: as above.	PVP	-	-	-	-	-	-
	10	SKELETAL FRAGMENTS: as above, occasional glauconite infilled cement.	PIP	-	-	-	-	-	-
	Tr	SANDSTONE: as above, locally with abundant cryptocrystalline pyrite in trace amounts as above.	PVP	-	-	-	-	-	-
	Tr	CLAYSTONE: medium grey, soft, amorphous to firm in part, homogeneous, slakey in part, highly calcareous, grades to MARL.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 68.4%; Dolomite: 6.8%							
940	50	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	40	CALCILUTITE: as above.	PVP	-	-	-	-	-	-
	5	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-

3D OIL

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	5	CLAYSTONE: as above.	_	_	_	_	_		
	Tr	SANDSTONE: as above.	PVP	-	•	-	<u> </u>	-	-
	11		FVF	-	-	-	-	-	-
		Calcimetry: Calcite: 75.9%; Dolomite: 7.1%							
		Provisional Top: Lakes Entrance Formation at 960.0m MDRT / -857.5m SS.							
960	60	CALCILUTITE: White to olive grey, soft, fine to medium, subangular quartz, common fine skeletal fragments, common foraminifera, trace medium green glauconite, highly calcareous, weak silty matrix.	PVP	-	-	-	-	-	-
	30	CALCARENITE: White to olive grey, moderately hard to hard to recrystallised calcite, very fine to fine and medium in part, angular to sub-angular, translucent, pale yellow to occasionally orange, minor microforaminifera with glauconite-replaced cement, trace black lithics, trace fine skeletal fragments, highly calcareous, well cemented, inferred calcite cement in part and recrystallised grain-to-grain contacts, poor visible porosity.	PVP	-	-	-	-	-	-
	5	SKELETAL FRAGMENTS: Abundant foraminifera, white and bluish black sponge spicules, echinoderm.	PIP	-	-	-	-	-	-
	5	CLAYSTONE: Medium grey, soft, amorphous to firm in part, homogenous, slakey in part, occasionally with glauconite infilled cement, highly calcareous, grades to MARL.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 45.5%; Dolomite: 8.2%							
980	45	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	25	CALCILUTITE: as above.	PVP	-	-	-	-	-	-
	25	LOOSE SAND: Translucent to transparent, yellow in part, fine to very coarse, sub rounded to rounded, sub angular in part, poorly sorted.	PIP	-	-	-	-	-	-
	5	SANDSTONE: Translucent to white, very hard, fine to medium in part, sub angular quartz, slightly to moderately calcareous, fine white inferred calcite cement in part (recrystallised), poor visible porosity.	PVP	-	-	-	-	-	-
	Tr	SKELETAL FRAGMENTS: as above, occasionally with glauconite infilled cement, occasional shell fragments.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 69.7%; Dolomite: 4.4%							
1000	60	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	30	CALCILUTITE: as above.	PVP	-	-	-	-	-	-
	5	LOOSE SAND: as above.	PIP	-	-	-	-	-	-
	5	SANDSTONE: as above.	PVP	-	-	-	-	-	-

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	Tr	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 70.1%; Dolomite: 10.0%							
1020	60	CALCARENITE: as above.	PVP	-	-	-	-	-	-
	35	CALCILUTITE: White to olive grey, soft, fine to medium, sub angular quartz, common fine skeletal fragments, common foraminifera, trace medium green glauconite, highly calcareous, weak silty matrix and grading to a CALCISILTITE in part.	PVP	-	-	-	-	-	-
	5	SANDSTONE: as above.	PVP	-	-	-	-	-	-
	Tr	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 62.7%; Dolomite: 11.6%							
1040	40	CALCILUTITE: as above, grading to a CALCISILTITE in part.	PVP	-	-	-	-	-	-
	40	CALCARENITE: White to olive grey, moderately hard to hard to recrystallised calcite, very fine to fine and medium in part, angular to sub-angular, translucent, pale yellow to occasionally orange, minor microforaminifera with glauconite-replaced cement, trace fine skeletal fragments, trace black lithics, highly calcareous, well cemented, inferred calcite cement in part and recrystallised grain-to-grain contacts, poor visible porosity.	PVP	-	-	-	-	-	-
	15	CALCISILTITE: Light olive grey to olive grey, firm to soft in part, common very fine, dominantly silt sized, transparent, sub angular quartz, trace black flecks (possible biotite), trace muscovite, trace skeletal material, argillaceous matrix.	PVP	-	-	-	-	-	-
	5	SANDSTONE: as above.	PVP	-	-	-	-	-	-
	Tr	SKELETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 53.1%; Dolomite: 10.0%							
1060	45	CALCILUTITE: White to olive grey, soft, fine to medium, sub- angular quartz, common fine skeletal fragments, common foraminifera, trace medium green glauconite, highly calcareous, weak silty matrix and grading to a CALCISILTITE in part.	PVP	-	-	-	-	-	-
	30	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
	20	CALCARENITE: as above, poor visible porosity	PVP	-	-	-	-	-	-
	5	SANDSTONE: White to light olive grey, very hard, translucent to white grains, fine to medium in part, sub angular, slightly calcareous, well calcite cemented (recrystallised) and pyrite-replaced cement in part, poor visible porosity.	PVP	-	•	-	-	-	-
		Calcimetry: Calcite: 55.3%; Dolomite: 9.7%							
1080	45	CALCISILTITE: as above.	PVP	-	-	-	-	-	-
	35	CALCILUTITE: as above, grading to a CALCISILTITE in part.	PVP	-	-	-	-	-	-

WELL: WEST SEAHORSE-3

WELLSITE SAMPLE DESCRIPTION

CARENITE: White in part to olive grey, moderately hard to very fine to fine and medium in part, angular to sublar, translucen calcitet, pale yellow to occasionally orange, remicroforaminifera with glauconite-replaced cement, trace skeletal fragments, trace black lithics, highly calcareous, well ented, inferred calcite cement in part and recrystallised into-grain contacts, poor visible porosity. LETAL FRAGMENTS: as above. CISILTITE: as above, grading to a CALCISILTITE in part. CARENITE: as above, poor visible porosity LETAL FRAGMENTS: as above. CILUTITE: as above, grading to a CALCISILTITE in part. CARENITE: as above, poor visible porosity LETAL FRAGMENTS: as above. CISILTITE: as above, poor visible porosity LETAL FRAGMENTS: as above.	PVP PIP PVP PVP PIP	DIST COLOUR	DIST INTEN COLOUR		INTEN COLOUR		-
very fine to fine and medium in part, angular to sub- ilar, translucen calcitet, pale yellow to occasionally orange, r microforaminifera with glauconite-replaced cement, trace skeletal fragments, trace black lithics, highly calcareous, well ented, inferred calcite cement in part and recrystallised into-grain contacts, poor visible porosity. LETAL FRAGMENTS: as above. CISILTITE: as above. CILUTITE: as above, grading to a CALCISILTITE in part. CARENITE: as above, poor visible porosity LETAL FRAGMENTS: as above. imetry: Calcite: 53.0%; Dolomite: 6.3%	PIP PVP PVP	- - -	-	-	- -	-	-
imetry: Calcite: 59.1%; Dolomite: 11.5% CISILTITE: as above. CILUTITE: as above, grading to a CALCISILTITE in part. CARENITE: as above, poor visible porosity LETAL FRAGMENTS: as above. imetry: Calcite: 53.0%; Dolomite: 6.3%	PVP PVP	-	-	-	-	-	-
CISILTITE: as above. CILUTITE: as above, grading to a CALCISILTITE in part. CARENITE: as above, poor visible porosity LETAL FRAGMENTS: as above. imetry: Calcite: 53.0%; Dolomite: 6.3%	PVP PVP	-	- -		-	-	_
CILUTITE: as above, grading to a CALCISILTITE in part. CARENITE: as above, poor visible porosity LETAL FRAGMENTS: as above. imetry: Calcite: 53.0%; Dolomite: 6.3%	PVP PVP	-	-		-	-	_
CARENITE: as above, poor visible porosity LETAL FRAGMENTS: as above. imetry: Calcite: 53.0%; Dolomite: 6.3%	PVP		-	-			i .
LETAL FRAGMENTS: as above. imetry: Calcite: 53.0%; Dolomite: 6.3%		-			-	-	-
imetry: Calcite: 53.0%; Dolomite: 6.3%	PIP		-	-	-	-	-
<u> </u>		-	-	-	=	-	-
CISII TITE: as above							
OIOIETTI E. as above.	PVP	-	-	-	-	-	-
CILUTITE: as above, grading to a CALCISILTITE in part.	NVP- PVP	-	-	-	-	-	-
CARENITE: as above, poor visible porosity	PVP	-	-	-	-	-	-
LETAL FRAGMENTS: as above.	PIP	-	-	-	-	-	-
imetry: Calcite: 53.0%; Dolomite: 8.4%							
oms up sample not described.							
of 444mm / 17½" hole section at 1123m MDRT / Om TVDRT reached at 22:00 hrs, 27 April 2008. J.							
mm / 13 3/8" casing set at 1117.0m MDRT / 5.0m TVDRT							
							<u> </u>
							<u> </u>
							<u> </u>
							<u> </u>
							<u> </u>
on Or J.	netry: Calcite: 53.0%; Dolomite: 8.4% as up sample not described. 4444mm / 17½" hole section at 1123m MDRT / m TVDRT reached at 22:00 hrs, 27 April 2008. m / 13 3/8" casing set at 1117.0m MDRT /	netry: Calcite: 53.0%; Dolomite: 8.4% ns up sample not described. f 444mm / 17½" hole section at 1123m MDRT / m TVDRT reached at 22:00 hrs, 27 April 2008. m / 13 3/8" casing set at 1117.0m MDRT /	metry: Calcite: 53.0%; Dolomite: 8.4% In sup sample not described. If 444mm / 17½" hole section at 1123m MDRT / In TVDRT reached at 22:00 hrs, 27 April 2008. In make the section of th	metry: Calcite: 53.0%; Dolomite: 8.4% Insup sample not described. If 444mm / 17½" hole section at 1123m MDRT / In TVDRT reached at 22:00 hrs, 27 April 2008. Im / 13 3/8" casing set at 1117.0m MDRT /	metry: Calcite: 53.0%; Dolomite: 8.4% Insup sample not described. If 444mm / 17½" hole section at 1123m MDRT / In TVDRT reached at 22:00 hrs, 27 April 2008. In the section of the sect	metry: Calcite: 53.0%; Dolomite: 8.4% In sup sample not described. If 444mm / 17½" hole section at 1123m MDRT / In TVDRT reached at 22:00 hrs, 27 April 2008. If Market in the section at 1123m MDRT / In TVDRT reached at 22:00 hrs, 27 April 2008.	metry: Calcite: 53.0%; Dolomite: 8.4% Insup sample not described. If 444mm / 17½" hole section at 1123m MDRT / Insup sample not described. If 444mm / 17½" hole section at 1123m MDRT / Insup sample not described. Ins

3DOIL

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
						<u>'</u>			
		311 mm/12.25" hole section drilled from 1123 m MDRT commencing 13:15 hrs, 03 May 2008.							
		10 m Sample interval							
1123-1130	60	CALCILUTITE: Greenish grey to olive grey in part, soft, trace loose fine skeletal fragments, trace very fine black flecks (possibly biotite) and grading to a CALCISILTITE in part.	-	-	-	-	-	-	-
	40	CALCISILTITE: Light olive grey to olive grey, soft to hard in part, common very fine, dominantly silt sized, transparent to translucent, sub angular quartz, trace black flecks (possible biotite), trace silt sized mica specks, trace locally with argillaceous matrix.	-	-	-	-	-	-	-
	Tr	CALCARENITE: White to olive grey in part, moderately hard to hard, very fine to fine and occasional medium, sub-angular, translucent calcite, trace black lithics, moderately to well cemented in part, inferred calcite cement, fair visible porosity.	FVP	-	Trace pale to bright yellow mineral fluorescence	-	-	-	-
		Calcimetry: Calcite: 47.2% Dolomite: 9.5%							
1140	75	CALCILUTITE: as above, common olive grey.	-	-	-	-	-	-	-
	25	CALCISILTITE: as above.	-	-	-	-	-	-	-
	Tr	CALCARENITE: as above, occasional loose, translucent, sub angular to angular calcite grains.	FVP	-	Trace pale to bright yellow mineral fluorescence	-	-	-	-
		Calcimetry: Calcite: 46.5% Dolomite: 12.3%							
1150	95	CALCILUTITE: as above, trace loose, very coarse, translucent, angular calcite.		-	-	-	-	-	-
	5	CALCISILTITE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 49.2% Dolomite: 8.8%							
1160	100	CALCILUTITE: as above, locally with trace very fine black carbonaceous material(?). NOTE: Barablock (coal inhibitor) being added to mud system – may be contaminant.		-	-	-	-	-	-
		Calcimetry: Calcite: 46.5% Dolomite: 12.3%							
1170	100	CALCILUTITE: Medium dark grey to olive grey to dark greenish grey, soft to firm to moderately hard, sub-blocky, grading locally silty, trace calcareous CLAYSTONE.		-	-	-	-	-	-
		Calcimetry: Calcite: 49.2% Dolomite: 8.8%							
1180	100	CALCILUTITE: as above, trace carbonaceous material as streaks and specks, trace micromicas.		-	-	-	<u>-</u>	-	-
		Calcimetry: Calcite: 49.2% Dolomite: 8.8%							
1190	100	CALCILUTITE: as above.		-	-	-	-	-	-

WELL: WEST SEAHORSE-3

3D OIL

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m	, ,	(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	
	Tr	SANDSTONE: Medium light grey, hard, very fine grained, sub-angular to sub-rounded, moderately sorted, well calcareous	PVP	-	-	-	=	-	-
		cemented, trace carbonaceous material, trace very fine grained							
		disseminated pyrite, poor visual porsity, no show.							
		Calcimetry: Calcite: 47.8% Dolomite: 9.0%							
1200	100	CALCILUTITE: as above, trace biotite flakes.		-	-	-	-	-	-
		Calcimetry: Calcite: 32.5% Dolomite: 12.3%							
1210	100	grey, soft to firm to moderately hard, sub-blocky, grading locally silty, trace shell fragments, trace micromicas, trace carbonaceous specks, trace calcareous CLAYSTONE (increasing in abundance with depth).		-	-	-	-	-	-
		Calcimetry: Calcite: 25.9% Dolomite: 12.1%							
1220	100	CALCILUTITE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 19.8% Dolomite: 3.3%							
1230	60	CALCILUTITE: as above, 20-40% argillaceous material, grading with depth to CALCAREOUS CLAYSTONE.		-	-	-	-	-	-
	40	CALCAREOUS CLAYSTONE: medium grey, soft to firm, sub-blocky, micromicaeous, trace carbonaceous material.		-	-	-	-	-	-
		Calcimetry: Calcite: 27.8% Dolomite: 0.5%							
1240	30	CALCILUTITE: as above.		-	-	-	-	-	-
	70	CALCAREOUS CLAYSTONE: Medium grey, olive grey, soft to firm, sub-blocky, 40% calcareous clay, micromicaeous, trace carbonaceous material.		-	-	-	-	-	-
		Calcimetry: Calcite: 23.4% Dolomite: 6.6%							
1250	20	CALCILUTITE: Greenish grey, soft, sub-blocky, trace glauconite.		-	-	-	-	-	-
	80			-	-	-	-	-	-
		Calcimetry: Calcite: 30.8% Dolomite: 4.0%							
1260	20	CALCILUTITE: as above.		-	-	-	-	-	-
	80	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 30.3% Dolomite: 7.6%							
1270	10			-	-	-	-	-	-
	90	CALCAREOUS CLAYSTONE: as above, increase in glauconite percentage.		-	<u>-</u>	-	-	-	-
		Calcimetry: Calcite: 17.2% Dolomite:1.6%							
1280	100	CALCAREOUS CLAYSTONE: as above, in part sub-fissile when dark greenish grey.		-	-	-	-	-	-
		Calcimetry: Calcite: 23.2% Dolomite: 8.2%							

WELL: WEST SEAHORSE-3

3D OI

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	1								
1290	100			-	-	-	=	-	-
		occasionally medium light grey, soft to firm, sub-blocky, 30% calcareous clay, trace glauconite, trace carbonaceous material.							
		Calcimetry: Calcite: 30.3% Dolomite: 5.6%							
1300	100	CALCAREOUS CLAYSTONE: as above, trace foraminifera.		-	_	-	-	-	-
	100	Calcimetry: Calcite: 32.2% Dolomite: 1.3%							
1310	100	· · · · · · · · · · · · · · · · · · ·		_		_		_	_
1010	100	grey.							
		Calcimetry: Calcite: 28.3% Dolomite: 3.7%							
1320	100	CALCAREOUS CLAYSTONE: medium grey, medium dark grey,		-	-	-	-	-	-
		soft to firm, sub-blocky, 20% (decreasing with depth) calcareous							
		clay, rare foraminifera, trace carbonaceous material.							
		Calcimetry: Calcite: 23.1% Dolomite: 4.5%							
1330	100	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 19.5% Dolomite: 4.1%							
1340	100	as burrow(?) replacement.		-	-	-	-	-	-
		Calcimetry: Calcite: 21.3% Dolomite: 3.0%							
1350	100	CALCAREOUS CLAYSTONE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 21.9% Dolomite: 3.8%							
1360	100	CALCAREOUS CLAYSTONE: as above.		-	-	-	=	-	-
		Calcimetry: Calcite: 16.5% Dolomite: 3.4%							
1370	100	soft to firm, sub-blocky, 20% calcareous clay, trace		-	-	-	-	-	-
		carbonaceous, trace very fine pyrite as burrow(?) replacement.							
4000	400	Calcimetry: Calcite: 21.9% Dolomite: 3.3%							
1380	100	CALCAREOUS CLAYSTONE: as above. (Barablock contamination in sample)		-	-	-	-	-	-
		Calcimetry: Calcite: 9.9% Dolomite: 3.9%							
1390	100	CALCAREOUS CLAYSTONE: as above, calcareous percentage		-		_	-	-	_
1000	100	decreasing, grading to CLAYSTONE.							
		Calcimetry: Calcite: 13.1% Dolomite: 3.1%							
1400	100	CLAYSTONE: medium dark grey, dark greenish grey, soft to		-		_	-	-	_
100	.00	firm, sub-blocky, 10% calcareous clay, trace micromicas.							
		Calcimetry: Calcite: 14.0% Dolomite: 0.7%							
1410	100	CLAYSTONE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 8.3% Dolomite: 8.5%							
1420	100	CLAYSTONE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 10.5% Dolomite: 7.3%							
1430	100	CLAYSTONE: as above, trace very fine pyrite aggregates.		-	-	-	=	-	-

WELL: WEST SEAHORSE-3

3D01

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
		Calcimetry: Calcite:7.3% Dolomite: 8.7%							
1440	100	groj, meanam		-	-	-	-	-	-
		grey in part, soft to firm, sub-blocky, 10% calcareous clay, trace							
		micromicas.							
4.450	100	Calcimetry: Calcite: 19.6% Dolomite: 7.1%							
1450	100	CLAYSTONE: as above, grading lighter in part to medium light grey, more calcareous and trace biotite flakes.		-	-	-	-	-	-
		Calcimetry: Calcite: 22.4% Dolomite: 10.8%							
1460	90	CLAYSTONE: Medium light grey, soft, blocky, 15% calcareous clay, trace micromicas.		-	-	-	-	-	-
	10	CLAYSTONE: Dark greenish grey, soft, 15% calcareous clay, 10% glauconite grains (greenish black and green).		-	-	-	-	-	-
		Calcimetry: Calcite:13.4% Dolomite: 7.4%							
1470	40	CLAYSTONE: Medium light grey, as above.		-	-	-	-	-	-
-	60	CLAYSTONE: Dark greenish grey, as above, 30% glauconite		-	-	-	-	-	-
		grains.							
		Calcimetry: Calcite: 13.3% Dolomite: 2.7%							
		NOTE: End of 10m sample interval. Sample interval to TD at							
		3m (nominal). Where ROP was too high cuttings samples							
		have been caught at larger spacing.							
1476	100			-	-	-	-	-	-
		calcareous clay, 10% glauconite, trace micromicas, trace							
		foraminifera. Calcimetry: Calcite: 14.8% Dolomite: 8.0%						+	
1482	100	CLAYSTONE: as above, trace light olive grey, soft, sub-blocky,						+	
1402	100	no longer glauconitic, rare coral fragments.		-	-	-	-	-	-
		Calcimetry: Calcite: 8.7% Dolomite: 5.5%							
1491	100	CLAYSTONE: Medium light grey, soft, sub-blocky, 15%		-	-	-		-	_
		calcareous clay, 5% glauconite, trace micromicas.							
		Calcimetry: Calcite: 7.5% Dolomite: 9.6%							
1497	100	CLAYSTONE: Medium light grey, olive grey, soft to firm, sub-		-	-	-	=	-	-
		blocky, rarely sub-fissile,15% calcareous clay, 5% glauconite,							
		rare foraminifera, trace very fine grained pyrite aggregates.							
1500	100	CLAYSTONE: Medium light grey to brownish grey, soft to firm, 25% calcareous clay, 5% glauconite, trace pyrite.		-	-	-	-	-	-
		Calcimetry: Calcite: 16.5% Dolomite: 1.6%							
		NOTE: Definite colour change noted in cuttings.							
1506	100	soft, rarely firm, 10% calcareous clay, 15% glauconite.		-	-	-	-	-	-
		Calcimetry: Calcite: 6.8% Dolomite: 3.7%							
1512	100	CLAYSTONE : as above, grading to SILTSTONE in the brownish grey fraction.		-	-	-	-	-	-

3D 01

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
		Calcimetry: Calcite: 6.0% Dolomite: 5.5%							
1518	30	CLAYSTONE: Medium light grey, soft to firm, sub-blocky, trace glauconite.		-	-	-	-	-	-
	70	SILTSTONE: Brownish grey, very soft to soft, sub-blocky, 30% glauconite, 10% calcareous clay.		-	-	-	-	-	-
	Tr	CALCILUTITE: Yellowish grey, soft.		-	-	-	-	-	-
		Calcimetry: Calcite: 11.9% Dolomite: 6.4%							
1524	90	SILTSTONE: Brownish grey, as above, trace very fine grained pyrite aggregates, trace shell fragments, trace foraminifera.		-	-	-	-	-	-
	10			-	-	-	-	-	-
		Calcimetry: Calcite: 5.5% Dolomite: 0.6%							
1530	90			-	-	-	-	-	-
	10	CLAYSTONE: as above.		-	-	-	-	-	-
	Tr	SANDSTONE: Loose quartz grains, clear and opaque, light grey, polished, fine to medium to coarse to very coarse grained, sub-angular to sub-rounded to rounded, poorly sorted, trace grey matrix on grain surfaces, poor inferred porosity, no show discernible.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 5.5% Dolomite: 0.6%							
1536	70	SILTSTONE: Brownish grey, very soft to soft, sub-blocky, 30% glauconite, 10% calcareous clay, 5% very fine grained pyrite aggregates, trace foraminifera.		-	-	-	-	-	-
	20			-	-	-	-	-	-
	10	SANDSTONE: Loose quartz grains, as above, in part poorly siliceous cemented.	PIP	-	-	-	-	-	-
	Tr	COAL: Dark brown black, sub-fissile, soft, argillaceous, earthy.		-	-	-	-	-	-
		Calcimetry: Calcite: 5.5% Dolomite: 0.6%							
1542	70	SILTSTONE : as above, trace locally with minor fine muscovite flakes.		-	-	-	-	-	-
	10	SANDSTONE: Loose quartz grains, as above, grading coarser.	PIP	-	-	-	-	-	-
	20			-	-	-	-	-	-
	Tr			-	-	-	-	-	-
		Calcimetry: Calcite: 2.3% Dolomite: 0.2%							
1545	60	•		-	-	-	-	-	-
	30	SILTSTONE: as above.		-	-	-	-	-	-
		SANDSTONE: Loose quartz grains, as above, grading coarser.	PIP	-	-	-	=	-	-
	Tr			-	-	-	=	-	-
	† · · ·	Calcimetry: Calcite: 2.3% Dolomite: 0.2%							
1551	85	SILTSTONE: as above.		-	-	-	-	-	-
	1	I .							4

3D OIL

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	10	SANDSTONE: loose quartz grains, as above, grading coarser.	PIP	-	-	-	-	-	-
	5	COAL: as above.		-	-	-	-	-	-
	Tr	CLAYSTONE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 2.1% Dolomite: 0.2%							
1560	90	SILTSTONE: Brownish grey, very soft to soft, sub-blocky, 10% calcareous clay, 5% very fine grained pyrite aggregates and trace locally with abundant cryptocrystalline pyrite, trace fine to medium glauconite grains.		-	-	-	-	-	-
	5	SANDSTONE: Trace aggregates, pale yellow to yellowish grey, friable, very fine to fine, sub-angular to sub-rounded quartz, inferred silica cement, good visible porosity; Dominantly loose quartz grains as above.	GVP	-	Trace bright pale yellow fluorescence	Moderately fast streaming bright blue white	Good, moderately thick residual ring	Bright blue- yellow	Tr
	5	CLAYSTONE: as above.	-	-	-	-	-	-	-
	Tr	COAL: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 2.3% Dolomite: 0.2%							1
1566	60	SILTSTONE: as above.	-	-	-	-	-	-	-
	35	CLAYSTONE: as above.	-	-	-	-	-	-	-
	5	SANDSTONE: Trace aggregates, pale yellow to yellowish grey, friable, very fine to fine, sub-angular to sub-rounded quartz, inferred silica cement, good visible porosity; Dominantly loose quartz grains as above.	GVP	-	Trace bright pale yellow fluorescence	Slw to mod fast streaming bright blue white	Thin, weak residual ring	Bright blue- yellow	Tr
1572	50	SILTSTONE: as above.	-	-	-	-	-	-	-
	45	CLAYSTONE: as above.	-	-	-	-	-	-	-
	5	SANDSTONE: as above, dominantly loose.	GVP		Trace bright pale yellow fluorescence	Slow streaming bright blue white	Thin, weak, spotty residual ring	Bright blu-yel	Tr
		Calcimetry: Calcite: 2.9% Dolomite: 0.7%							
1578	50	CLAYSTONE: Medium light grey, soft to firm, sub-blocky, trace glauconite.	-	-	-	-	-	-	-
	35	SILTSTONE: Brownish grey, soft to moderately hard, sub- blocky, trace to 10% calcareous clay, 5% very fine grained pyrite aggregates and trace locally with abundant cryptocrystalline pyrite.	-	-	-	-	-	-	-
	15	SANDSTONE: Trace aggregate, pale yellow to yellowish grey, friable, very fine to fine, sub-angular to sub-rounded quartz, inferred silica cement, good visible porosity; Dominantly loose quartz grains clear and opaque, light grey, polished, fine to medium to very coarse to granular grained, sub-angular to sub-rounded to rounded in part, poorly sorted, trace grey matrix on grain surfaces, poor inferred porosity. Calcimetry: Calcite: 2.9% Dolomite: 0.7%	GVP & PIP	-	Trace bright pale yellow fluorescence	Slow streaming bright blue white	Thin, weak, spotty, residual ring	Bright blue- yellow	Tr

3D OIL

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
1584	50	SANDSTONE: Loose, transparent to translucent, medium grained, trace fine in part and trace very coarse in part, subangular to sub-rounded in part, moderately well sorted, trace fine forams, good inferred porosity.	GIP	-	-	-	-	-	-
	30	CLAYSTONE: as above.	-	-	-	-	-	-	-
	15	SILTSTONE: as above.	-	-	-	-	-	-	-
	5	COAL: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 2.9% Dolomite: 0.7%							
1590	45	COAL: as above.	-	-	-	-	=	-	-
	20	SANDSTONE: Loose, transparent to translucent, fine to very coarse and granular in part, sub-angular to rounded, very poorly sorted, trace fine forams, poor inferred porosity.	PIP	-	-	-	-	-	-
	20	SILTSTONE: as above.	-	-	-	-	-	-	-
	15	CLAYSTONE: Medium light grey, soft to firm, sub-blocky, trace glauconite.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 2.1% Dolomite: 1.0%							
1596	85	COAL: Black, dark brown black in part, blocky, cleated, sub conchoidal fracturing in part, predominantly bright, trace very fine grained disemminated pyrite in part.	-	-	-	-	-	-	-
	10	SANDSTONE: as above.	-	-	-	-	-	-	-
	5	SILTSTONE: as above.	-	-	-	-	-	-	-
1599	70	SANDSTONE: Loose, generally as above, 15% aggregates, trace translucent to white, hard, medium to fine grained, subangular to angular quartz, moderately sorted, well cemented, recrystallised in part, poor visible porosity.	PVP	-	Trace bright pale yellow fluorescence	-	-	-	
	20	SILTSTONE: as above.	-	-	-	-	-	-	-
	10	CLAYSTONE: as above.	-	-	-	-	=	-	-
	tr	COAL: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.5%							
1602	85	SANDSTONE: Loose as above, 10% aggregates, trace translucent to white, hard, medium to fine grained, sub-angular to angular, quartzose, moderately sorted, slightly calcareous, well cemented, inferred calcite cement in part, recrystallised in part, poor visible porosity.	PVP	-	Trace bright pale yellow fluorescence	-	-	-	-
	10	CLAYSTONE: as above.	-	-	-	-	-	-	-
	5	SILTSTONE: Brownish grey, soft to moderately hard, sub- blocky, trace to 10% calcareous clay, 5% very fine grained pyrite aggregates and trace locally with abundant cryptocrystalline pyrite. Calcimetry: Calcite: 0.7% Dolomite: 0.5%	-	-	-	-	-	-	-

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
1608	70	SANDSTONE: Loose, clear and translucent ,very fine grained, sub-rounded to rounded and grading to very coarse sub-angular to angular granular grained, very poorly sorted, poor inferred porosity. Trace aggregates, translucent to white, hard, medium to fine grained, sub-angular to angular, quartzose, moderately sorted, slightly calcareous, well cemented, inferred calcite	PIP & PVP	-	-	-	-	-	-
		cement in part, recrystallised in part, poor visible porosity.							
	25	SILTSTONE: as above.	-	-	-	-	-	-	-
	5	CLAYSTONE: as above.	-	-	-	-	-	-	-
	Tr	COAL: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.5%							
1614	70	•	-	-	-	-	-	-	-
	25	SANDSTONE: as above.	PIP	-	-	-	-	-	-
	5	CLAYSTONE: as above.		-	-	-	-	-	-
	Ť	Calcimetry: Calcite: 0.7% Dolomite: 0.6%							
1620	70	COAL: as above.	-	-	-	-	-	-	-
	20	SILTSTONE: as above.	-	-	-	-	-	-	-
	10	SANDSTONE: as above.	PIP	-	-	-	-	-	-
	Tr	CLAYSTONE: as above.							
		Calcimetry: Calcite: 0.7% Dolomite: 0.6%							
1626	85	SILTSTONE: Olive grey to dark olive grey, soft to firm in part, blocky to sub-blocky, abundant black carbonaceous material, trace to minor fine micaceous flecks, trace locally with cryptocrystalline pyrite, trace loose medium pyrite nodules.	-	-	-	-	-	-	-
	10	SANDSTONE: as above.	PIP	-	-	-	-	-	
	5	COAL: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.6%							
1632	95	SILTSTONE: as above.	-	-	-	-	-	-	-
	5	SANDSTONE: as above.	PIP	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.6%							
1638	65	SILTSTONE: as above.	-	-	-	-	-	-	-
	30	SANDSTONE: as above, coarsening in part to granular < 2mm.	PIP	-	-	-	-	-	-
	5	COAL: Black, dark brownish black in part, blocky, cleated, sub conchoidal fracturing in part, predominantly bright, trace very fine grained disemminated pyrite in part.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.6%							
1644	_	SILTSTONE: as above.	-	-	-	-	-	-	-
	20	SANDSTONE: as above, coarsening in part to granular < 2mm.	PIP	-	Trace bright pale yellow	-	-	-	-
	5	COAL: as above.	-	-	<u>-</u>	-	-	-	-

3D OIL

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1650	40	COAL: as above.	_	-	-	-	_	_	_
	40		PIP	-		-	_	_	_
	20			_		_	_	_	_
	20	Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1656	80	SANDSTONE: Predominantly loose, translucent to transparent, very fine to medium grained, minor very coarse & angular (possible recrystallised sandstone aggregate) < 3 mm, subrounded to sub-angular and angular in part, poor inferred porosity. Trace Sandstone aggregates, as above.	PIP	-	Trace bright pale yellow	Very slow streaming bright blue-white	Thin, weak residual ring	Bright blue- yellow	Tr
	20	SILTSTONE: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1662	100	SANDSTONE: Loose, translucent to transparent, very fine to medium grained and minor very coarse & angular < 3 mm, subrounded to sub-angular and angular in part, poor inferred porosity. Common Sandstone aggregates, predominantly recrystallised, as above.	PIP	-	Trace bright pale yellow	-	-	-	-
	Tr	SILTSTONE: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1668	70	SANDSTONE: as above.	PIP	-	Trace bright pale yellow	-	-	-	-
	25	COAL: as above.	-	-	-	-	-	-	-
	5	SILTSTONE: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1674	90	SANDSTONE: Loose, translucent to transparent, very fine to medium grained and minor very coarse & angular < 3 mm, subrounded to sub-angular and angular in part, poor inferred porosity. Common Sandstone aggregates, predominantly recrystallised, as above.	PIP	-	-	-	-	-	-
	10	SILTSTONE: Olive grey to dark olive grey, soft to firm in part, blocky to sub-blocky, abundant black carbonaceous material, trace to minor fine micaceous flecks, trace locally with cryptocrystalline pyrite, trace well rounded fine glauconite, trace loose medium pyrite nodules.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1680	50	SANDSTONE: Translucent to white, hard, very coarse to granular grained, sub-angular to angular, quartzose, moderately well sorted, recrystallised, trace crypto-crystalline pyrite, poor visible porosity (within sandstone aggregate); minor loose quartz grains, as above.	PIP & PVP	-	Trace bright yellow – pale yellow	Very slow streaming bright blue-white	Thin, weak blotchy residual ring	Bright blue- yellow	Tr
	35	SILTSTONE: as above.	-	-	-	-	-	-	-
	15	COAL: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							

WELL: WEST SEAHORSE-3

3Doll

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
1686	95	SANDSTONE: as above.	FIP	-	5% bright yellow-pale yellow	Very slow streaming bright blue-white	Thin, weak blotchy residual ring	Bright blue- yellow	Tr
	5	SILTSTONE: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1692	90	SANDSTONE: as above.	FIP		Trace bright yellow – pale yellow	Very slow streaming bright blue-white	Thin, weak blotchy residual ring	Bright blue- yellow	Tr
	5	SILTSTONE: as above.	-	-	-	-	-	-	-
	5	CLAYSTONE: Light grey to very pale orange and white in part, soft to firm in part, amorphous, slakey in part.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1698	95	SANDSTONE: Dominantly in aggregate, as above, trace loose fine to medium grained in part, sub-rounded to rounded, quartzose.	FIP	-	Trace bright yellow – pale yellow	Very slow streaming bright blue-white	Thin, weak blotchy residual ring	Bright blue- yellow	Tr
	5	CLAYSTONE: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1704	100	SANDSTONE: Translucent to white, hard, very coarse to granular grained, sub-angular to angular, moderately well sorted, recrystallised, quartzose, trace crypto-crystalline pyrite, poor visible porosity (within sandstone aggregates); trace loose quartz grains, as above.	PVP- FIP	-	Trace bright yellow – pale yellow	Very slow streaming bright blue-white	Thin, weak blotchy residual ring	Bright blue- yellow	Tr
	Tr	CLAYSTONE: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1710	100	SANDSTONE: as above.	PVP- FIP	-	Trace bright yellow – pale yellow	Very slow streaming bright blue-white	Thin, weak blotchy residual ring	Bright blue- yellow	Tr
	Tr	CLAYSTONE: as above.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1716	100	granular grained, sub-angular to angular, moderately well sorted, recrystallised, quartzose, trace locally with cryptocrystalline pyrite, poor visible porosity (within sandstone aggregates); trace loose quartz grains, as above.	PVP- FIP	-	-	-	-	-	-
	Tr	CLAYSTONE: as above.	-	-	-	-	-	-	-
	Tr	SILTSTONE: Olive grey to dark olive grey, soft to firm in part, blocky to sub-blocky, abundant black carbonaceous material, trace to minor fine micaceous flecks.	-	-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							1

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
1722	80	SANDSTONE: Light grey, dark yellowish brown, predominantly opaque, in part clear, predominantly loose quartz, in part hard when recrystallised, coarse to granular grained, dominantly very coarse to granular, angular (shattered) to sub-rounded, moderately sorted, trace very fine grained pyrite as aggregates and cement, 5% siliceous cement, white clay matrix adhering to grains surfaces and washing out, inferred fair to good porosity.	FIP- GIP	Dark brown black staining on some grain surfaces	-	-	-	-	-
	20	COAL: Black, greenish black, brittle to moderately hard, cleated to platy, earthy to bright, in part with conchoidal fracture. Calcimetry: Calcite: 0.7% Dolomite: 0.1%		-	-	-	-	-	-
1728	90	SANDSTONE: Generally as above, less dark yellowish brown, grading fine grained to granular, poorly sorted, inferred poor visual porosity.	PIP- FIP	Dk brn-blk on some grain surfaces	-	-	-	-	-
	10	COAL: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1734	10	SANDSTONE: as above.	PIP	As above	-	-	-	-	-
	80	SILTSTONE: Olive grey, pale yellowish brown, soft, amorphous to sub-blocky, trace carbonaceous material.		-	-	-	-	-	-
	10	micaceous.		-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1740	60	SANDSTONE: Light grey, opaque, in part clear, loose quartz grains, predominantly medium grained, grading fine grained to granular, sub-angular to sub-rounded, moderately sorted, clay matrix washing out, trace very fine grained pyrite aggregates and cement, inferred fair visual porosity.	FIP	-	-	-	-	-	-
	10	SILTSTONE: as above.		-	-	-	-	-	-
	30	CLAYSTONE: as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1746	20		FIP	-	-	-	-	-	-
	30	COAL: Black, greenish black, brittle to moderately hard, cleated to platy, earthy to bright, in part with conchoidal fracture.		-	-	-	-	-	-
	50	SILTSTONE: Light grey, firm to hard, 15% clay, trace carbonaceous material, micromicaceous.		-	-	-	-	-	-
		Calcimetry: Calcite: 0.7% Dolomite: 0.1%							
1752		CLAYSTONE: as above.		-	-	-	-	-	-
	20		FIP	-	-	-	-	-	-
	60	SILTSTONE: Light grey, light olive grey, as above.		-	-	-	-	-	-
		Calcimetry: Calcite: 0.3% Dolomite: 0.1%							
1758	10	CLAYSTONE: as above.		-	-	-	-	-	-
	20	SILTSTONE: as above.		-	-	-	-	-	-

3D OIL

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS	POR	STAIN	FLUOR	CUT	CUT FLUOR	RES	SHOW
m		(classification, colour, hardness, texture, mineralogy, modifiers, cement)		DIST COLOUR	DIST INTEN COLOUR	INTEN COLOUR	INTEN COLOUR	COLOUR	QUAL
	70	SANDSTONE: Light grey, dark yellowish brown, predominantly opaque, in part clear, predominantly loose quartz, in part hard when recrystallised, coarse to granular grained, dominantly very coarse to granular, angular (shattered) to sub-rounded, moderately sorted, 5% siliceous cement, white clay matrix adhering to grain surfaces and washing out, inferred fair to good visual porosity.	FIP- GIP	Dark brown black staining on some grain surfaces	-	-	-	-	-
		Calcimetry: Calcite: 0.3% Dolomite: 0.1%							
1764	90	SANDSTONE: as above, trace very fine grained pyrite as aggregates and cement.	GIP	Dk brn-blk on some grain surfaces	-	-	-	-	-
	10	CLAYSTONE: as above.		-	<u>-</u>	-	-	-	-
		Calcimetry: Calcite: 0.3% Dolomite: 0.1%							
1773	30	COAL: Black, greenish black, brittle to moderately hard, cleated to platy, earthy to bright, in part with conchoidal fracture, trace mica flakes.		-	-	-	-	-	-
	70	SANDSTONE: Light grey, opaque, in part clear, loose quartz grains, predominantly medium grained, grading fine grained to granular, sub-angular to sub-rounded, moderately sorted, clay matrix washing out, trace very fine grained pyrite aggregates and cement, inferred fair visual porosity.	FIP	-	-	-	-	-	-
		Calcimetry: Calcite: 0.3% Dolomite: 0.1%							
1779	10	COAL: as above.		-	-	-	-	-	-
	50	SANDSTONE: as above, predominantly loose quartz, grading coarse to granular grained.	GIP	-	-	-	-	-	-
	40	SILTSTONE: Light olive grey, soft to firm, occasionally hard, 15% clay, grading locally to silty CLAYSTONE, trace carbonaceous material, micromicaceous		-	-	-	-	-	-
4705		Calcimetry: Calcite: 0.3% Dolomite: 0.1%							
1785	90	CLAYSTONE: Light olive grey, light grey, soft to firm, sub-blocky, locally silty to 10%, micromicaceous, rare carbonaceous material.		-	-	-	-	-	-
	10	SANDSTONE: as above.	GIP	-	-	-	-	-	-
		Calcimetry: Calcite: 0.3% Dolomite: 0.1%							
1791	70	CLAYSTONE: as above, in part medium grey, firm, sub-blocky, trace micromicas.		-	-	-	-	-	-
	30	SANDSTONE: Generally as above, poorer sorted.	FIP	-	-	-	-	-	-
		Calcimetry: Calcite: 0.3% Dolomite: 0.1%							
1797	90	SANDSTONE: Light grey, opaque, in part clear, loose quartz grains, predominantly medium grained, grading fine grained to granular, sub-angular to sub-rounded, moderately sorted, clay matrix washing out, trace very fine grained pyrite aggregates and cement, inferred fair visual porosity.	FIP	-	-	-	-	-	-

WELL: WEST SEAHORSE-3

WELLSITE SAMPLE DESCRIPTION

DEPTH	%	LITHOLOGY DESCRIPTION and COMMENTS (classification, colour, hardness, texture, mineralogy, modifiers, cement)	POR	STAIN DIST COLOUR	FLUOR DIST INTEN COLOUR	CUT INTEN COLOUR	CUT FLUOR INTEN COLOUR	RES COLOUR	SHOW
m									QUAL
	10	CLAYSTONE: as above.		-	-	-	-	-	-
	Tr	COAL: Black, greenish black, brittle to moderately hard, cleated to platy, earthy to bright, in part with conchoidal fracture, trace very fine grained pyrite.		-	-	-	-	-	-
		Calcimetry: Calcite: 0.3% Dolomite: 0.1%							
1803	90	CLAYSTONE: Light olive grey, light grey, soft to firm, sub-blocky, locally silty to 10%, micromicaceous, rare carbonaceous material.		-	-	-	-	-	-
	10	SANDSTONE: Loose quartz, as above.	FIP	-	-	-	-	-	-
		Calcimetry: Calcite: 0.3% Dolomite: 0.1%							
1810	40	SILTSTONE: Light olive grey, firm, sub-blocky, trace carbonaceous material as specks and laminae.		-	-	-	-	-	-
	10	SANDSTONE: Loose quartz, as above.	FIP	-	-	-	-	-	- 1
	50	CLAYSTONE: Light olive grey, light grey, medium grey, soft to firm, sub-blocky, micromicaceous, rare carbonaceous material, trace disseminated pyrite.		-	-	-	-	-	-
		Calcimetry: Calcite: 0.3% Dolomite: 0.1%							
		311 mm (12.25") hole section reached TD of 1810 mMDRT at 1900 hours on 04 May 2008.							

Attachment 11 Daily Geological Reports

REPORT PERIOD: 00:00 - 24:00 hrs, 24/04/2008

WELLSITE GEOLOGISTS: Mel Ngatai

RIG: West Triton RT-ML (m): 77.5 DEPTH @ 24:00 HRS: 125.0 mMDRT

RT ELEV. (m,

RIG TYPE: Jack-up 38.0 REPORT: 0 mMDRT

(@ 24:00 HRS)

Days from Spud: 0.82 MW (SG): 1.06 Last Survey: 0° @ 125m (Anderdrift)

660mm (26") w/

BIT SIZE: 914 mm (36") LAST LOT (SG): N/A EST. PORE
PRESSURE:

HOP

Operations Summary

Continued to make up 914mm (36") BHA. Ran in and tagged seabed @ 77.5m MDRT. Spud West Seahorse-3 at 04:15hrs. Drilled 914mm (36") hole from 77.5m to section TD at 125m. Pumped 200 bbl sweep to clean the hole and then displaced well with inhibited mud. Made a wiper trip back to the mudline. No fill seen on bottom. Displaced hole with inhibited mud. POOH. Rigged up and ran 762mm (30")

conductor pipe to 122m. Suspended conductor at the CTU and rough cut the conductor 2m above the ICON clamp. Laid out top 2 joints of conductor. Rigged

down casing running equipment.

CURRENT STATUS @

24HRS. DRILLING SUMMARY:

06:00HRS:

(25-04-2008)

Measuring (strapping) drill string while tripping out of hole after tagging the landing

collar in 30" conductor.

EXPECTED NEXT ACTIVITY:Make final cut on conductor above CTU. Install diverter and tension up conductor. Make up

445mm (17.5") directional BHA. RIH and drill ahead.

 Cuttings Descriptions

 DEPTH (MMDRT)
 ROP (M/HR.) Min.-Max.
 DESCRIPTIONS (LITHOLOGY / SHOWS)
 BG GAS (%)

 Top
 Btm
 (Ave.)
 Ave. Max.

Drilled riserless – all returns to seabed.

Gas Data									
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm
N/A		(* 3)	1.1	1.1	1.1	1-1	1-1	1-1	1.1

Oil Show									
DEPTH	OIL	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE	RES RING	GAS PEAK	BG	
(mMDRT)	STAIN								

		Mud Data	@ 125 m	
Mud Type	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
Seawater with PHG	1.02	110	13 / 56	-
sweeps				

	Tracer Data							
D EPTH	Түре	CONCENTRATION	Additions Started (Depth/Date)					
N/A			No tracer in use					

MWD / LWD Tool Data

Tool Type N/A

Sub Type

Memory Sample Rate

(sec)

Bit to Sensor Offset

(m)

Flow Rate Range for Pulser Configuration

		Provision	al Format	ion Top	S	
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on
Mudline	74	39	77.5	39.5	0.5 L	Tagged with drill string
Gippsland Limestone	80	45				
Lakes Entrance Formation Top Latrobe Group	959	860				
- Gurnard Formation	1523	1357				
- Top N1	1567	1400				
- Top N2.3	1636	1468				
- Top N2.6	1657	1489				
- Top P1	1688	1520				
Total Depth	1871	1700				

Wellsite Geologist on board on 24 April 2008.

Mudlogging crew change: 2 x Mudloggers on board on 24 April 2008.

Schlumberger D&M crew (2 x DD and 2 x MWD Engineers) on board 24 April 2008.

Final co-ordinates received for West Seahorse-3. The well is 4.35m @ 17.79°T from the intended location.

No LWD or Wireline tools on board as yet.

^{*}Prognosed depth (MDRT) assumes a RT elevation of 35m above MSL and is based on Directional Plan West Seahorse-3 Rev 05.

REPORT PERIOD: 00:00 - 24:00 hrs, 25/04/2008

WELLSITE GEOLOGISTS: Mel Ngatai

RIG: West Triton RT-ML (m): 77.5 DEPTH @ 24:00 HRS: 125.0 mMDRT

RT ELEV. (m, DEPTH LAST

RIG TYPE: Jack-up 38.0 REPORT: 125.0 mMDRT

SPUD DATE: (mMDRT) (24HR. PROGRESS: 0 m

Days from Spud: 1.82 MW (SG): 1.06 Last Survey: 0° @ 125.0m (Anderdrift)

BIT SIZE: 444 mm (17.5") LAST LOT (SG): N/A EST. PORE PRESSURE:

Operations Summary

Ran in with cement stinger and stung into conductor shoe. Cemented conductor in place (ROV observed returns to seabed during cement job). POOH with cement stinger. Ran in with 660mm (26") bit on drill pipe and tagged landing collar inside conductor at expected depth. Picked up the wellhead assembly and installed an adjuster nut. Laid out the wellhead assembly. Made final cut and dress on conductor pipe at 3.18m above CTU after confirming space out for diverter. Laid out pipe stub. Installed and function tested diverter and tensioned up conductor. Commenced making up

444mm / 17.5" directional BHA.

CURRENT STATUS @

24HRS. DRILLING SUMMARY:

06:00HRS: Drilling ahead in 444mm (17.5") hole at 143 mMDRT

(26-04-2008)

EXPECTED NEXT ACTIVITY: Drill ahead 444mm (17.5") hole.

 Cuttings Descriptions

 DEPTH (MMDRT)
 ROP (M/HR.) Min.-Max.
 DESCRIPTIONS (LITHOLOGY / SHOWS)
 BG GAS (%)

 Top
 Btm
 (Ave.)
 Ave. Max.

Drilled riserless – all returns to seabed -

Gas Data										
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm	
N/A		(3)	PP	PP	PP	P-1	P P ····	PP	PP	

Oil Show									
DEPTH	OIL	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE	RES RING	GAS PEAK	BG	
(mMDRT)	STAIN								

		Mud Data	@ 125 m	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
PHB	1.03	40	4/14	10,000

(Note - PHB mud is for the 444mm / 17.5" hole section)

Tracer Data								
D EPTH	Түре	CONCENTRATION	ADDITIONS STARTED					
			(DEPTH/DATE)					
N/A			No tracer in use					

MWD / LWD Tool Data

Tool Type

Sub Type

Memory Sample Rate

(sec)

Bit to Sensor Offset

(m)

Flow Rate Range for Pulser Configuration

		Provision	al Format	ion Top	S	
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on
Mudline	74	39	77.5	39.5	0.5 L	Tagged with drill string
Gippsland Limestone	80	45				
Lakes Entrance Formation Top Latrobe Group	959	860				
- Gurnard Formation	1523	1357				
- Top N1	1567	1400				
- Top N2.3	1636	1468				
- Top N2.6	1657	1489				
- Top P1	1688	1520				
Total Depth	1871	1700				

BHI has calibrated all Gas detection equipment.

^{*}Prognosed depth (MDRT) assumes a RT elevation of 35m above MSL and is based on Directional Plan West Seahorse-3 Rev 05.

125.0 mMDRT

Report No. 03

REPORT PERIOD: 00:00 - 24:00 hrs, 26/04/2008

WELLSITE GEOLOGISTS: Mel Ngatai

RIG: West Triton RT-ML (m): 77.5 DEPTH @ 24:00 HRS: 768.0 mMDRT 725.1 mTVDRT

RIG TYPE: Jack-up RT ELEV. (m, 38.0 REPORT:

AMSL): (@ 24:00 HRS)

 SPUD DATE:
 24/04/2008 @ 04:15hrs
 Last CSG/LINER: 762mm (30") @ 122.0
 24HR. Progress: 643.0 mMDRT

27.59° @ 740.9m **DAYS FROM SPUD:** 2.82 **MW (SG):** 1.10 **LAST SURVEY:** MDRT, 61.96° Azi,

Days from Spud: 2.82 MW (SG): 1.10 Last Survey: MDRT, 61.96° Azi, 701.3 mTVDRT

BIT Size: 444 mm (17.5") LAST LOT (SG): N/A EST. PORE PRESSURE:

Operations Summary

Completed making up 444mm / 17.5" directional BHA. RIH and tagged top of shoe at 121m MDRT. Drilled out shoe and rathole to 125m MDRT. Displaced hole to pre-hydrated

bentonite gel (PHG) mud system. Drilled ahead in 444 mm (17.5") hole from 125 mMDRT to 768.0 mMDRT, rotating and sliding as needed to meet directional requirements.

CURRENT STATUS @

06:00HRS: (27-04-2008) Drilling ahead in 444mm (17.5") hole at 924 mMDRT (863 mTVDRT). Survey at

888.2m MDRT, 27.56°, 61.95° Azi, 831.8m TVDRT.

EXPECTED NEXT ACTIVITY: Drill ahead 444mm (17.5") hole to section TD at approx 1130m MDRT.

Cuttings Descriptions										
DEPTH (MMDRT)		ROP (M/HR.) MinMax.	DESCRIPTIONS (LITHOLOGY / SHOWS)	BG GAS (%)						
Тор	Btm	(Ave.)	,	Ave.	Max.					
125	768	15.81 min – 108 max 67.0 (Ave)	LOOSE SAND: $(90-5\%)$ Abundant fine to medium, sub angular to angular and rounded fine in part, abundant translucent to transparent, common orange, yellow, rose, trace black carbonaceous material. CALCARENITE: $(80-10\%)$ Mottled very pale orange to white, hard, fine, translucent to transparent, sub angular quartz, common fine muscovite and biotite flakes, microforaminifera with glauconite-replaced cement, trace fine shell fragments, highly calcareous, well cemented, inferred calcite cement in part and recrystallised grain to grain contacts, poor visible porosity. SHELL FRAGMENTS: $(80-5\%)$ very coarse to granular < 5 mm and abundant to common fine, abundant bivalves, bryozoans, gastropods, minor echinoderms, abundant to occasional microforaminifera. SANDSTONE: $(80-5\%)$ Light olive grey to olive grey, friable to moderately hard in part, abundant very fine to fine, sub angular quartz and fine shell fragments, minor black lithics, highly	0.0012	0.0019					

Gas Data										
DEPTH (MMDRT)	Түре	% Total Gas	C1 C2		C3	iC4	nC4	iC5	nC5	
		Min – Max (Avg)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
125 - 768	BG	0.0012 - 0.0019	1-8	-	-	-	-	-	-	

Type: P-Peak, C-Connection T-Trip, W-Wiper Trip, BG-Background Gas, FC-Flow Check, *P-Pumps off, SWG-Swab Gas

	Oil Show									
DEPTH (mMDRT)	OIL STAIN	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE	RES RING	GAS PEAK	BG		
125 – 768 No shows										

		Mud Data	@ 768 m	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
PHB	1.10	48	8/24	18,000

Note: Mud weight was 1.06 SG to 237 mMDRT then steadily increased to 1.1 – 1.2 SG while drilling ahead.

		Tracer Data		
D EPTH	Түре	CONCENTRATION	ADDITIONS STARTED (DEPTH/DATE)	
N/A			No tracer in use	

MWD / LWD Tool Data

Tool Type Telescope (D&I only)

Sub Type MWD

Memory Sample Rate N/A

(sec)

Bit to Sensor Offset 26.56 m

(m)

Flow Rate Range for Pulser Configuration 600 – 1200 GPM

Provisional Formation Tops									
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on			
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string			
Gippsland Limestone	80.0	45.0							
Lakes Entrance Formation Top Latrobe Group	965.9	860.0							
- Gurnard Formation	1516.1	1357.0							
- Top N1	1559.4	1399.5							
- Top N2.3	1628.8	1468.0							
- Top N2.6	1650.0	1489.0							
- Top P1	1681.4	1520.0							
Total Depth	1863.8	1700.0							

Kick off point for 444 mm (17.5") hole was at 172 m MDRT. End of build at 465m MDRT. At midnight the actual well path was approximately 6m from the planned trajectory.

Schlumberger D&M installed laptop screen in BHI mud logging unit.

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan West Seahorse-3 Rev 06**.

REPORT PERIOD: 00:00 - 24:00 hrs, 27/04/2008

WELLSITE GEOLOGISTS: Mel Ngatai

RIG: West Triton RT-ML (m): 77.5 DEPTH @ 24:00 HRS: 1123 mMDRT 1040 mTVD

 RIG TYPE:
 Jack-up
 RT ELEV. (m, AMSL):
 38.0
 DEPTH LAST REPORT: (@ 24:00 HRS)
 768 mMDRT 725.1 mTVD

 SPUD DATE:
 24/04/2008 @ 04:15hrs
 Last CSG/LINER: 762mm (30") @ 122.0
 762mm (30") @ 122.0
 24HR. PROGRESS: 355 mMDRT

27.05 @ 1094.4m

DAYS FROM SPUD: 3.82 MW (SG): 1.13 LAST SURVEY: MDRT, 63.32° Azi 1014.8 mTVD

BIT SIZE: 444 mm (17.5") LAST LOT (SG): N/A EST. PORE PRESSURE:

Operations Summary

Drilled ahead in 444 mm (17.5") hole from 768 mMDRT to 1123 mMDRT (section TD), rotating and sliding as needed to meet directional requirements. Circulated the hole clean.

Commenced POOH from 1123m to 1070m, back-reaming and working through tight spots

from 1082m to 1076m MDRT.

CURRENT STATUS @

06:00HRS: POOH with 444 mm (17.5") BHA to surface.

(28-04-2008)

EXPECTED NEXT ACTIVITY: Finish POOH. Rig up and run 340 mm (13 3/8") casing. Cement casing in place. Lay out

remaining 444mm (17.5") BHA.

	Cuttings Descriptions										
DEPTH (MMDRT)		ROP (M/HR.) MinMax.	DESCRIPTIONS (LITHOLOGY / SHOWS)	BG GAS (%)							
Тор	Top Btm (Ave.)		, , ,	Ave. M							
768	880	20 - 76 (35.9 Avg)	CALCARENITE: (60-85%) white to light olive grey, moderately hard to hard, recrystallised, very fine to fine and medium in part, angular to sub angular, translucent, pale yellow to occasional orange, trace black lithics, minor microforaminifera with glauconite replaced cement, trace fine skeletal fragments, highly calcareous, well cemented, inferred calcite cement in part and recrystallised grain to grain contacts, poor visible porosity. CALCILUTITE: (Trace-15%) White to olive grey, soft, fine to medium, sub angular quartz, common fine shell fragments, common foraminifera, trace medium green glauconite, highly calcareous, weak silty matrix. SKELETAL FRAGMENTS: (10-15%) abundant foraminifera, white and bluish black sponge spicules, echinoderms. SANDSTONE: (10%) Translucent to white, very hard recrystallised, fine to medium in part, sub angular quartz, slightly to moderately calcareous, fine white inferred calcite cement in part, poor visible porosity. LOOSE SAND: (Trace-10%) Translucent to transparent, very coarse to granular < 2 mm and very fine, sub rounded quartz.	.0009	.001						

			Cuttings Descriptions (Cont.)		
DEPTH (N	nMDRT)	ROP (M/HR.) MinMax.	DESCRIPTIONS (LITHOLOGY / SHOWS)		Gas %)
Тор	Btm	(Ave.)	, , , , , , , , , , , , , , , , , , ,	Ave.	Max.
880	1060	9 – 38	CALCARENITE: (30-60%) as above. CALCILUTITE: 25-60%) as above. LOOSE SAND: (5-25%) as above. CALCISILTITE: (15%) Light to olive grey to olive grey, firm to soft in part, common very fine, silt sized, transparent, sub angular quartz, trace black flecks (possible biotite), trace muscovite, trace skeletal material, argillaceous matrix. SKELETAL FRAGMENTS: (Trace-15%) as above. SANDSTONE: (Trace-10%) as above. (Tentative top of Lake Entrance Fm @ 885 mMDRT)	.0009	.007
1060	1123	10 – 20	CALCISILTITE: (45-65%) Light to olive grey to olive grey, firm to soft in part, common very fine, silt sized, transparent, sub angular quartz, trace black flecks (possible biotite), trace muscovite, trace skeletal material, argillaceous matrix. CALCILUTITE: (20–45%) White to olive grey, soft, fine to medium, sub angular quartz, common fine skeletal fragments, common foraminifera, trace medium green glauconite, highly calcareous, weak silty matrix and grading to a CALCISILTITE in part. CALCARENITE: (5-20%) as above. SKELETAL FRAGMENTS: (Trace – 5%) as above. LOOSE SAND: (Trace) as above.	.006	.06

Gas Data									
DEPTH (MMDRT) TYPE % Total Gas C1 C2 C3 iC4 nC4 iC5 nC5 Min – Max (Avg) ppm ppm ppm ppm ppm ppm ppm									
768-880	BG	0.001-0.0009	3-7	-	-	-	-	-	-
880-1060	BG	0.007-0.0009	2-44	0-8	0-2	0-1	-	-	-
1060-1123	BG	0.06-0.002	12-52	1-4	0-2	0-1	-	-	-

Oil Show									
DEPTH (mMDRT)	OIL STAIN	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE	RES RING	GAS PEAK	BG	
768 - 1123		No show							

		Mud Data	@ 1063 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
PHB	1.13	38	7/23	17,000

Tracer Data							
D EРТН	Түре	CONCENTRATION	Additions Started (Depth/Date)				
N/A			No tracer in use				

MWD / LWD Tool Data

Tool Type Telescope (D&I only)

Rate (sec)

Bit to Sensor Offset 26.56

(m)

Flow Rate Range for Pulser Configuration 600 – 1200 GPM

Provisional Formation Tops									
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on			
Mudline Gippsland Limestone	77.0 80.0	39.0 45.0	77.5	39.5	0.5 L	Tagged with drill string			
Lakes Entrance Formation	965.9	860.0	865	773.3	86.7 H	Tentative pick based on change in ROP and slight lithologic change			
Top Latrobe Group									
- Gurnard Formation	1516.1	1357.0							
- Top N1	1559.4	1399.5							
- Top N2.3	1628.8	1468.0							
- Top N2.6	1650.0	1489.0							
- Top P1	1681.4	1520.0							
Total Depth	1863.8	1700.0							

BHI set up to run Calcimetry testing from 960 mMDRT and will cover previous samples between 125 m and 960 mMDRT during the 13 3/8" casing run. Calcimeter calibrated to 14.63 psi using 1g of CaCO₃ and 20% HCl acid.

Actual well path is 2.50m to the right of the line, 4.5m below the line. Centre to centre is 5.25m at 1094.42 mMDRT (1014 mTVDRT).

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan West Seahorse-3 Rev 06**.

1014.8 mTVDRT

Report No. 5

REPORT PERIOD: 00:00 - 24:00 hrs, 28/04/2008

WELLSITE GEOLOGISTS: Mel Ngatai

RIG: West Triton RT-ML (m): 77.5 DEPTH @ 24:00 HRS: 1123 mMDRT 1040 mTVDRT

 RIG TYPE:
 Jack-up
 RT ELEV. (m, AMSL):
 38.0
 DEPTH LAST REPORT: (@ 24:00 HRS)
 1123 mMDRT 1040 mTVDRT

27.05 @ 1094.4m **Days from Spud:** 4.82 **MW (SG):** 1.13 **Last Survey:** MDRT, 63.32° Azi

BIT SIZE: N/A LAST LOT (SG): N/A EST. PORE PRESSURE:

Operations Summary

Continued to POOH with 444mm (17.5") BHA from 1070m to surface, working string through several tight spots between 994m and 543mMDRT (up to 35 kips overpull).

Laid out 209mm (81/4") drill collars, 444mm (17.5") bit and stabiliser. Made up jetting assembly. Ran in to 87m and jetted the landing collar. POOH. Rigged up to run

340mm (13 3/8") casing. Made up casing shoetrack joints and checked float. Ran casing to

854m MDRT.

CURRENT STATUS @

24HRS. DRILLING SUMMARY:

06:00HRS: Picking up wellhead assembly to make up on 340 mm (13 3/8") casing.

(29-04-2008)

EXPECTED NEXT ACTIVITY: Land out 340 mm (13 3/8") casing. Circulate hole clean and cement casing in place.

Prepare to install BOP stack.

Cuttings Descriptions

DEPTH (MMDRT) ROP (M/HR.)

Min.-Max. DESCRIPTIONS (LITHOLOGY / Shows)

Top Btm (Ave.) Ave. Max.

No drilling during this 24 hour period

Gas Data									
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm
N/A		(3)	1.1	1.1/	I P	1.1	1-1	1.1	1.14

Oil Show

DEPTH (mMDRT) N/A OIL STAIN

FLUOR%/COLOUR

FLUOR TYPE

CUT **F**LUOR

CUT TYPE

RES RING

GAS PEAK

BG

			Calcime	etry Data			
SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	Total Carbonati (%)
125-140*	21.9	16.7	38.6	620-640	76.9	6.2	83.1
160	48.5	16.5	65	660	82.5	7.5	90.0
180	60.8	16.4	77.2	680	81.0	8.2	89.2
200	82.2	0.2	82.4	700	81.3	9.6	90.9
220	58.3	0.3	58.5	720	82.6	13.6	96.2
240	55.0	6.0	61.0	740	64.1	9.9	74.0
260	64.3	6.2	70.5	760	63.2	5.5	68.7
280	56.0	0.5	56.5	780	67.3	6.2	73.5
300	57.4	0.5	57.9	800	69.0	4.8	73.8
320	75.8	0.8	76.6	820	68.4	5.8	74.2
340	71.7	7.3	79.0	840	71.1	3.8	74.9
360	64.3	5.9	70.2	860	62.9	4.4	67.3
380	84.9	12.8	97.7	880	66.3	4.5	70.8
400	86.7	5.7	92.4	900	67.0	3.4	70.4
420	78.8	9.8	88.6	920	68.4	6.8	75.2
440	88.5	4.4	92.9	940	75.9	7.1	83.0
460	85.2	5.8	91.0	960	45.5	8.2	53.7
480	82.5	5.5	0.88	980	69.7	4.4	74.1
500	87.3	7.7	95.0	1000	70.1	10.0	80.1
520	88.9	3.9	92.8	1020	62.7	11.6	74.3
540	92.3	0.6	92.9	1040	53.1	10.0	63.1
560	88.9	6.8	95.7	1060	55.3	9.7	65.0
580	88.9	6.9	95.8	1080	59.1	11.5	70.6
600	85.1	6.5	91.6	1100	53.0	6.3	59.3
600-620	75.3	5.5	80.8	1100-1120	53.0	8.4	61.4

^{*20}m sample interval. First sample 15m only.

		Mud Data	@ 1123 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
PHB	1.13	40	5/15	16,000

	Tracer Data						
D EPTH	TYPE	CONCENTRATION	ADDITIONS STARTED				
			(DEPTH/DATE)				
N/A			No tracer in use				

MWD / LWD Tool Data

Tool Type N/A

Sub Type

Memory Sample

Rate (sec)

Bit to Sensor Offset

(m)

Flow Rate Range for Pulser Configuration

Provisional Formation Tops							
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on	
Mudline Gippsland Limestone	77.0 80.0	39.0 45.0	77.5	39.5	0.5 L	Tagged with drill string	
Lakes Entrance Formation	965.9	860.0	960	857.49	2.51 H	Tentative pick based on change lithology and calcimetry results	
Top Latrobe Group							
- Gurnard Formation	1516.1	1357.0					
- Top N1	1559.4	1399.5					
- Top N2.3	1628.8	1468.0					
- Top N2.6	1650.0	1489.0					
- Top P1	1681.4	1520.0					
Total Depth	1863.8	1700.0					

A revised pick for the Lake Entrance Formation top is provided in the Provisional Formation Tops table above. BHI have completed calcimetry results for 444mm (17.5") hole section to 1123 mMDRT.

Schlumberger D&M LWD equipment for the 12.25" hole section is due on location on the *Pacific Valkyrie* on Tuesday (29 April).

Schlumberger Wireline tools will be loaded on the *Pacific Battler* in Geelong on Wednesday. Petrotech (Expro) gear for MDT sample transfer will also be on this boat.

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan West Seahorse-3 Rev 06**.

REPORT PERIOD: 00:00 - 24:00 hrs, 29/04/2008

WELLSITE GEOLOGISTS: Mel Ngatai, Wen-Long Zang

RIG: West Triton RT-ML (m): 77.5 DEPTH @ 24:00 HRS: 1123 mMDRT 1040 mTVDRT

 RIG TYPE:
 Jack-up
 RT ELEV. (m, AMSL):
 38.0
 DEPTH LAST REPORT: (@ 24:00 HRS)
 1123 mMDRT 1040 mTVDRT

 SPUD DATE:
 24/04/2008 @ 04:15hrs
 LAST CSG/LINER: 340mm (13 %") @ 1117.0
 24HR. PROGRESS: 0 m

27.05 @ 1094.4m **Days from Spud:** 5.82 **MW (SG):** 1.13 **Last Survey:** MDRT, 63.32° Azi

1014.8 mTVDRT

BIT SIZE: N/A LAST LOT (SG): N/A EST. PORE PRESSURE:

Operations Summary

Continued running 340mm (13 3/8") casing to 1091m MDRT. Made up wellhead assembly to casing. Hole sticky while lowering wellhead. Made up TDS and circulated and reciprocated the casing string until hole condition improved. Washed casing down to 1115m MDRT. Made up cement head and landed out casing in MLS hanger with shoe at 1117.0m MDRT. Circulated hole clean and then cemented casing in place (did not bump plug, floats held). Wellhead running tool would not come free. Made up TDS and made another attempt to back out – running tool came free with 15 kips overpull. Pulled running tool to surface with wellhead still attached. String backed-off at first 340mm (13 3/8") BTC connection below the wellhead. Laid out landing string and wellhead.

CURRENT STATUS @

24HRS. DRILLING SUMMARY:

06:00HRS: Laying down 444mm (17.5") BHA.

(30-04-2008)

EXPECTED NEXT ACTIVITY:

RIH to retrieve 340mm (13 3/8") landing string above the mudline hanger. Re-run the 13 3/8" casing landing string and screw back into 340mm (13 3/8") mudline

hanger. Retrieve wellhead running tool. Run BOP stack.

Displaced riser to seawater. Rigged up to pull diverter.

 Cuttings Descriptions

 DEPTH (MMDRT)
 ROP (M/HR.) Min.-Max.
 DESCRIPTIONS (LITHOLOGY / SHOWS)
 BG GAS (%)

 Top
 Btm
 (Ave.)
 Ave. Max.

No drilling during this 24 hour period

Gas Data									
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm
1091 / 1115*	BG	0.0005-0.0006	-	-	-	-	-	-	-
1123**	BG	0.0005-0.0009	-	-	-	-	-	-	-

3D Oil Limited West Seahorse-3

*Circulating back-ground gas while washing casing to bottom and circulating prior to cement job. ** Circulating back-ground gas while cementing (Maximum gas 0.0009%).

	Oil Show								
DEPTH (mMDRT) N/A	OIL STAIN	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	Сит Түре	RES RING	GAS PEAK	BG	

Calcimetry Data							
SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)
N/A			(70)				(79)

		Mud Data	@ 1123 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
PHB	1.13	40	5/15	16,000

	Tracer Data						
D EPTH	Түре	CONCENTRATION	ADDITIONS STARTED				
			(DEPTH/DATE)				
N/A			No tracer in use				

MWD / LWD Tool Data

Tool Type N/A

Sub Type

Memory Sample

Rate (sec)

Bit to Sensor Offset

(m)

Flow Rate Range for Pulser Configuration

		Provision	al Format	ion Tops	S	
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string
Gippsland Limestone	80.0	45.0				
Lakes Entrance Formation	965.9	860.0	960	857.49	2.51 H	Tentative pick based on change lithology and calcimetry results
Top Latrobe Group						
- Gurnard Formation	1516.1	1357.0				
- Top N1	1559.4	1399.5				
- Top N2.3	1628.8	1468.0				
- Top N2.6	1650.0	1489.0				
- Top P1	1681.4	1520.0				
Total Depth	1863.8	1700.0				

3D Oil geologist, Wen Long Zang came on board the West Triton 29 April 2008.

MSE data has been added to the Drill Log and Drill ASCII file.

Schlumberger D&M LWD tools (Powerpulse and GVR8 with back-up ARC8 tool) for the 12¼" hole section are on board.

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan West Seahorse-3 Rev 06**.

REPORT PERIOD: 00:00 - 24:00 hrs, 30/04/2008

WELLSITE GEOLOGISTS: Mel Ngatai, Wen-Long Zang

RIG: West Triton RT-ML (m): 77.5 DEPTH @ 24:00 HRS: 1123 mMDRT 1040 mTVDRT

 RIG TYPE:
 Jack-up
 RT ELEV. (m, AMSL):
 38.0
 DEPTH LAST REPORT: (@ 24:00 HRS)
 1123 mMDRT 1040 mTVDRT

SPUD DATE: 24/04/2008 LAST CSG/LINER: 340mm (13 3/8") 24HR. PROGRESS: 0 m

DAYS FROM SPUD: 6.82 **MW (SG):** 1.13 **LAST SURVEY:** MDRT, 63.32° Azi 1014.8 mTVDRT

BIT SIZE: N/A LAST LOT (SG): N/A EST. PORE PRESSURE:

Operations Summary

Continued to lay out diverter assembly. Picked up wellhead assembly, broke out running tool and inspected the connection. Made up running tool to wellhead and function tested the tool – OK. Laid out wellhead assembly. Laid out mud motor and excess 444mm (17.5") BHA. Made up 340mm (13 3/8") waterhead bushing on drillpipe and RIH. Screwed into top of landing string and continued to turn right until indications that string had possibly backed out of MLS running tool. POOH and recovered 2 joints of 340mm (13 3/8") casing. Made up 340mm (13 3/8") casing spear and bumper sub. RIH with casing spear and latched onto fish at 48.19m after seven attempts. Backed out MLS running tool from landing ring. Pulled back to surface, recovering all remaining joints of 340mm (13 3/8") casing and MLS running tool. Unable to disengage spear from damaged casing. Laid out bumper sub and

CURRENT STATUS @

24HRS. DRILLING SUMMARY:

06:00HRS: RIH with MLS r

(01-05-2008)

RIH with MLS running tool and 340mm (13 3/8") landing string.

EXPECTED NEXT ACTIVITY: Re-run the 340mm (13 3/8") casing landing string. Re-run wellhead. Install BOP

stack.

crossover.

sidok.

 Cuttings Descriptions

 DEPTH (MMDRT)
 ROP (M/HR.) Min.-Max.
 DESCRIPTIONS (LITHOLOGY / SHOWS)
 BG GAS (%)

 Top
 Btm
 (Ave.)
 Ave. Max.

No drilling during this 24 hour period

Gas Data % Total Gas C1 C2 C3 iC4 nC4 iC5 nC5 DEPTH (MMDRT) TYPE Min - Max (Avg) ppm ppm ppm ppm ppm ppm ppm N/A

Oil Show

DEPTH (mMDRT) N/A OIL STAIN FLUOR%/COLOUR

FLUOR TYPE

CUT **F**LUOR

CUT TYPE

RES RING

GAS PEAK

BG

	Calcimetry Data							
SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	
N/A			()				, ,	

		Mud Data	@ 1123 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
PHB	1.13	40	5/15	16.000

	Tracer Data							
D EPTH	TYPE	CONCENTRATION	ADDITIONS STARTED					
			(DEPTH/DATE)					
N/A			No tracer in use					

MWD / LWD Tool Data

Tool Type N/A

Sub Type

Memory Sample

Rate (sec)

Bit to Sensor Offset

(m)

Flow Rate Range for Pulser Configuration

		Provision	al Format	ion Tops	S	
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string
Gippsland Limestone	80.0	45.0				
Lakes Entrance Formation	965.9	860.0	960	857.49	2.51 H	Tentative pick based on change lithology and calcimetry results
Top Latrobe Group						
 Gurnard Formation 	1516.1	1357.0				
- Top N1	1559.4	1399.5				
- Top N2.3	1628.8	1468.0				
- Top N2.6	1650.0	1489.0				
- Top P1	1681.4	1520.0				
Total Depth	1863.8	1700.0				

Calcimetry data has been added to the Mudlogs.

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan West Seahorse-3 Rev 06**.

1014.8 mTVDRT

Report No. 8

REPORT PERIOD: 00:00 - 24:00 hrs, 01/05/2008

WELLSITE GEOLOGISTS: Mel Ngatai, Wen-Long Zang

RIG: West Triton RT-ML (m): 77.5 DEPTH @ 24:00 HRS: 1123 mMDRT 1040 mTVDRT

 RIG TYPE:
 Jack-up
 RT ELEV. (m, AMSL):
 38.0
 DEPTH LAST REPORT: (@ 24:00 HRS)
 1123 mMDRT 1040 mTVDRT

 SPUD DATE:
 24/04/2008 @ 04:15hrs
 LAST CSG/LINER: 340mm (13 %") @ 1117.0
 24HR. PROGRESS: 0 m

27.05 @ 1094.4m **Days from Spud:** 7.82 **MW (SG):** 1.13 **Last Survey:** MDRT, 63.32° Azi

BIT SIZE: N/A LAST LOT (SG): N/A EST. PORE PRESSURE:

Operations Summary

Continued to recover fished 340mm (13 3/8") landing string and MLS running tool. Picked up back-up MLS running tool. Ran back in with MLS running tool and 340mm (13 3/8") landing string. Made up wellhead assembly to landing string and washed down to the mudline hanger. Engaged threads and made up landing string onto MLS hanger. Attempted to pressure test 340mm (13 3/8") casing/MLS hanger to 2500 psi but only able to hold 1200 psi. Made up adjustable landing ring on wellhead. Backed-out and laid down wellhead running tool. Installed and nippled up

BOP stack on Texas deck. Prepared to run Diverter.

CURRENT STATUS @

24HRS. DRILLING SUMMARY:

06:00HRS: Pressure testing BOP.

(02-05-2008)

EXPECTED NEXT ACTIVITY: Complete pressure testing the BOP stack. Make up 311mm (12.25") BHA. Run in

and drill out cement shoe track. Conduct FIT. Drill ahead.

Cuttings Descriptions

DEPTH (MMDRT) ROP (M/HR.)
Min.-Max. DESCRIPTIONS (LITHOLOGY / SHOWS)

BG GAS
(%)

Top Btm (Ave.) Ave. Max.

No drilling during this 24 hour period

Gas Data									
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm
N/A		ν ο,	••	••	••	••	••	••	••

	Oil Show									
DEPTH	OIL	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE	RES RING	GAS PEAK	BG		
(mMDRT)	STAIN									
N/A										

	Calcimetry Data							
SAMPLE DEPTH (mMDRT)	CALCITE (%)	D OLOMITE (%)	TOTAL CARBONATE	SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE	
N/A			(%)				(%)	

		Mud Data	@ 1123 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
PHB	1.13	40	5/15	16,000

Tracer Data							
D EPTH	TYPE	CONCENTRATION	ADDITIONS STARTED				
			(DEPTH/DATE)				
N/A			No tracer in use				

MWD / LWD Tool Data

Tool Type N/A

Sub Type

Memory Sample

Rate (sec)

Bit to Sensor Offset

(m)

Flow Rate Range for Pulser Configuration

		Provision	al Format	ion Tops	S	
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on
Mudline Gippsland Limestone	77.0 80.0	39.0 45.0	77.5	39.5	0.5 L	Tagged with drill string
Lakes Entrance Formation	965.9	860.0	960	857.49	2.51 H	Tentative pick based on change lithology and calcimetry results
Top Latrobe Group						•
- Gurnard Formation	1516.1	1357.0				
- Top N1	1559.4	1399.5				
- Top N2.3	1628.8	1468.0				
- Top N2.6	1650.0	1489.0				
- Top P1	1681.4	1520.0				
Total Depth	1863.8	1700.0				

Wellsite Geologist, Dennis Archer, due on board 2 May 2008.

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan West Seahorse-3 Rev 06**.

REPORT PERIOD: 00:00 - 24:00 hrs, 02/05/2008

WELLSITE GEOLOGISTS: Mel Ngatai, Dennis Archer, Wen-Long Zang

Rig: West Triton RT-ML (m): 77.5 DEPTH @ 24:00 HRS: 1123 mMDRT 1040 mTVDRT

 RIG TYPE:
 Jack-up
 RT ELEV. (m, AMSL):
 38.0
 DEPTH LAST REPORT: (@ 24:00 HRS)
 1123 mMDRT 1040 mTVDRT

27.05 @ 1094.4m

DAYS FROM SPUD: 8.82 **MW (SG):** 1.13 **LAST SURVEY:** MDRT, 63.32° Azi 1014.8 mTVDRT

BIT SIZE: N/A LAST LOT (SG): N/A EST. PORE PRESSURE:

Operations Summary

Completed pressure testing the BOP stack and surface equipment. Installed wear bushing in the wellhead. Made up 311mm (12.25") rotary steerable BHA. Ran in

24HRS. DRILLING SUMMARY: hole. Performed shallow test on LWD tools. Pressure tested lower pipe rams. Continued to run in hole from 200m and tagged up on cement at 285 mMDRT.

Connected Top Drive System. Washed and reamed down through patchy cement to

468m MDRT.

CURRENT STATUS @

06:00HRS: Drilling on float collar at 1104 mMDRT. **(03-05-2008)**

EXPECTED NEXT ACTIVITY: Drill out shoe track. Drill 3 metres of new hole, conduct FIT. Directionally drill ahead

in 311mm (12.25") hole section.

Cuttings Descriptions

DEPTH (MMDRT) ROP (M/HR.)

Min May PERPENDIANA (LITTLE COV (Supple) (%)

Min.-Max. DESCRIPTIONS (LITHOLOGY / SHOWS)

Top Btm (Ave.)

Ave. Max.

No drilling of new formation during this 24 hour period

Gas Data % Total Gas C1 C2 iC4 nC4 C3 iC5 nC5 DEPTH (MMDRT) TYPE Min - Max (Avg) ppm ppm ppm ppm ppm ppm ppm N/A

Oil Show									
D EPTH	OIL	FLUOR%/COLOUR	FLUOR TYPE	CUT FLUOR	CUT TYPE	RES RING	GAS PEAK	BG	
(mMDRT)	STAIN								
N/A									

	Calcimetry Data							
SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	
N/A			(7				()	

		Mud Data	@ 1123 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
PHB	1.13	40	5/15	16,000

	Tracer Data							
D EPTH	Түре	CONCENTRATION	ADDITIONS STARTED					
			(DEPTH/DATE)					
N/A			No tracer in use					

MWD / LWD Tool Data

Tool Type	RAB8-Telescope		
Sub Type	GR (Gamma)	Resistivity	Survey (D&I)
RT Memory Sample	1 sec	5 sec	N/A
Rate (sec)			
Bit to Sensor Offset	10.49	10.75 / 10.96 / 11.13	17.32
(m)		/ 11.26	
Flow Rate Range for P	Julser Configuration	600 - 1200 apm	

Provisional Formation Tops							
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on	
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string	
Gippsland Limestone	80.0	45.0					
Lakes Entrance Formation	965.9	860.0	960	857.49	2.51 H	Tentative pick based on change lithology and calcimetry results	
Top Latrobe Group							
- Gurnard Formation	1516.1	1357.0					
- Top N1	1559.4	1399.5					
- Top N2.3	1628.8	1468.0					
- Top N2.6	1650.0	1489.0					
- Top P1	1681.4	1520.0					
Total Depth	1863.8	1700.0					

LWD: Shallow pulse test OK.

Mudlogging: Gas detection equipment calibrated 2 May 08.

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan West Seahorse-3 Rev 06**.

REPORT PERIOD: 00:00 - 24:00 hrs, 03/05/2008

WELLSITE GEOLOGISTS: Mel Ngatai, Dennis Archer, Wen-Long Zang

Rig:	West Triton	RT-ML (m):	77.5	DEPTH @ 24:00 HRS:	1392 mMDRT 1280.5 mTVDRT
RIG TYPE:	Jack-up	RT ELEV. (m, AMSL):	38.0	DEPTH LAST REPORT: (@ 24:00 HRS)	1123 mMDRT 1040 mTVDRT
SPUD DATE:	24/04/2008 @ 04:15hrs	LAST CSG/LINER: (mMDRT)	340mm (13 %") @ 1117.0	24HR. PROGRESS:	269 m
DAYS FROM SPUD:	9.82	MW (SG):	1.13	LAST SURVEY:	28.20 @ 1362.3 m MDRT, 62.55° Azi 1253.7 mTVDRT
BIT SIZE:	N/A	LAST FIT (SG):	1.64	EST. PORE PRESSURE:	

Operations Summary

24HRS. DRILLING SUMMARY:

Continued to wash and ream through patchy cement inside casing from 468m to top of plugs at 1103m MDRT. Drilled out plugs and float collar from 1103m to 1104m MDRT. Displaced hole to new mud system while drilling on plugs. Drilled out ratty cement inside shoe track. Drilled out casing shoe to 1117m and cleaned out rathole to 1123m MDRT. Drilled 3 metres of new hole to 1126m MDRT. Conducted FIT to 1.64 SG (13.65 ppg) EMW – no leak-off. Directionally drilled ahead in 311mm (12.25") hole section from 1126m to 1392m MDRT.

CURRENT STATUS @

06:00HRS: (04-05-2008) Circulating bottoms up at 1559 mMDRT after detecting and investigating possible pit gain.

EXPECTED NEXT ACTIVITY: Directionally drill ahead in 311 mm (12.25") hole section to well TD.

	Cuttings Descriptions								
DEPTH (MMDRT)		ROP (M/HR.) MinMax.	BG GA DESCRIPTIONS (LITHOLOGY / SHOWS)	AS (%)					
Тор	Btm	(Ave.)	Ave.	Max.					
1123	1230	15.0-91.9 (41.1)	CALCILUTITE: Medium dark grey to olive grey to dark greenish 0.0032 (grey, soft to firm to moderately hard, sub-blocky, grading locally silty, trace shell fragments, trace micromicas, trace carbonaceous specks, trace calcareous CLAYSTONE (increasing with depth).	0.0057					
1230	1380	26.1-73.7 (57.7)	CALCAREOUS CLAYSTONE: Medium grey, olive grey, dark 0.0037 (greenish grey, soft to firm, sub-blocky to rarely sub-fissile, 40-20% calcareous clay with depth, nil to trace micromicaceous, trace carbonaceous material, nil to trace very fine grained disseminated pyrite, nil to trace-5% glauconite.	0.0113					

Gas Data									
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm
1123-1230	BG	0.0018-0.0057 (0.0032)	21	-	-	-	-	-	-
1230-1380	BG	0.0020-0.0113 (0.0037)	22	-	-	-	-	-	-
1345-1353	Р	0.113	41	7	1	-	-	-	-

Type: P-Peak, C-Connection T-Trip, W-Wiper Trip, BG-Background Gas, FC-Flow Check, *P-Pumps off, SWG-Swab Gas

Oil Show								
DEPTH (mMDRT)	OIL STAIN	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	Сит Түре	RES RING	GAS PEAK	BG
1123-1380		Trace	Mineral only				N/A	0.0035
			Calcime	etry Data				
SAMPLE DEPTH (mMDRT)	CALCITE (%) DOLOMITE (%)	TOTAL CARBONATE (%)	SAMPLE DEPTH (mMDRT)	I CALCITE	(%) Dolo	MITE (%)	TOTAL CARBONATE (%)
N/A								

		Mud Data	@ 1392 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
KCI/PHPA	1.13	48	11 / 26	41,000

Tracer Data						
D EPTH	Түре	CONCENTRATION	ADDITIONS STARTED	_		
			(DEPTH/DATE)			
N/A			No tracer in use			

MWD / LWD Tool Data

Tool Type	RAB8-Telescope		
Sub Type	GR (Gamma)	Resistivity	Survey (D&I)
RT Memory Sample	1 sec	5 sec	N/A
Rate (sec)			
Bit to Sensor Offset	10.49	10.75 / 10.96 / 11.13	17.32
(m)		/ 11.26	
Flow Rate Range for P	ulser Configuration	600 - 1200 apm	

Provisional Formation Tops							
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on	
Mudline Gippsland Limestone	77.0 80.0	39.0 45.0	77.5	39.5	0.5 L	Tagged with drill string	
Lakes Entrance Formation	965.9	860.0	960	857.49	2.51 H	Tentative pick based on change lithology and calcimetry results	
Top Latrobe Group							
- Gurnard Formation	1516.1	1357.0					
- Top N1	1559.4	1399.5					
- Top N2.3	1628.8	1468.0					
- Top N2.6	1650.0	1489.0					
- Top P1	1681.4	1520.0					
Total Depth	1863.8	1700.0					

Carbide lag check at 1321 mMDRT, hole size 325mm / 12.8" equivalent.

Actual well path is 2.50m to the left of the line, 4.5m below the line. Centre to centre is 5.15m at 1392 mMDRT (1280.5 mTVDRT).

Mud Properties 0416 hrs (Bit at 997 mMDRT)

K	4.4	%	
Rmf	0.0889	@	18.5°C
Rm	0.097	@	19.0°C
Rmc	0.167	@	19.4°C

Mud Properties 1637 hrs (Bit at 1014 mMDRT)

K%	3.9059	%	
Rmf	0.1052	@	19.1°C
Rm	0.1086	@	19.5°C
Rmc	0.1101	@	19.9°C

Wireline crew on board. All tools and back-up tools have been ops checked.

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan West Seahorse-3 Rev 06**.

REPORT PERIOD: 00:00 - 24:00 hrs, 04/05/2008

WELLSITE GEOLOGISTS: Mel Ngatai, Dennis Archer, Wen-Long Zang

Rig:	West Triton	RT-ML (m):	77.5	DEPTH @ 24:00 HRS:	1810 mMDRT 1684.1 mTVDRT
RIG TYPE:	Jack-up	RT ELEV. (m, AMSL):	38.0	DEPTH LAST REPORT: (@ 24:00 HRS)	1392 mMDRT 1280.5 mTVDRT
SPUD DATE:	24/04/2008 @ 04:15hrs	LAST CSG/LINER: (mMDRT)	340mm (13 %") @ 1117.0	24HR. PROGRESS:	418 m
DAYS FROM SPUD:	10.82	MW (SG):	1.16	LAST SURVEY:	8.75° @ 1789.3 m MDRT, 55.97° Azi 1663.7 mTVDRT
BIT SIZE:	N/A	LAST FIT (SG):	1.64	EST. PORE PRESSURE:	

Operations Summary

24HRS. DRILLING SUMMARY:

Directionally drilled 311 mm (12.25") hole to 1559m MDRT. Driller observed possible pit gain. Shut well in – no pressure. Flow checked – negative. Circulated bottoms up with maximum gas of 0.13%. Directionally drilled 311mm (12.25") hole to well TD at 1810m MDRT. Circulated hole clean. Commenced pulling out of hole to run logs.

CURRENT STATUS @

06:00HRS: (05-05-2008)

Laying out 311 mm (12.25") BHA

EXPECTED NEXT ACTIVITY:

Lay out LWD tools, download recorded data offline. Rig up Schlumberger equipment and

conduct wireline logging as per program.

			Cuttings Descriptions		
D ЕРТН (мMDRT)	ROP (M/HR.) MinMax.	DESCRIPTIONS (LITHOLOGY / SHOWS)	BG G	AS (%)
Тор	Btm	(Ave.)		Ave.	Max.
1380	1462	22-67 (50)	CLAYSTONE: Medium dark grey, dark greenish grey, medium grey in part, soft to firm, sub-blocky, 10% calcareous clay, trace micromica.	0.0073	0.0116
1462	1500	34-67 (51)	CLAYSTONE: Medium light grey, olive grey, soft to firm, subblocky, rarely sub-fissile, 15% calcareous clay, 5-30% glauconite, rare foraminifera, trace very fine grained pyrite aggregates.	0.01	0.015
1500	1535	9-40 (28)	INTERBEDDED SILTSTONE AND CLAYSTONE SILTSTONE (0-90%): Brownish grey, very soft to soft, sub- blocky, 30% glauconite, 10% calcareous clay, trace shell fragments, trace very fine grained pyrite aggregates. CLAYSTONE (10-100%): Brownish grey, medium light grey, very soft to soft, rarely firm, 10% calcareous clay, 15-0% glauconite with depth.	0.016	0.0461

			Cuttings Descriptions (Cont.)		
		ROP (M/HR.) MinMax.	DESCRIPTIONS (LITHOLOGY / SHOWS)	BG G	GAS (%)
Тор	Btm	(Ave.)		Ave.	Max.
1535	1710	3-61 (41)	INTERBEDDED SANDSTONE AND SILTSTONE, OCCASIONAL COAL INTERBEDS AND MINOR CLAYSTONES.	0.0502	0.3001
			SANDSTONE (10-100%): Loose quartz grains, light grey, predominantly opaque, in part clear and translucent, in part dark yellowish brown, predominantly medium to granular, grading very fine to granular, angular (shattered) to sub-angular to subrounded, variably poor to moderately well sorted, white clay matrix adhering to grains surfaces and washing out, 5% siliceous cement, trace very fine grained pyrite as aggregates and cement, poor to good visual porosity inferred. Local aggregates, translucent to white, hard, medium to fine grained, sub-angular to angular, moderately sorted, well siliceous cemented, inferred calcite cement in part, recrystallised in part, poor to fair visual porosity. SILTSTONE (30-70%): Olive grey to dark olive grey, soft to firm and hard in part, blocky to sub blocky, abundant black carbonaceous material, trace to minor fine micaceous flecks, trace cryptocrystalline pyrite, trace loose medium pyrite nodules. COAL (0-60%): Black, dark brownish black in part, blocky, cleated, sub conchoidal fracturing in part, predominantly bright, traces very fine grained disseminated pyrite in part. CLAYSTONE (Trace-30%): Medium light grey, soft to firm, subblocky, trace glauconite.		
1710	1810	15-67 (36)	INTERBEDDED SANDSTONE, SILTSTONE, CLAYSTONE AND COAL INTERBEDS.	0.013	0.0221
			SANDSTONE (20-80%): Light grey, opaque, in part clear, loose quartz grains, predominantly medium grained, grading fine grained to granular, sub-angular to sub-rounded, moderately sorted, clay matrix washing out, trace very fine grained pyrite aggregates and cement, inferred fair visual porosity SILTSTONE (20-50%): Olive grey, pale yellowish brown, soft, amorphous to sub-blocky, traces carbonaceous material. CLAYSTONE (10-70%): Light olive grey, light grey, medium grey, soft to firm, sub-blocky, micromicaceous, rare carbonaceous material, traces disseminated pyrite. COAL (0-30%): Black, greenish black, brittle to moderately hard, cleated to platy, earthy to bright, in part with conchoidal fracture.		

			Ga	s Data					
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm
1380-1462	BG	0.003-0.0116 (0.007)	57	1	-	-	-	-	-
1462-1500	BG	0.006-0.015 (0.01)	83	1	-	-	-	-	-
1500-1535	BG	0.007-0.046 (0.02)	113	4	2	-	-	-	-
1534	Р	0.0429	344	16	12	3	2	1	-

			Gas Da	ata (Co	nt.)				
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm
1535-1710	BG	0.0116-0.300 (0.05)	246	16	14	4	5	3	3
1542	Р	0.273	614	41	27	9	9	6	4
1565	Р	0.300	1193	80	95	48	52	35	30
1591	Р	0.104	1021	43	19	6	7	7	6
1710-1810	BG	0.008-0.022 (0.01)	23	1	3	1	-	1	-

			Oil S	Show				
DEPTH (mMDRT)	OIL STAIN	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE	RES RING	GAS PEAK	BG
1380-1567	Nil	Trace	Mineral only				0.0429 0.2725 0.3001	0.0087
1560-1578	Nil	Tr bri yel – pl yel		Slw to mod fast strmng bri blu- wh		Thn, ptchy, br blu -yel		0.0502
1596-1602	Nil	Tr bri - pl yel		-		-	0.1040	0.0502
1650-1710	Nil	Tr-5% bri pl yel		V slw strmng bri blu-wh		Thn, wk bri blu-yel		0.0502
1710-1734	Dk brn-blk stain on some grains	Nil		-		-		0.0130

			Calcim	etry Data			
SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)
N/A			(70)				(70)

		Mud Data	@ 1810 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
KCI/PHPA	1.16	44	10/25	36,000

	Tracer Data					
D EPTH	Түре	CONCENTRATION	ADDITIONS STARTED			
			(DEPTH/DATE)			
N/A			No tracer in use			

MWD / LWD Tool Data

RAB8-Telescope		
GR (Gamma)	Resistivity	Survey (D&I)
1 sec	5 sec	N/A
10.49	10.75 / 10.96 / 11.13	17.32
	/ 11.26	
	GR (Gamma) 1 sec	GR (Gamma) Resistivity 1 sec 5 sec 10.49 10.75 / 10.96 / 11.13

Flow Rate Range for Pulser Configuration 600 – 1200 gpm

Provisional Formation Tops								
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on		
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string		
Gippsland Limestone	80.0	45.0						
Lakes Entrance Formation	965.9	860.0	960	857.49	2.51 H	Tentative pick based on change lithology and calcimetry results		
Top Latrobe Group								
- Gurnard Formation	1516.1	1357.0	1462.0	1305.5	51.5 H	Lithology change, resistivity increase		
- Top N1	1559.4	1399.5	1559.4	1398.6	0.9 H	Lithology		
- Top N2.3	1628.8	1468.0	1628.8	1466.2	1.8 H	LWD		
- Top N2.6	1650.0	1489.0	1659.0	1496.9	7.9 L	LWD		
- Top P1	1681.4	1520.0	1684.0	1521.6	1.6 L	LWD		
Total Depth	1863.8	1700.0	1810.0	1646.1				

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan West Seahorse-3 Rev 06**.

Comments

Wireline: Main tools checked OK. No backup tools for PEX run. Sufficient spares available if repairs necessary on MDT and/or MSCT.

Petrotech: Rigging up.

TD of 1810 mMDRT reached at 1900 hours 4 May 2008.

Mud Properties 0453 hrs (Bit at 1644 mMDRT)

K	3.78	%	
Rmf	0.1015	@	18.7°C
Rm	0.1167	@	19.0°C
Rmc	0.22	@	19.1°C

Mud Properties 1643 hrs (Bit at 1750 mMDRT)

K%	3.82	%	
Rmf	0.1086	@	22.0°C
Rm	0.1203	@	22.0°C
Rmc	0.1666	@	22.4°C

Report No. 12

REPORT PERIOD: 00:00 - 24:00 hrs, 05/05/2008

WELLSITE GEOLOGISTS: Mel Ngatai, Dennis Archer, Wen-Long Zang

Rig: West Triton RT-ML (m): 77.5 DEPTH @ 24:00 HRS: 1810 mMDRT 1684.1 mTVDRT

 RIG TYPE:
 Jack-up
 RT ELEV. (m, AMSL):
 38.0
 DEPTH LAST REPORT: (@ 24:00 HRS)
 1810 mMDRT 1684.1 mTVDRT

8.75° @ 1789.3 m

DAYS FROM SPUD: 11.82 MW (SG): 1.16 LAST SURVEY: MDRT, 55.97° Azi 1663.7 mTVDRT

BIT SIZE: N/A LAST FIT (SG): 1.64 EST. PORE PRESSURE:

Operations Summary

Continued to pull out of hole from 1530m MDRT to surface, racking BHA in the derrick. Laid out Schlumberger D&M rotary steerable tools and LWD tools and downloaded recorded data offline. Rigged up Schlumberger wireline for Suite #1 (TD Logging). Conducted Run #1: PEX-HRLT-BHC. Unable to pass 1775m (HUD, Logger) despite

Conducted Run #1: PEX-HRLT-BHC. Unable to pass 1775m (HUD, Logger) despite several attempts to work tools past. Logged out main pass from 1775m to casing shoe. Logged GR to surface through casing. Rigged down Run #1 tools. Rigged up and ran in with Run #2: MDT-GR configured for pretests and pump-out/sampling. Completed 27

pretest stations by midnight (see "Comments" below).

CURRENT STATUS @

24HRS. DRILLING SUMMARY:

06:00HRS: (06-05-2008) Rigging down operations from Suite #1, Run #2: MDT-GR and preparing for sample

transfer to Petrotech chambers (offline).

EXPECTED NEXT ACTIVITY: Rigging up tools for final wireline run (MCST-GR).

Cuttings Descriptions

DEPTH (MMDRT) ROP (M/HR.)

Min.-Max. DESCRIPTIONS (LITHOLOGY / SHOWS)

BG GAS (%)

Top Btm (Ave.) Ave. Max.

No drilling during this 24 hour period.

Gas Data									
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm
N/A		. (3)							

Type: P-Peak, C-Connection T-Trip, W-Wiper Trip, BG-Background Gas, FC-Flow Check, *P-Pumps off, SWG-Swab Gas

Oil Show									
DEPTH (mMDRT)	OIL STAIN	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE	RES RING	GAS PEAK	BG	
N/A									

Calcimetry Data								
SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	TOTAL CARBONATE (%)	
N/A			(79)				(79)	

		Mud Data	@ 1810 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
KCI/PHPA	1.16	45	10/25	36,000

	Tracer Data							
D EPTH	Түре	CONCENTRATION	ADDITIONS STARTED					
			(DEPTH/DATE)					
N/A			No tracer in use					

MWD / LWD Tool Data

Tool Type N/A Sub Type

RT Memory Sample

Rate (sec)

Bit to Sensor Offset

(m)

Flow Rate Range for Pulser Configuration

Provisional Formation Tops								
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on		
Mudline Gippsland Limestone	77.0 80.0	39.0 45.0	77.5	39.5	0.5 L	Tagged with drill string		
Lakes Entrance Formation Top Latrobe Group	965.9	860.0	960	857.49	2.51 H	Tentative pick based on change lithology and calcimetry results		
- Gurnard Formation	1516.1	1357.0	1462.0	1305.5	51.5 H	Lithology change, resistivity increase		
- Top N1	1559.4	1399.5	1559.4	1398.6	0.9 H	Lithology		
- Top N2.3	1628.8	1468.0	1628.8	1466.2	1.8 H	LWD		
- Top N2.6	1650.0	1489.0	1659.0	1496.9	7.9 L	LWD		
- Top P1	1681.4	1520.0	1684.0	1521.6	1.6 L	LWD		
Total Depth	1863.8	1700.0	1810.0	1646.1				

Comments

2 BHI Mudloggers left the Rig 05 May 08

Wireline Logging: Suite 1 Run 1: PEX-HRLT-BHC.

Main log: 1776 - 1117 mMDRT, GR to 100 m. BHT: 68°C.

Repeat section: 1690-1517 mMDRT.

Tool held up at 1775m (Logger) – unable to reach TD.

Run 2 (until midnight): MDT-GR. Attempted 27 points, 22 good tests, 2 tight/low permeability, 2 lost seal, 1 supercharged. Note that one additional pretest was aborted after setting the probe so no pretest information was obtained.

Static mud losses during logging approximately 0.67 bbls/hr.

Mud Resistivity Data:

Rm = 0.113 ohm-m @ 22.6°C Rmf = 0.101 ohm-m @ 22.2°C Rmc = 0.166 ohm-m @ 23.0°C

BHT from 3 maximum reading thermometers: 68.0°C, 68.0°C, 69.0°C

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on Directional Plan West Seahorse-3 Rev 06.

1663.7 mTVDRT

Report No. 13

REPORT PERIOD: 00:00 - 24:00 hrs, 06/05/2008

WELLSITE GEOLOGISTS: Mel Ngatai, Dennis Archer, Wen-Long Zang

RIG: West Triton RT-ML (m): 77.5 DEPTH @ 24:00 HRS: 1810 mMDRT 1684.1 mTVDRT

 RIG TYPE:
 Jack-up
 RT ELEV. (m, AMSL):
 38.0
 DEPTH LAST REPORT: (@ 24:00 HRS)
 1810 mMDRT 1684.1 mTVDRT

8.75° @ 1789.3 m **DAYS FROM SPUD:** 12.82 **MW (SG):** 1.16 **LAST SURVEY:** MDRT, 55.97° Azi

BIT SIZE: N/A LAST FIT (SG): 1.64 EST. PORE PRESSURE:

Operations Summary

Continued with TD wireline logging operations, Run #2: MDT-GR. Performed pumpouts at 1638m (aborted as too tight) and 1638.5m for reservoir fluid ID. Performed pump-out at 1567m and filled 4 x MPSR chambers with clean reservoir fluid (segregated samples). Attempted a further 5 pressure pretests above 1567m, no valid pressures, 2 lost seals, 2 tight, 1 supercharged point. POOH and rigged down MDT-GR (see "Comments" below). Transferred 3 x MPSR fluid samples to Petrotech chambers (offline). Rigged up Run #3 MCST-GR. Ran in hole. Unable to obtain any cores (made 3 attempts) due to a tool mechanical failure. Pulled out of hole with MCST-GR to check the tool. Tool was jammed with cuttings preventing its operation. Serviced the MSCT tool and ran back in hole for Run #4: MCST-GR. Cut 14 cores between 1561.5m and 1694m (12 cores recovered at surface). Pulled out

of hole and rigged down Schlumberger wireline equipment. Made up mule shoe on drill pipe and tripped in hole to 1565m MDRT.

CURRENT STATUS @

24HRS. DRILLING SUMMARY:

06:00HRS: Cementing second stage of bottom cement plug.

(07-05-2008)

EXPECTED NEXT ACTIVITY: Continue well suspension operations as per program.

Cuttings Descriptions

DEPTH (MMDRT) ROP (M/HR.) BG GAS (%)
Min.-Max. DESCRIPTIONS (LITHOLOGY / SHOWS)
Top Btm (Ave.) Ave. Max.

No drilling during this 24 hour period.

	Gas Data								
DEPTH (MMDRT)	Түре	% Total Gas Min – Max (Avg)	C1 ppm	C2 ppm	C3 ppm	iC4 ppm	nC4 ppm	iC5 ppm	nC5 ppm
1770*	BG	0.006-0.008	-	-	-	-	-	-	-
1567**	Р	1.09	2994	200	250	161	176	158	137
1770***	BG	0.04-0.06	-	-	-	-	-	-	-

Type: P-Peak, C-Connection T-Trip, W-Wiper Trip, BG-Background Gas, FC-Flow Check, *P-Pumps off, SWG-Swab Gas

Notes:

^{***}Circulating back-ground gas level after the gas peak.

Oil Show									
OIL STAIN	FLUOR%/COLOUR	FLUOR TYPE	Cut Fluor	CUT TYPE	RES RING	GAS PEAK	BG		
	OILSTAIN	Oil STAIN FLUOR%/COLOUR							

Calcimetry Data									
SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	Total Carbonate	SAMPLE DEPTH (mMDRT)	CALCITE (%)	DOLOMITE (%)	Total Carbonate		
			(%)				(%)		
1123-1130	47.2	9.5	56.7	1518	11.9	6.4	18.3		
1160	46.5	12.3	58.8	1536	5.5	0.6	6.2		
1180	49.2	8.8	58.0	1551	2.1	0.2	2.3		
1190	47.8	9.0	56.9	1560	2.3	0.2	2.5		
1200	32.5	12.3	44.8	1584	2.9	0.7	3.6		
1220	33.1	9.0	42.1	1590	2.1	1.0	3.0		
1260	41.6	0.8	42.4	1608	0.7	0.5	1.2		
1290	37.7	0.3	37.9	1638	0.7	0.6	1.3		
1320	32.2	1.3	33.5	1656	0.7	0.6	1.3		
1380	19.3	1.5	20.8	1674	0.7	0.6	1.3		
1410	18.8	1.8	20.6	1684	0.7	0.1	0.8		
1440	32.7	1.5	34.2	1728	0.7	0.1	0.8		
1470	28.6	0.8	29.4	1748	0.7	0.1	0.8		
1500	16.5	1.6	18.0	1810	0.3	0.1	0.4		

Note: Sized CaCO₃ ("CIRCAL") was added to the mud system during the 12.25" section. These Calcimetry values may therefore be affected by the presence of this mud additive, although screening of cuttings samples suggested that little mud additive contamination was present in general.

		Mud Data	@ 1810 mMDRT	
MUD TYPE	MW (SG)	VISCOSITY (SEC/QT)	PV/YP	Cl ⁻ (mg/l)
KCI/PHPA	1.16	46	10/24	36,000

^{*}Circulating back-ground gas level prior to peak.

^{**}Peak recorded while CBU prior to setting cement plug #1A. Gas peak arrival was lagged to the MDT pump-out station depth in the N1 reservoir.

Tracer Data						
DEPTH	Түре	CONCENTRATION	ADDITIONS STARTED			
			(DEPTH/DATE)			
N/A			No tracer in use			

MWD / LWD Tool Data

Tool Type N/A
Sub Type
RT Memory Sample
Rate (sec)
Bit to Sensor Offset

(m)

Flow Rate Range for Pulser Configuration

Provisional Final Formation Tops**							
Formation (Seismic Horizon)	Prognosed* (mMDRT)	Prognosed (mSS)	Actual (mMDRT)	Actual (mSS)	Difference (High/Low) (m)	Based on	
Mudline	77.0	39.0	77.5	39.5	0.5 L	Tagged with drill string	
Gippsland Limestone	80.0	45.0					
Lakes Entrance Formation	965.9	860.0	960	857.7	2.3 H	Calcimetry, lithology	
Top Latrobe Group							
- Gurnard Formation	1516.1	1357.0	1529.0	1368.9	11.9 L	Wireline Logs	
- Top N1	1559.4	1399.5	1562.0	1401.1	1.6 L	Wireline Logs	
- Top N2.3	1628.8	1468.0	1637.5	1475.6	7.6 L	Wireline Logs	
- Top N2.6	1650.0	1489.0	1660.0	1497.8	8.8 L	Wireline Logs	
- Top P1	1681.4	1520.0	1684.0	1521.5	1.5 L	Wireline Logs	
Total Depth	1863.8	1700.0	1810.0	1646.1	-	Pipe tally	

^{*}Prognosed depth (MDRT) assumes a RT elevation of 38m above MSL and is based on **Directional Plan West Seahorse-3 Rev 06**.

^{**}The "final" tops are based on Wireline Log depths and Final Demag MWD Survey results and may change.

Comments

- 2 x Anadrill LWD Engineers departed the rig on 06 May 08.
- 2 x BHI Mudloggers departed the rig on 06 May 08.
- 2 x WSG and 1 x 3D Oil Geologist will be leaving the rig on 07 May 08.

Wireline Runs:

Run #2: MDT-GR. Attempted 3 pump-out stations. 1 discontinued because of high drawdown pressures. Second pumped out to identify formation fluid. Third station pumped out until clean fluid, collected 4 MPSR samples (3 kept for later analysis). 5 additional pretest pressure points were attempted, 2 lost seal, 2 low permeability/tight, 1 supercharged. A low level of H₂S gas (10-15ppm) was detected by Draeger tube when the MDT tool vent line was opened at surface. A high concentration of H₂S gas was measured during the MDT sample chamber transfer process (see below).

Run #3: MCST-GR. Ran in hole and checked the coring device at casing shoe before running in hole to the first depth correlation point at 1720 – 1640m (logger). No depth correction was required. The first core sample at 1694m was attempted twice but was unsuccessful due to a mechanical failure in the coring device. A third coring attempt was made at the second core depth of 1686m with the same result. The tool was pulled to surface for troubleshooting. The Wellsite Geologist witnessed the tool to surface and confirmed that rock debris and clay had prevented the tool's coring mechanism from opening and therefore Run #3 was declared a misrun. The tool was thoroughly cleaned, re-zeroed at the surface and run back in hole as Run #4

Run #4: MCST-GR: 14 cores were cut between 1561.5m and 1694m (logger). 12 cores were recovered at surface. Note: Rotary core samples were collected in reverse order from shallow to deep.

Static mud losses during logging were approximately 1 bbl/hr.

H₂S and CO₂ Content of MDT Fluid Samples:

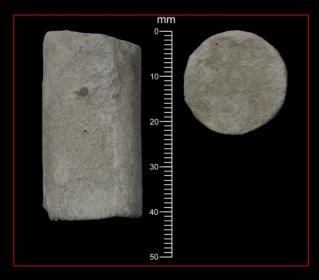
The following values were measured by Draeger tube during the sample transfer process:

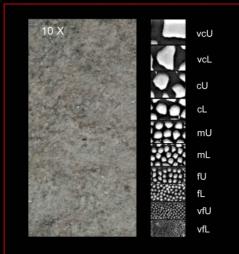
CO₂ content of all samples was 0%vol.

 H_2S was 240ppm, 280ppm and 280ppm for chambers 1 to 3 respectively.

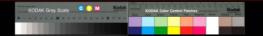
This is the FINAL Daily Geological Report for West Seahorse-3.

A light coloured oil was present in all 3 sample chambers. The PVT samples will be sent to CoreLab in Perth for further analysis.

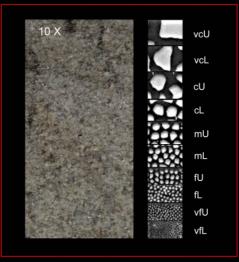

END OF REPORT	



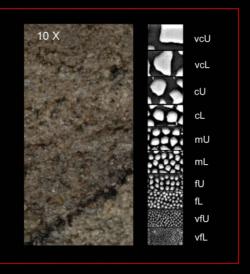
Attachment 12 MSCT Photography



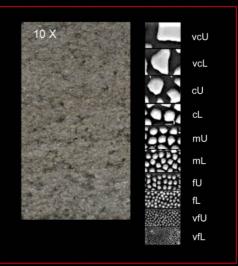
Sample 3 1564.0m


Silty Sandstone: 100% medium grey, massive, moderately to well sorted, fine grained, minor flourescence, petroliferous odour

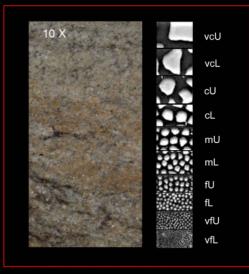
MSCT Photography West Seahorse-3 Sample 4 1566.5m


Silty Sandstone: 100% medium grey, massive, moderately to well sorted, fine grained, carbonaceous laminations, minor flourescence, petroliferous odour

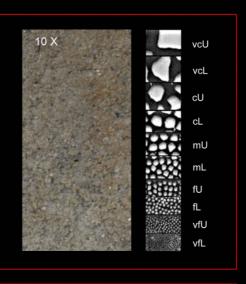
Sample 5 1568.0m


Calcareous Sandstone: 50% medium grey, 40% dirty white, 10% black, massive, moderately sorted, medium to fine grained, moderately calcareous, carbonaceous laminations, minor flourescence, petroliferous odour

MSCT Photography West Seahorse-3 Sample 6 1568.9m

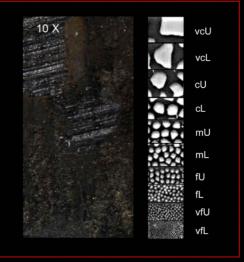

Silty Sandstone: 100% medium grey, massive, moderately well sorted, fine grained, carbonaceous laminations, minor flourescence, petroliferous odour

Sample 7 1570.0m

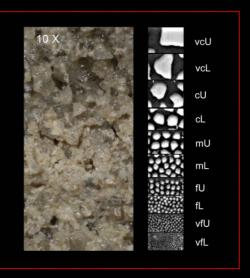

Sandstone: 100% medium grey, massive, moderately sorted, fine grained, carbonaceous laminations, minor flourescence, petroliferous odour

MSCT Photography West Seahorse-3 Sample 8 1571.0m

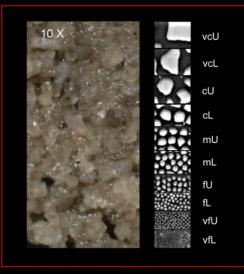



Silty Sandstone: 100% medium grey, massive, moderately to well sorted, fine grained, carbonaceous, laminations, minor flourescence, weak petroliferous odour

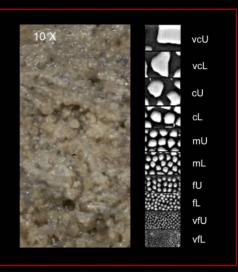
MSCT Photography West Seahorse-3 Sample 9 1634.0m


Coal: 100% Black, 10 - 40% bright, fractured, no cleating

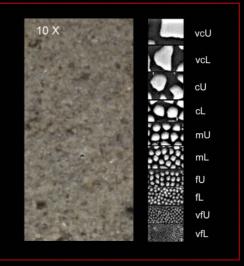
MSCT Photography West Seahorse-3 Sample 10 1661.0m


Sandstone: 100% medium grey, poor to moderately sorted, angular to sub-angular, coarse grained, relatively friable, siliceous, <50% quartz, poorly cemented, minor clay matrix

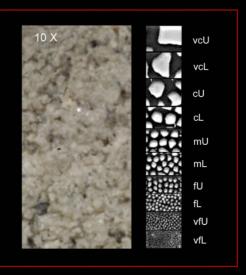
Sample 12 1665.0m


Sandstone: 90% medium grey, 10% white, poorly sorted, angular, coarse grained, friable, siliceous, <70% quartz, poorly cemented, minor clay matrix

MSCT Photography West Seahorse-3 Sample 11 1668.5m


 $Sandstone: 60\%\ light\ grey,\ 40\%\ off\ white,\ poorly\ sorted,\ angular,\ coarse\ grained,\ relatively\ friable,\ siliceous,\ <50\%\ quartz$

MSCT Photography West Seahorse-3 Sample 13 1686.0m


Silty Sandstone: 100% light grey, massive, moderately sorted, fine grained, minor flourescence, petroliferous odour.

MSCT Photography West Seahorse-3 Sample 14 1694.0m

Sandstone: 100% light grey, massive, moderately sorted, medium to fine grained, moderately calcareous

Attachment 13

Validity Checks and Analyses of MDT Samples

Final Report Prepared For 3D Oil Limited

Well: West Seahorse - 3

Validity Checks and Analyses
Of MDT Samples

6th May 2008

Ref: 57016

WELL FLOW MANAGEMENT™

Expro Group Australia Pty Ltd

Petrotech

42-44 Wittenberg Dve

Canning Vale

Western Australia 6970

Australia

Telephone **+61 8 9456 7600**

Fax +61 8 9456 7690

www.exprogroup.com

WELL: WEST SEAHORSE-3

VALIDITY CHECKS AND ANALYSES OF MDT SAMPLES

REPORT TYPE: Final

Client : 3D Oil Limited
Well : West Seahorse-3

Permit : Vic-P/57

Date : 6^{th} May 2008

Client Representative : Robyn Tamke

Date of reporting : July 2008
Project number : 57016
Project co-ordinator : Brian Toole

Participants : Andrew O'Donnell

Daniel Edwards

Report prepared by : Andrew O'Donnell

Report reviewed by : Jude Louis

Number of issues : 5 Distribution Expro : 1 Distribution 3D Oil Ltd. : 4

Expro Group Australia Pty Ltd.

PO Box 1522 CANNING VALE WA AUSTRALIA 6970 Phone: +61 8 9456 7600

Fax: +61 8 9456 7699

SUMMARY

To validate the quality of samples taken by the Schlumberger MDT Wireline Formation Sampling tool, Petrotech performed a programme of validity checks and analysis on the retrieved samples.

The contents of the successfully retrieved chambers were transferred to Petrotech PVT sampling bottles and sent onshore to Core Laboratories for further analysis.

TABLE OF CONTENTS

	Page
1. INTRODUCTION	4
2. OFFSHORE ANALYSIS PROGRAMME	4
3. RESULTS	5
Table 1: WFS Sample Data	5
Table 2: PVT Transfer Data	6
Table 3: Non-Pressurised Sample List	7
Table 4: Pressurised Sample List	8
Table 5: WFS Flash Data	9
Table 6: Sample Analysis Data	10
4. DISCUSSION	11
5. APPENDICES: PVT SHEETS	12

1. INTRODUCTION

In this report, Petrotech presents the validity checks and basic on-site analysis for samples retrieved from the MDT tool during logging for the West Seahorse-3 well. The analyses were carried out on the 6th and 18th of May 2008.

In order to obtain the highest quality of well-site data from the MDT tool, Petrotech confirmed the quality of MDT samples retrieved by carrying out opening pressure measurements. Pressurised single-phase transfers of samples to Petrotech shipping bottles were performed to provide PVT samples for onshore analysis.

A total of four segregated samples were collected from a depth of 1567mMDRT (1406.1m TDVSS) using the Schlumberger MDT tool. Single-phase transfers were performed on three samples and the fourth sample was flashed for offshore analysis.

2. OFFSHORE ANALYSIS PROGRAMME

Wire line Fluid Sampling

Following collection of the Wireline Fluid Samples, the tools were brought back to the surface. The chambers were prepared for transfer by pressurising them to 1450psi above the reservoir pressure supplied from the Schlumberger logging data. The buffer fluid volume added to the chamber was recorded at all significant points with sample validity verified by non-invasive opening pressure measurement of the sample from the buffer side of the chamber (see Table 1).

Once the required pressure was reached, the sample was maintained in this condition for one hour with regular agitation to promote sample homogeneity, whilst constant pressure monitoring ensured sample stability and confirmed the absence of leaks. At the end of this period, sample transfer commenced at a minimum of 1450psi above reservoir pressure with the sample introduced into the Petrotech shipping bottle at a slow, constant rate (around 20cc per minute) so as to minimise disruption to the pressure equilibrium.

3. RESULTS

Table 1: WFS Sample Data

Client	3D Oil Limited
Well	West Seahorse-3
Project No.	57016

Sampling Depth (mMDRT)	WFS Chamber No.	WFS Chamber Vol (cc)	Downhole Sampling Date	Downhole Sampling Time	Opening Pressure (psig)	Opening Temperature (°C)
1567	3452	450	6/05/08	02:12 hrs	1624	16.0
1567	3353	450	6/05/08	02:22 hrs	1088	18.0
1567	3358	450	6/05/08	02:26 hrs	1595	18.0
1567	3453	450	6/05/08	02:16 hrs	1555	17.0

Table 2: PVT Transfer Data

Client	3D Oil Limited
Well	West Seahorse-3
Project No.	57016

Petrotech Sample No.	Sample Depth (mMDRT)	WFS Chamber No.	Transfer Date	Transfer Time	Petrotech Cylinder No.	Transfer Volume (mL)	Transfer Pressure (psig)	Transfer Temp. (°C)	Comments
T.01	1567	3452	06.05.08	11:00	PT-3001	380	4000	65.0	-
T.02	1567	3353	06.05.08	12:20	PT-3153	375	4000	65.0	-
T.03	1567	3358	06.05.08	14:15	PT-3184	390	4000	65.0	-
T.04	1567	3453	18.05.08	-	Flashed	-	-	18.0	-

Table 3: Non-Pressurised Sample List

Client	3D Oil Limited
Well	West Seahorse-3
Project No.	57016

Petrotech Sample No.	Sample Depth (mMDRT)	WFS Chamber No.	Sample Nature	Sample Volume (mL)	Comments
A.01	1567	3452.0	Oil	40	Sent to Petrotech, Perth
A.02	1567	3353.0	Oil	40	Sent to Petrotech, Perth
A.03	1567	3358.0	Oil	40	Sent to Petrotech, Perth
A.04	1567	3453.0	Oil	395	Flashed for Analysis. 18/5/08

Table 4: Pressurised Sample List

Client 3D Oil
Well West Seahorse-3
Project No. 57016

Transferred Samples

Transicired Samp	103					
Petrotech	Sample	WFS	Sample	Petrotech	Shipping	Shipping
Sample	Depth	Chamber	Nature	Cylinder	Volume	Pressure
No.	(mMDRT)	No.		No.	(cc)	(psig)
T.01	1567	3452	Oil	PT-3001	380	1500
T.02	1567	3353	Oil	PT-3153	375	2000
T.03	1567	3358	Oil	PT-3184	390	2000

Table 5: WFS Flash Data

Client	3D Oil Limited
Well	West Seahorse-3
Project No.	57016

Petrotech	Sample	MDT	Stabilised	Measured	Measured	Barometric	Ambient	Gas-Oil
Sample	Depth	Chamber	Oil Volume	Gas Volume	Water Vol.	Pressure	Temperature	Ratio
No.	(mRT)	No.	(mL)	(L)	(L)	(mBar)	(°C)	(scf/bbl)
Not Transferred	1567	3453	395	20.0	-	1073	17.0	286.28

 Table 6: Sample Analysis Data

Client 3D Oil

Well West Seahorse-3

Project No. 57016

Petrotech	Sample	WFS	Oil	Oil	Draege	Draeger Tube Viscosity			
Sample	Depth	Chamber	Density	Gravity	CO ₂	H_2S	Kinematic	Dynamic	Temperature
No.	(mRT)	No.	(g/cm ³ @ 15°C)	(°API @ 60°F)	(%vol)	(ppm)	(mm2/sec)	(cp)	(°C)
PT-3001	1567	3452	-	-	-	240	-	-	-
PT-3153	1567	3353	-	-	-	280	-	-	-
PT-3184	1567	3358	-	-	-	280	-	-	-
Flashed	1567	3453	0.799	45.6	2	280	-	-	17.0

4. DISCUSSION

The logging run was performed on the 5th and 6th May 2008. The Schlumberger MDT tool successfully recovered a total of four segregated samples from a depth of 1567mMDRT.

The opening pressure measurements suggested that all four samples were of acceptable quality. The opening pressures showed generally good consistency and the chambers remained intact until transfer.

Three MPSRs were transferred to Petrotech shipping bottles and the fourth was flashed to atmosphere on the 18th May. During all transfers, the MPSR chambers were oriented such that sample was removed from the highest point. On completion of the transfers and analysis, the pressurised and dead samples were dispatched to Petrotech for onward shipment to Core Laboratories (Perth) as instructed by 3D Oil personnel.

The MPSRs were rinsed with Toluene to extract any residual ashphaltenes.

The density of the oil from the flashed MPSR was measured and appears in this report in Table 6. The GOR was also determined and is reported in Table 5.

5. APPENDICES: PVT SHEETS

WIRELINE FLUID SAMPLE TRANSFER SHEET

Client	3D Oil Limited
Well	West Seahorse-3
Rig	West Triton
Sampling Tool	MDT

SAMPLING I	DATA	
Sample number	T.01	
Chamber number	3452	
Sampled by	Schlumberger	
Sample depth	1567.0	mMDRT
Sample nature	Oil	
Date	06.05.08	
Transferred by	Daniel/Andrew	
Transfer commenced	11:00	
Transfer completed	11:32	
Cylinder number	PT-3001	
Cylinder coupled with	-	

TRANSFER CONDITIONS				
Transfer fluid	Glycol			
Cylinder volume	700	сс		
Sample volume	380	cc		
Transfer fluid remaining	320	cc		
Transfer pressure	4000.0	psig		
Shipping pressure	1500.0	psig		
Ambient temperature	18.0	°C		
BOTTOM HOLE CO	ONDITI	ONS		
Reservoir pressure	1968.0	psig		
Reservoir temperature	65.0	°C		

COMMENTS		

WIRELINE FLUID SAMPLE TRANSFER SHEET

Client	3D Oil Limited
Well	West Seahorse-3
Rig	West Triton
Sampling Tool	MDT

SAMPLING I	DATA	
Sample number	T.02	
Chamber number	3353	
Sampled by	Schlumberger	
Sample depth	1567.0	mMDRT
Sample nature	Oil	
Date	06.05.08	
Transferred by	Daniel/Andrew	
Transfer commenced	12:20	
Transfer completed	13:04	
Cylinder number	PT-3153	
Cylinder coupled with	-	

TRANSFER CON	DITION	IS
Transfer fluid	Glycol	
Cylinder volume	700	cc
Sample volume	375	cc
Transfer fluid remaining	325	cc
Transfer pressure	4000.0	psi g
Shipping pressure	2000.0	psi g
Ambient temperature	18.0	°C
BOTTOM HOLE CO	ONDITI	ONS
Reservoir pressure	1968.0	psi g
Reservoir temperature	65.0	°C

COMMENTS

WIRELINE FLUID SAMPLE TRANSFER SHEET

Client	3D Oil Limited
Well	West Seahorse-3
Rig	West Triton
Sampling Tool	MDT

SAMPLING DATA				
Sample number	T.03			
Chamber number	3358			
Sampled by	Schlumberger			
Sample depth	1567.0	mMDRT		
Sample nature	Oil			
Date	06.05.08			
Transferred by	Daniel/Andrew			
Transfer commenced	14:15			
Transfer completed	14:50			
Cylinder number	PT-3184			
Cylinder coupled with	-			

TRANSFER CONDITIONS				
Transfer fluid	Glycol			
Cylinder volume	700	cc		
Sample volume	390	cc		
Transfer fluid remaining	310	cc		
Transfer pressure	4000.0	psig		
Shipping pressure	2000.0	psig		
Ambient temperature	18.0 °C			
BOTTOM HOLE CONDITIONS				
Reservoir pressure	1968.0	psi g		
Reservoir temperature	65.0	°C		

COMMENTS			

Attachment 14 Reservoir Fluid Study

Reservoir Fluid Study

for

3D Oil

West Seahorse-3

AFL 20080022

The analyses, opinions or interpretations in this report are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of CORE LABORATORIES AUSTRALIA PTY LTD, (all errors and omissions excepted); but CORE LABORATORIES AUSTRALIA PTY LTD and its officers and employees assume no responsibility and make no warranty or representations as to the productivity, proper operation or profitability of any oil, gas or any other mineral well formation in connection with which such report is used or relied upon.

CORE LABORATORIES AUSTRALIA PTY LTD

Reservoir Fluids Group

447-449 Belmont Avenue, Kewdale WA 6105

Tel: +61 8 9353 3944 Fax: +61 8 9353 1369 Web: http://www.corelab.com

CORE LABORATORIES AUSTRALIA PTY LTD

447-449 Belmont Avenue Kewdale, WA 6105 P.O. Box 785 Cloverdale, WA 6985 Tel: (61-8) 9353 3944 Tel: (61-8) 9353 1369

e-mail: corelab.australia@corelab.com

Web: http://www.corelab.com

16th September 2008

3D Oil Limited Level 5, 164 Flinders Lane, Melbourne VIC 3000

Attention: Jon Keall

Dear Jon,

Subject: Reservoir Fluid Study: Well: West Seahorse-3; Our file: AFL 20080022

Three sub-surface oil samples were forwarded to our Perth laboratory on 22nd May 2008 for initial validation, compositional analysis and a PVT analysis program. Presented in the following report are the results of the requested analyses.

Core Laboratories Australia Pty Ltd are very pleased to have been of service to 3D Oil Limited in this work. Should any questions arise concerning the data presented in this report, or if we may be of assistance in any other matter, please do not hesitate to contact us.

Yours Faithfully, For CORE LABORATORIES AUSTRALIA PTY LTD

Murray Macleod Laboratory Supervisor

Table of Contents

Section A - Summary of Analysis Methods	Page
Summary of analysis methods	A.1
Summary of PVT analysis data	A.2
Section B - Summary of Samples Received and Validation Data	
Reported Well and Sampling Information	B.1
Summary of Samples Received and Validation Data	B.2
Section C - Compositional Analysis Data - Bottom Hole Samples	
Compositional Analysis of Cylinder PT-3001 (T.01) to C36+	C.1-C.3
Compositional Analysis of Cylinder PT-3153 (T.02) to C36+	C.4-C.6
Compositional Analysis of Cylinder PT-3184 (T.03) to C36+	C.7-C.9
Section D - Constant Composition Expansion Data - PT-3184 (Sample No.: T.03)	
Single phase properties	D.1
Constant composition expansion data	D.2
Section E - Differential Vaporisation Data - PT-3184 (Sample No.: T.03)	
Differential vaporisation data	E.1
Graphs from differential vaporisation	E.2
Compositional analysis of differential vaporisation gases to C12+	E.3
Compositional analysis of differential vaporisation residue to C36+	E.4-E.5
Differential vaporisation data converted to production separator conditions	E.6
Section F - Viscosity Data - PT-3184 (Sample No.: T.03)	
Reservoir fluid viscosity data	F.1
Section G - Separator Test Data - PT-3184 (Sample No.: T.03)	
Separator test data	G.1
Compositional analysis of separator test gases to C11+	G.2
Compositional analysis of stocktank oil to C36+	G.3-G.4
Section H - Appendix	
Data used in gas compositional calculations	H.1
Data used in liquid compositional calculations	H.2

West Seahorse-3 AFL 20080022

Summary of Analysis Methods

Sample Validation

The opening pressures of the three sub-surface oil samples were recorded at ambient temperature. They were then stabilised at 5000 psig and heated to 100°C for 24 hours. The samples were agitated thoroughly to ensure they were completely single phase and homogenous. A check for free water was made and the sample volume determined.

Compositional Analysis

The fluid composition of each oil sample was determined using a combination of flash separation and gas chromatography techniques. Each fluid was flashed at a controlled temperature (50°C) and separated into oil and gas phases.

The gas was analysed using extended gas chromatography with compositions determined by a GPA 2286 method using a multi-column gas chromatograph system. A temperature programme was utilised to obtain optimum detection and separation of dodecanes plus components.

The flashed oil was analysed by temperature programmed high resolution capillary gas chromatography. The two analyses were then mathematically recombined to the flash gas-oil ratio.

Constant Composition Expansion

A portion of the reservoir fluid sample was charged to a high pressure visual cell maintained at the reservoir temperature of 66.0°C. A constant composition expansion was carried out during which the bubble point pressure of 1227 psig was determined and pressure-volume data for the single phase and two phase fluid were measured. The density of the single phase fluid was determined by weighing measured volumes pumped from the cell at 5000 psig. Density data for other pressures were calculated using the volumetric data.

Differential Vaporisation

This was performed in the high pressure visual cell at reservoir temperature following the constant composition expansion. At several pressure stages, below the observed saturation pressure, the sample was stabilised. The gas evolved was then pumped out of the cell and the volume, compressibility and composition were determined. The final stage was carried out at atmospheric pressure when the residual liquid was pumped out of the cell and its density and composition were determined.

Viscosity

This was measured in an electro-magnetic viscometer at reservoir temperature. Viscosity determinations were carried out over a wide range of pressures from above the reservoir pressure to atmospheric pressure.

Separator Test

A two-stage separator test was carried out using a pressurised test separator cell. A portion of the reservoir fluid sample, at a pressure above saturation pressure, was pumped into the separator cell and stabilised at the pressure and temperature required for the first stage separation. The gas evolved was pumped out of the cell and the volume and composition were determined. The final stage was carried out at atmospheric pressure and the density and composition of the residual liquid was determined.

Compositional Analysis Databases

For all compositions reported in this study, the properties used, eg Molecular Weight and Density of the individual components are tabulated in Section D of the Appendix.

Reservoir Fluids Group A.5

Summary of PVT Analysis Data

Constant Composition Expansion	
Saturation pressure (bubble-point)	1227 psig
Average single phase compressibility (From 1968 psig to 1227 psig)	13.74 x 10 ⁻⁶ psi ⁻¹
Density at saturation pressure	0.7034 g cm ⁻³
Differential Vaporisation	
Solution gas-oil ratio at saturation pressure	391 scf/bbl of residual oil at 15.6°C
Relative oil volume at saturation pressure	1.245 vol/vol of residual oil at 15.6°C
Reservoir Fluid Viscosity	
Viscosity at reservoir pressure	0.549 centipoise at 1968 psig
Viscosity at saturation pressure	0.518 centipoise at 1227 psig
Separator Test	
Solution gas-oil ratio at saturation pressure	325 scf/bbl of residual oil at 15.6°C
Relative oil volume at saturation pressure	1.195 vol/vol of residual oil at 15.6°C

Reported Well and Sampling Information - MDTs

Reservoir	and Well Information		
	Field		
	FieldWell	West Seahorse-3	
	Reservoir Fluid	Oil	
	7.00070117144	O.I.	
	Formation		
	Reservoir Pressure	1968.0 psig	
	Reservoir Temperature	66.0 °C	
	Installation		
	Test		
	Perforations		
Sampling	Information		
	Date sampled		
	Time sampled		
	Type of samples	MDT	
	Sampling company	Schlumberger	
	Sampling point	4507.0 MDDT	
	Sampling Depth	1567.0 mMDRT	
	Choke		
	Status of well		
	Bottomhole pressure	1968.0 psig	
	Bottomhole temperature	66.0°C	
	·		
	Wellhead flowing pressure		
	Wellhead flowing temperature		
	Separator pressure		
	Separator temperature		
	Pressure base	14 606 paig	
	Temperature base	14.696 psia 60°F	
	Tomporatore sass	30 .	
	Water flowrate		
	Gas gravity (Air = 1)		
	H2S		
	CO2		
	BS&W		
	Oil gravity at 60°F		

Comments:

Other details not supplied

Summary of MDT Samples Received and Validation Data

MDT Samples									
		Sample		Sampli	ng :-	Laboratory	opening :-	Water	Sample
Sample Number	Cylinder Number	Depth (m MDRT)	Туре	Pressure (psig)	Temp. (°C)	Pressure (psig)	Temp. (°C)	Volume (cm ³)	Volume (cm ³)
T.01	PT-3001	1567.0	Oil	1968	65.0	1671	18.2	15	385
T.02	PT-3153	1567.0	Oil	1968	65.0	2126	16.5	13	370
T.03	PT-3184	1567.0	Oil	1968	65.0	1562	15.3	15	390

Notes:

Sample Volumes at 5000 psig and 94°C

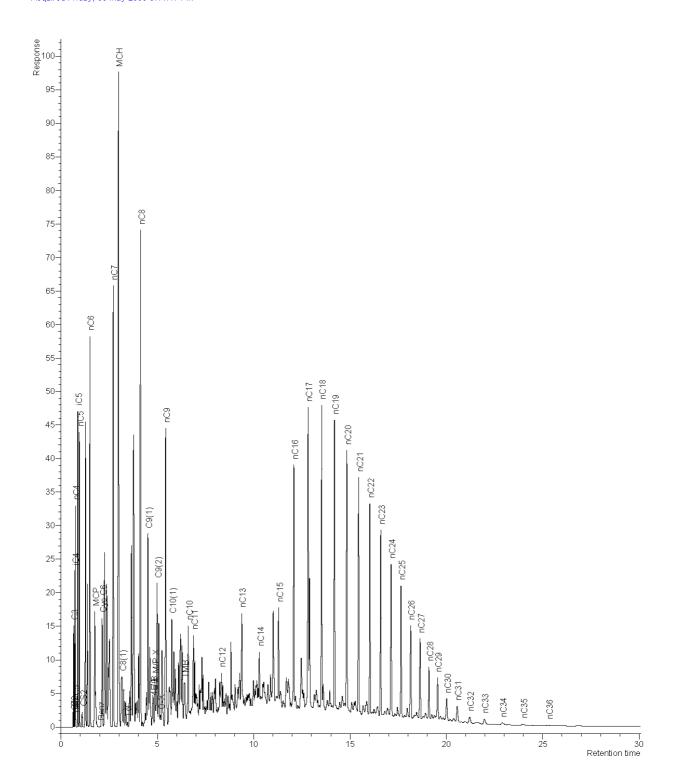
Sampling pressure and temperature information from Expro sampling sheets

Sample T.01, Expro cylinder PT-3001 is transferred from Schlumberger chamber No. 3452 Sample T.02, Expro cylinder PT-3153 is transferred from Schlumberger chamber No. 3353 Sample T.03, Expro cylinder PT-3184 is transferred from Schlumberger chamber No. 3358

Compositional Analysis of Sample T.01, Cylinder No. PT-3001 to C36+

	Component	Mala 0/	Maight 0/	
П	Component	Mole %	Weight %	
H ₂	Hydrogen Hydrogen Sulphide	0.00 0.00	0.00 0.00	
H ₂ S				
CO ₂	Carbon Dioxide	0.75	0.30	
N_2	Nitrogen	0.26	0.06	
C ₁	Methane	26.62	3.83	
C_2	Ethane	1.95	0.53	
C_3	Propane	2.84	1.12	
iC_4	i-Butane	2.00	1.04	
nC_4	n-Butane	2.16	1.12	
C ₅	Neo-Pentane	0.08	0.05	
iC_5	i-Pentane	2.15	1.39	
nC_5	n-Pentane	1.93	1.25	
C ₆	Hexanes	4.96	3.83	
	M-C-Pentane	1.11	0.84	
	Benzene	0.01	0.01	
	Cyclohexane	0.94	0.71	
C ₇	Heptanes	5.70	5.12	
	M-C-Hexane	4.11	3.62	
	Toluene	0.02	0.02	
C ₈	Octanes	6.97	7.13	
-0	E-Benzene	0.13	0.12	
	M/P-Xylene	0.33	0.31	
	O-Xylene	0.08	0.07	
C_9	Nonanes	4.68	5.39	
O g	1,2,4-TMB	0.17	0.19	
C		3.78	4.83	
$\frac{C_{10}}{C_{11}}$	Decanes	2.81	3.70	
	Undecanes	2.81 2.27		
C ₁₂	Dodecanes		3.28	
C ₁₃	Tridecanes	2.41	3.78	
C ₁₄	Tetradecanes	2.01	3.42	
C ₁₅	Pentadecanes	2.25	4.17	
C ₁₆	Hexadecanes	1.93	3.84	
C ₁₇	Heptdecanes	1.91	4.05	
C ₁₈	Octadecanes	1.90	4.27	
C ₁₉	Nonadecanes	1.45	3.42	
C ₂₀	Eicosanes	1.22	3.01	
C ₂₁	Heneicosanes	1.00	2.62	
C_{22}	Docosanes	0.84	2.31	
C_{23}	Tricosanes	0.71	2.04	
C ₂₄	Tetracosanes	0.59	1.74	
C ₂₅	Pentacosanes	0.49	1.51	
C ₂₆	Hexacosanes	0.38	1.22	
C ₂₇	Heptacosanes	0.32	1.06	
C ₂₈	Octacosanes	0.24	0.85	
C ₂₉	Nonacosanes	0.21	0.77	
C ₃₀	Triacontanes	0.17	0.63	
C ₃₁	Hentriacontanes	0.14	0.56	
C ₃₂	Dotriacontanes	0.11	0.42	
C ₃₃	Tritriacontanes	0.09	0.39	
C ₃₄	Tetratriacontanes	0.07	0.31	
C ₃₅	Pentatriacontanes	0.06	0.25	
C ₃₅ +	Hexatriacontanes Plus	0.69	3.50	
∪ ₃₆ +	i ievalijacojilaijes Flus	0.09	ა.ას	
	Totala :	400.00	100.00	
	Totals:	100.00	100.00	
	Note: 0.00 means < 0.005.			

C.11


Compositional Analysis of sample T.01, cylinder No. PT-3001 to C36+

Calculated Residue Properties					
C ₇ +	Mole% Molecular Weight (g mol-1) Density at 15.6°C (g cm-3)	54.30 175 0.8046			
C ₁₁ +	Mole% Molecular Weight (g mol-1)	26.27 242			
	Density at 15.6°C (g cm-3)	0.8512			
C ₂₀ +	Mole% Molecular Weight (g mol-1) Density at 15.6°C (g cm-3)	7.33 352 0.8878			
C ₃₆ +	Mole %	0.69			
	Molecular Weight (g mol-1) Density at 15.6°C (g cm-3)	561 0.9288			
Calculated \	Whole Sample Properties				
	Average mole weight (g mol-1)	111			

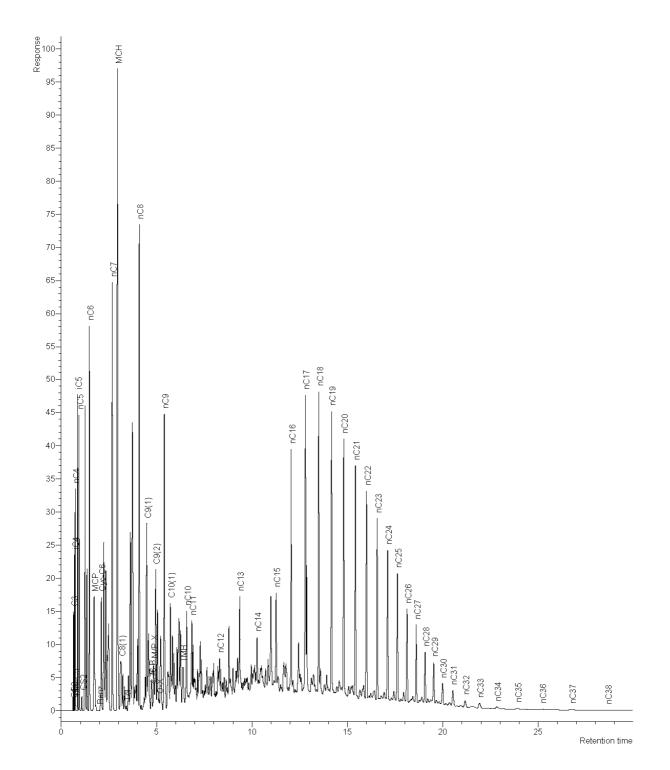
Chromatogram of sample T.01, cylinder No. PT-3001 to C36+

West Seahorse-3 (1,1) Acquired Friday, 30 May 2008 3:41:17 PM

wb25052008,as_1.2008,1,1,1

Compositional Analysis of Sample T.02, Cylinder No. PT-3153 to C36+

	Component	Mole %	Weight %	
H ₂	Hydrogen	0.00	0.00	
H ₂ S	Hydrogen Sulphide	0.00	0.00	
CO ₂	Carbon Dioxide	0.72	0.28	
N_2	Nitrogen	0.22	0.05	
C ₁	Methane	26.08	3.71	
C_2	Ethane	1.92	0.51	
C_3	Propane	2.79	1.09	
iC ₄	i-Butane	1.95	1.01	
nC ₄	n-Butane	2.10	1.08	
C ₅	Neo-Pentane	0.08	0.05	
iC ₅	i-Pentane	2.18	1.40	
nC ₅	n-Pentane	1.97	1.26	
C_6		5.06	3.87	
<u>C</u> 6	Hexanes M.C. Bentana			
	M-C-Pentane	1.13	0.84	
	Benzene	0.01	0.01	
C	Cyclohexane	0.98	0.73	
<u>C₇</u>	Heptanes	5.79	5.15	
	M-C-Hexane	4.19	3.65	
_	Toluene	0.02	0.02	
C ₈	Octanes	7.05	7.15	
	E-Benzene	0.12	0.11	
	M/P-Xylene	0.33	0.31	
	O-Xylene	0.07	0.07	
C ₉	Nonanes	4.69	5.33	
	1,2,4-TMB	0.18	0.19	
C ₁₀	Decanes	3.83	4.84	
C ₁₁	Undecanes	2.84	3.70	
C_{12}	Dodecanes	2.24	3.20	
C ₁₃	Tridecanes	2.46	3.81	
C_{14}	Tetradecanes	2.02	3.40	
C ₁₅	Pentadecanes	2.25	4.12	
C ₁₆	Hexadecanes	1.98	3.90	
C ₁₇	Heptdecanes	1.90	4.00	
C ₁₈	Octadecanes	1.90	4.24	
C ₁₉	Nonadecanes	1.45	3.39	
C_{20}	Eicosanes	1.23	3.01	
C ₂₁	Heneicosanes	1.00	2.59	
C_{22}	Docosanes	0.85	2.29	
C_{23}	Tricosanes	0.72	2.02	
C_{24}	Tetracosanes	0.59	1.74	
C ₂₅	Pentacosanes	0.49	1.49	
C ₂₆	Hexacosanes	0.38	1.21	
C ₂₇	Heptacosanes	0.32	1.06	
C ₂₈	Octacosanes	0.25	0.85	
C ₂₉	Nonacosanes	0.22	0.77	
C ₃₀	Triacontanes	0.17	0.62	
C ₃₁	Hentriacontanes	0.15	0.55	
C ₃₂	Dotriacontanes	0.11	0.42	
C ₃₃	Tritriacontanes	0.09	0.38	
C ₃₄	Tetratriacontanes	0.07	0.31	
C ₃₅	Pentatriacontanes	0.06	0.25	
C ₃₆ +	Hexatriacontanes Plus	0.80	3.97	
€36+	i ionatiiaoontailes i lus	0.80	5.37	
	Totals :	100.00	100.00	
	Note: 0.00 means < 0.005.	100.00	100.00	
	NOTE: 0.00 HIEAHS < 0.000.			


Reservoir Fluids Group C.4

Compositional Analysis of Sample T.02, Cylinder No. PT-3153 to C36+

Calculated Residue Properties					
C ₇ +	Mole%	54.93			
	Molecular Weight (g mol-1)	176			
	Density at 15.6°C (g cm-3)	0.8051			
C ₁₁ +	Mole%	26.54			
	Molecular Weight (g mol-1)	243			
	Density at 15.6°C (g cm-3)	0.8518			
C ₂₀ +	Mole%	7.50			
	Molecular Weight (g mol-1)	354			
	Density at 15.6°C (g cm-3)	0.8886			
C ₃₆ +	Mole %	0.80			
	Molecular Weight (g mol-1)	561			
	Density at 15.6°C (g cm-3)	0.9289			
Calculated \	Nhole Sample Properties				
	Average mole weight (g mol-1)	113			
	Average mole weight (g mor i)	113			

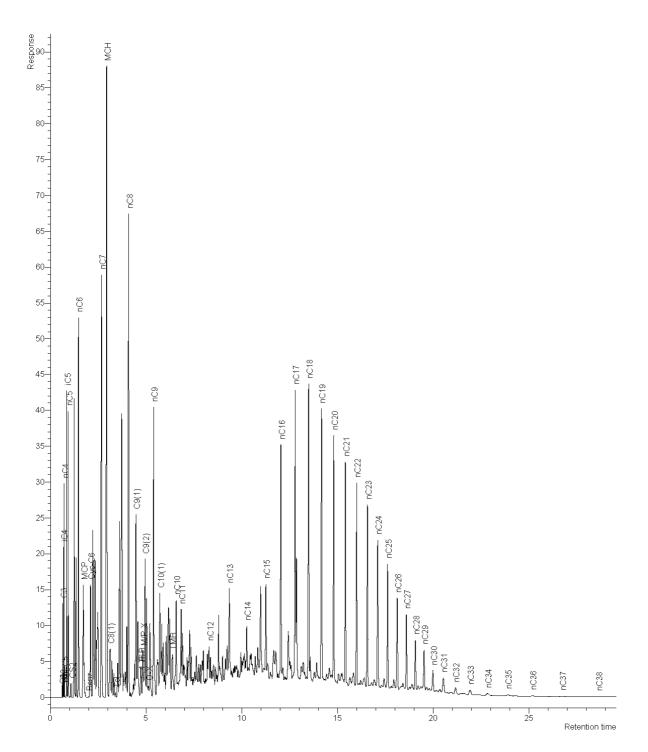
Chromatogram of Sample T.02, Cylinder No. PT-3153 to C36+

West Seahorse-3 unspkd (1,1) Acquired Tuesday, 3 June 2008 2:05:36 PM wb01062008,as_1.2010,1,1,1

Compositional Analysis of Sample T.03, Cylinder PT-3184 to C36+

	Component	Mole %	Weight %	
H ₂	Hydrogen	0.00	0.00	
H ₂ S	Hydrogen Sulphide	0.00	0.00	
CO ₂	Carbon Dioxide	0.76	0.30	
N_2	Nitrogen	0.24	0.06	
C ₁	Methane	26.49	3.81	
C_2	Ethane	1.94	0.52	
C_3	Propane	2.82	1.11	
iC ₄	i-Butane	1.96	1.02	
nC ₄	n-Butane	2.15	1.12	
C ₅	Neo-Pentane	0.05	0.03	
iC ₅	i-Pentane	2.13	1.38	
nC ₅	n-Pentane	1.92	1.24	
$\frac{C_6}{C_6}$	Hexanes	4.96	3.83	
- 0	M-C-Pentane	1.11	0.84	
	Benzene	0.02	0.02	
	Cyclohexane	0.95	0.72	
C ₇	Heptanes	5.75	5.16	
	M-C-Hexane	4.17	3.67	
	Toluene	0.03	0.02	
C ₈	Octanes	7.04	7.18	
	E-Benzene	0.13	0.12	
	M/P-Xylene	0.33	0.31	
	O-Xylene	0.07	0.07	
C_9	Nonanes	4.72	5.42	
	1,2,4-TMB	0.17	0.19	
C ₁₀	Decanes	3.81	4.86	
C ₁₁	Undecanes	2.81	3.71	
C ₁₂	Dodecanes	2.28	3.29	
C ₁₃	Tridecanes	2.41	3.77	
C ₁₄	Tetradecanes	2.04	3.47	
C ₁₅	Pentadecanes	2.21	4.09	
C ₁₆	Hexadecanes	1.95	3.88	
C ₁₇	Heptdecanes	1.89	4.01	
C ₁₈	Octadecanes	1.89	4.25	
C ₁₉	Nonadecanes	1.46	3.43	
C_{20}	Eicosanes	1.21	2.99	
C ₂₁	Heneicosanes	1.01	2.63	
C_{22}	Docosanes	0.84	2.30	
C ₂₃	Tricosanes	0.71	2.03	
C ₂₄	Tetracosanes	0.59	1.74	
C ₂₅	Pentacosanes	0.49	1.51	
C ₂₆	Hexacosanes	0.38	1.22	
C ₂₇	Heptacosanes	0.32	1.06	
C ₂₈	Octacosanes	0.24	0.85	
C ₂₉	Nonacosanes	0.21	0.76	
C_{30}	Triacontanes	0.17	0.63	
C ₃₁	Hentriacontanes	0.14	0.56	
C ₃₂	Dotriacontanes	0.11	0.42	
C ₃₃	Tritriacontanes	0.09	0.37	
C ₃₄	Tetratriacontanes	0.07	0.30	
C_{35}	Pentatriacontanes	0.06	0.24	
C ₃₆ +	Hexatriacontanes Plus	0.70	3.49	
	Totals:	100.00	100.00	
	Note: 0.00 means < 0.005.			

Reservoir Fluids Group C.7


Compositional Analysis of Sample T.03, Cylinder PT-3184 to C36+

Calculated Residue Properties					
C ₇ +	Mole%	54.58			
	Molecular Weight (g mol-1)	175			
	Density at 15.6°C (g cm-3)	0.8043			
C ₁₁ +	Mole%	26.28			
	Molecular Weight (g mol-1)	242			
	Density at 15.6°C (g cm-3)	0.8511			
C ₂₀ +	Mole%	7.34			
	Molecular Weight (g mol-1)	352			
	Density at 15.6°C (g cm-3)	0.8877			
C ₃₆ +	Mole %	0.70			
	Molecular Weight (g mol-1)	560			
	Density at 15.6°C (g cm-3)	0.9287			
Calculated \	Nhole Sample Properties				
	Average mole weight (g mol-1)	112			
	Average mole weight (g mol-1)	112			

Chromatogram of Sample T.03, Cylinder PT-3184 to C36+

wb01062008,as_1.2012,1,1,1

Constant Composition Expansion at 66.0°C

Single-phase Fluid Properties	
Saturation pressure (bubble-point pressure)	1227 psig
Average single phase compressibility (From 1968 psig to 1227 psig)	13.74 x 10 ⁻⁶ psi ⁻¹
Density at saturation pressure	0.7034 g cm ⁻³

Mean Single-phase Compressibilities

Pressu	re Range	Mean
Initial Pressure (psig)	Final Pressure (psig)	Compressibility (psi-1) (1)
5000	4000	7.51 x 10 ⁻⁶
4000	3000	8.57 x 10 ⁻⁶
3000	1800	10.60 x 10 ⁻⁶
1800	1227	14.23 x 10 ⁻⁶

⁽¹⁾ Mean compressibility = $(V2-V1) / [(V1+V2)/2] \times 1/(P1 - P2)$

Constant Composition Expansion at 66.0°C

Pressure (psig)		Relative Volume (1)	Density (g cm-3)	Instantaneous Compressibility (psi-1 x 10-6) (2)	Y-function (3)
5000		0.9637	0.7299	7.10	
4500		0.9672	0.7272	7.49	
4000		0.9710	0.7244	7.96	
3500		0.9750	0.7214	8.54	
3000		0.9793	0.7182	9.28	
2500		0.9841	0.7148	10.25	
2200		0.9873	0.7125	11.02	
2100		0.9884	0.7117	11.32	
2000		0.9895	0.7109	11.65	
1968	Reservoir pressure	0.9899	0.7106	11.76	
1900		0.9907	0.7100	12.01	
1800		0.9919	0.7092	12.41	
1700		0.9931	0.7083	12.86	
1600		0.9944	0.7073	13.38	
1500		0.9958	0.7064	14.00	
1400		0.9972	0.7054	14.77	
1300		0.9988	0.7043	15.93	
1227	Saturation pressure	1.0000	0.7034		
1219		1.0029			
1220		1.0026			
1219		1.0029			
1218		1.0033			
1212		1.0056			
1197		1.0113			
1164		1.0246			0.400
1096		1.0553			2.133
1019 923		1.0963 1.1593			2.089 2.035
923 824		1.1593			2.035 1.978
711		1.3715			1.976
595		1.5610			1.848
480		1.8472			1.782
374		2.2743			1.722
284		2.8895			1.671
203		3.8951			1.625

⁽¹⁾ Relative Volume = V / Vsat ie. volume at indicated pressure per volume at saturation pressure.

⁽²⁾ Instantaneous compressibility = (V2-V1) / V1 x 1/(P1-P2)

⁽³⁾ Y-function = (Psat - P) / ((Pabs)(V/Vsat - 1)).

Differential Vaporisation at 66.0°C

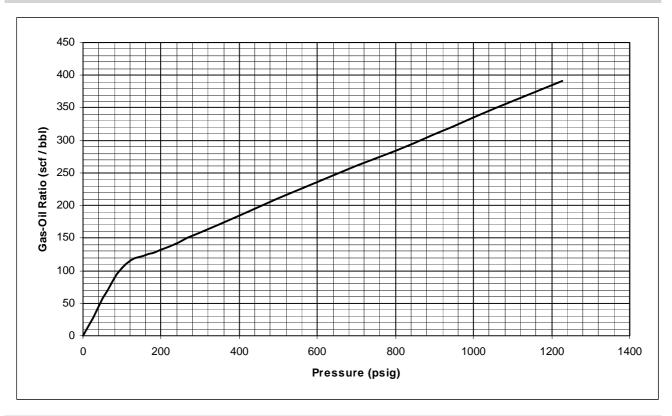
Pressure (psig)	Solution Gas-Oil Ratio Rs(1)	Relative Oil Volume Bod(2)	Relative Total Volume Btd(3)	Density (g cm-3)	Deviation Factor (Z)	Gas Formation Volume Factor (4)	Incremental Gas Gravity (Air = 1.000)
1227	391	1.245	1.245	0.7034		Saturation Pr	ressure
1000	336	1.222	1.377	0.7103	0.920	0.01565	0.649
800	283	1.201	1.580	0.7163	0.930	0.01971	0.656
600	235	1.182	1.917	0.7222	0.942	0.02646	0.666
400	185	1.162	2.624	0.7280	0.955	0.03977	0.694
200	132	1.140	4.747	0.7342	0.970	0.07799	0.761
100	104	1.127	8.665	0.7382	0.978	0.14715	0.874
0	0	1.053		0.7526	0.987		1.760
	At 15.6°C =	1.000					

Residual Oil Properties

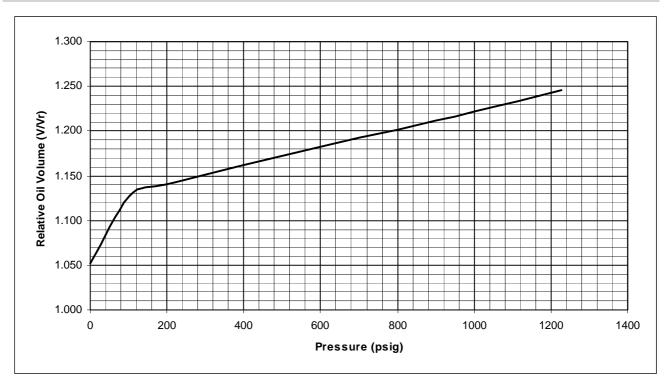
Density of residual oil 0.7921 g cm⁻³ at 15.6°C

°API 47.0

⁽¹⁾ GOR in cubic feet of gas at 14.70 psia and 15.6°C per barrel of residual oil at 15.6°C.


⁽²⁾ Volume of oil at indicated pressure and temperature per volume of residual oil at 15.6°C.

⁽³⁾ Volume of oil plus liberated gas at indicated pressure and temperature per volume of residual oil at 15.6°C.


⁽⁴⁾ Volume of gas at indicated pressure and temperature per volume at 14.70 psia and 15.6 $^{\circ}$ C.

Graphs of Differential Vaporisation

Solution Gas-Oil Ratio v Pressure

Relative Oil Volume v Pressure

Compositional Analysis of Differential Vaporisation Gases to C11+

	Sample I.D.							
	Test Stage	1	2	3	4	5	6	7
	Stage Pressure (psig)	1000	800	600	400	200	100	0
	Component (Mole%)							
H_2	Hydrogen	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H ₂ S	Hydrogen Sulphide	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO ₂	Carbon Dioxide	1.47	1.59	1.76	2.02	2.51	2.97	1.52
N_2	Nitrogen	1.77	1.24	0.84	0.47	0.21	0.12	0.05
C ₁	Methane	90.53	90.25	89.44	87.28	81.29	72.11	24.52
C ₂	Ethane	2.24	2.50	2.92	3.69	5.54	7.98	8.51
C_3	Propane	1.52	1.72	1.98	2.63	4.34	6.95	17.46
iC ₄	i-Butane	0.62	0.67	0.83	1.02	1.82	2.76	10.88
nC ₄	n-Butane	0.52	0.57	0.67	0.86	1.48	2.37	10.62
C_5	Neo-Pentane	0.02	0.02	0.03	0.02	0.04	0.06	0.26
iC ₅	i-Pentane	0.31	0.34	0.38	0.51	0.75	1.24	6.45
nC_5	n-Pentane	0.23	0.25	0.28	0.37	0.54	0.90	4.81
C ₆	Hexanes	0.33	0.35	0.40	0.50	0.68	1.16	6.31
	M-C-Pentane	0.04	0.05	0.05	0.06	0.09	0.15	0.85
	Benzene	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Cyclohexane	0.06	0.07	0.07	0.09	0.12	0.20	1.01
C ₇	Heptanes	0.14	0.15	0.15	0.20	0.26	0.44	2.43
	M-C-Hexane	0.09	0.10	0.09	0.12	0.15	0.26	1.46
	Toluene	0.00	0.00	0.00	0.00	0.00	0.01	0.03
C ₈	Octanes	0.07	0.08	0.07	0.10	0.13	0.22	1.25
	E-Benzene	0.00	0.00	0.00	0.00	0.00	0.00	0.02
	M/P-Xylene	0.00	0.00	0.00	0.00	0.00	0.00	0.02
	O-Xylene	0.00	0.00	0.00	0.00	0.00	0.00	0.01
C_9	Nonanes	0.03	0.04	0.03	0.04	0.04	0.08	0.47
	1,2,4-TMB	0.00	0.00	0.00	0.00	0.00	0.00	0.01
C_{10}	Decanes	0.01	0.01	0.01	0.02	0.01	0.02	0.22
C ₁₁ +	Undecanes plus	0.00	0.00	0.00	0.00	0.00	0.00	0.88
	Totals :	100.00	100.00	100.00	100.00	100.00	100.00	100.00
	Calculated Gas Properties							
	Gas Gravity (Air = 1.000)	0.649	0.656	0.666	0.694	0.761	0.874	1.760

Note: 0.00 means less than 0.005.

Compositional Analysis of Differential Vaporisation Residue to C36+

	Component	Mole %	Weight %	
H_2	Hydrogen	0.00	0.00	
H ₂ S	Hydrogen Sulphide	0.00	0.00	
CO ₂	Carbon Dioxide	0.00	0.00	
N_2	Nitrogen	0.00	0.00	
C ₁	Methane	0.00	0.00	
C_2	Ethane	0.05	0.01	
C_3	Propane	0.41	0.11	
iC ₄	i-Butane	0.84	0.30	
nC ₄	n-Butane	1.29	0.46	
C_5	Neo-Pentane	0.07	0.03	
iC ₅	i-Pentane	2.08	0.92	
nC ₅	n-Pentane	2.13	0.94	
C ₆	Hexanes	6.63	3.50	
	M-C-Pentane	1.65	0.85	
	Benzene	0.00	0.00	
	Cyclohexane	1.26	0.65	
C ₇	Heptanes	8.85	5.43	
	M-C-Hexane	6.37	3.83	
	Toluene	0.02	0.01	
C ₈	Octanes	11.18	7.82	
	E-Benzene	0.20	0.13	
	M/P-Xylene	0.54	0.35	
	O-Xylene	0.12	0.08	
C_9	Nonanes	7.46	5.86	
<u> </u>	1,2,4-TMB	0.30	0.22	
C ₁₀	Decanes	6.10	5.31	
C ₁₁	Undecanes	4.56	4.10	
C ₁₂	Dodecanes	3.62	3.57	
C ₁₃	Tridecanes	3.90	4.18	
C ₁₄	Tetradecanes	3.23	3.76	
C ₁₅	Pentadecanes	3.58	4.51	
C ₁₆	Hexadecanes	3.14	4.27	
C ₁₇	Heptadecanes	3.06	4.44	
C ₁₈	Octadecanes	3.06	4.70	
C ₁₉	Nonadecanes	2.33	3.75	
C ₂₀	Eicosanes	1.96	3.30	
C ₂₁	Heneicosanes	1.62	2.88	
C_{22}	Docosanes	1.35	2.53	
C_{23}	Tricosanes	1.15	2.24	
C_{24}	Tetracosanes	0.95	1.92	
C ₂₅	Pentacosanes	0.79	1.66	
C ₂₆	Hexacosanes	0.79	1.34	
C ₂₇	Heptacosanes	0.51	1.17	
C_{28}	Octacosanes	0.40	0.94	
C_{29}	Nonacosanes	0.34	0.84	
C_{30}	Triacontanes	0.27	0.70	
C ₃₁	Hentriacontanes	0.24	0.62	
C ₃₂	Dotriacontanes	0.17	0.46	
C ₃₃	Tritriacontanes	0.17	0.42	
C_{33} C_{34}	Tetratriacontanes	0.13	0.34	
C ₃₅	Pentatriacontanes	0.12	0.34	
C ₃₅ +	Hexatriacontanes plus	1.25	4.27	
⊃ 36 [∓]	i iozatriacortarios pius	1.20	7.41	
	Totals:	100.00	100.00	
	Note: 0.00 means less than 0.005.	100.00	100.00	
	THOLE. U.UU MEANS 1833 MAN U.UUD.			

Reservoir Fluids Group E.4

Compositional Analysis of Differential Vaporisation Residue to C36+

Calculated R	esidue Properties		
C ₇ +	Mole%	86.50	
	Molecular Weight (g mol-1)	177	
	Density at 15.6°C (g cm-3)	0.8056	
C ₁₁ +	Mole%	42.45	
	Molecular Weight (g mol-1)	243	
	Density at 15.6°C (g cm-3)	0.8517	
C ₂₀ +	Mole%	11.97	
	Molecular Weight (g mol-1)	354	
	Density at 15.6°C (g cm-3)	0.8884	
C ₃₆ +	Mole %	1.25	
	Molecular Weight (g mol-1)	560	
	Density at 15.6°C (g cm-3)	0.9287	
Calculated W	hole Sample Properties		
	Average mole weight (g mol-1)	163	
	Density at 15.6°C (g cm-3) [Measured]	0.7921	
	API	47.0	

Differential Vaporisation Data Converted to Production Separator Conditions

Pressure (psig)		Oil Density (g cm-3)	Solution Gas/Oil (scf / bbl) Rs(1)	Formation Volume Factor Bo(1)	Gas Formation Volume Factor Bg(2)
5000 4500 4000 3500 3000 2500 2200 2100 2000		0.7299 0.7272 0.7244 0.7214 0.7182 0.7148 0.7125 0.7117 0.7109		1.152 1.156 1.160 1.165 1.170 1.176 1.180 1.181	
1968	Reservoir pressure	0.7106		1.183	
1900 1800 1700 1600 1500 1400 1300 1227		0.7100 0.7092 0.7083 0.7073 0.7064 0.7054 0.7043 0.7034		1.184 1.185 1.187 1.188 1.190 1.192 1.194 1.195	
1227	Saturation pressure	0.7034	325	1.195	
1000 800 600 400 200		0.7103 0.7163 0.7222 0.7280 0.7342	272 221 175 127 76	1.173 1.153 1.134 1.115 1.094	0.01565 0.01971 0.02646 0.03977 0.07799

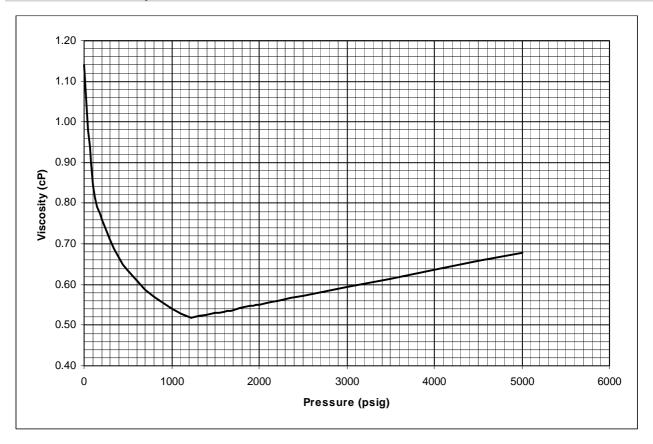
Notes:

(1) Differential data corrected to surface separator conditions of :-

Stage 1 150 psig and 15.0°C Stage 2 0 psig and 15.0°C

Rs = Rsfb - (Rsdb - Rsd) x (Bofb / Bodb)

Bo = Bod x (Bofb/Bodb)


(2) Volume of gas at indicated pressure and temperature per volume at 14.70 psia and 15.6°C.


Reservoir Fluid Viscosity Data at 66°C

Pressure (psig)		Oil Viscosity (cP)	Calculated Gas Viscosity (cP) (1)	Oil/Gas Viscosity Ratio
5000		0.679		
4500		0.657		
4000		0.636		
3500		0.615		
3000		0.593		
2500		0.572		
2000		0.551		
1968	Reservoir pressure	0.549		
1600	Reservoir pressure	0.534		
1500		0.529		
1400		0.525		
1227	Saturation pressure	0.518		
1000	Catalation pressure	0.541	0.0139	38.9
800		0.569	0.0135	42.3
600		0.608	0.0131	46.6
400		0.666	0.0126	52.8
200		0.760	0.0120	63.2
100		0.760	0.0120	73.8
0		1.140	0.0114	13.0
U		1.140		

Reservoir Fluid Viscosity v Pressure at 66°C

(1) Calculated using the method of Lee, Gonzales and Eakin, JPT, Aug 1966.

Separator Test Data

Pressure (psig)	Temperature (°C)	Gas-Oil Ratio (1)	Gas-Oil Ratio Rsfb (2)	Oil Density (g cm-3)	Formation Volume Factor Bofb (3)	Separation Volume Factor (4)	Gas Gravity of flashed gas (Air = 1.000)
1227	66.0	-	325	0.7034	1.195	Saturati	ion Pressure
150	15.0	239	248	0.7785		1.036	0.646
0	15.0	77	77	0.7925		0.999	1.101
Ü		.,		(°API = 48.0)		0.000	

Note

Evolved gas collected and analysed to Undecanes plus. Stocktank oil collected and analysed to Hexatriacontanes plus.

G.3

⁽¹⁾ GOR in cubic feet of gas at 14.70 psia and 15.6°C per barrel of oil at indicated pressure and temperature.

⁽²⁾ GOR in cubic feet of gas at 14.70 psia and 15.6°C per barrel of stocktank oil at 15.6°C.

⁽³⁾ Volume of saturated oil at 1227 psig and 66.0°C per volume of stocktank oil at 15.6°C.

⁽⁴⁾ Volume of oil at indicated pressure and temperature per volume of stocktank oil at 15.6°C.

Compositional Analysis of Separator Test Gases to C11+

	Sample I.D.			
	Test Stage	1	2	
	Stage Pressure (psig)	150	0	
	Stage i ressure (psig)	150	U	
	Component (Mole%)			
H_2	Hydrogen	0.00	0.00	
H_2S	Hydrogen Sulphide	0.00	0.00	
CO_2	Carbon Dioxide	1.84	2.54	
N_2	Nitrogen	0.98	0.15	
C_1	Methane	89.68	52.92	
C_2	Ethane	3.53	11.13	
C_3	Propane	2.08	14.39	
iC_4	i-Butane	0.70	6.41	
nC_4	n-Butane	0.51	5.27	
C_5	Neo-Pentane	0.02	0.13	
iC_5	i-Pentane	0.23	2.47	
nC_5	n-Pentane	0.15	1.63	
C_6	Hexanes	0.15	1.64	
	M-C-Pentane	0.02	0.19	
	Benzene	0.00	0.00	
	Cyclohexane	0.02	0.22	
C ₇	Heptanes	0.03	0.45	
	M-C-Hexane	0.03	0.26	
	Toluene	0.00	0.00	
C ₈	Octanes	0.02	0.15	
	E-Benzene	0.00	0.00	
	M/P-Xylene	0.00	0.00	
	O-Xylene	0.00	0.00	
C ₉	Nonanes	0.01	0.04	
	1,2,4-TMB	0.00	0.00	
C ₁₀	Decanes	0.00	0.01	
C ₁₁ +	Undecanes plus	0.00	0.00	
	Totals:	100.00	100.00	
	Gas Properties			
	Gas Gravity (Air = 1.000)	0.646	1.101	

G.4

Compositional Analysis of Stocktank Oil to C36+

	Component	Mole %	Weight %
H_2	Hydrogen	0.00	0.00
H_2S	Hydrogen Sulphide	0.00	0.00
CO_2	Carbon Dioxide	0.04	0.01
N_2	Nitrogen	0.00	0.00
C ₁	Methane	0.00	0.00
C_2	Ethane	0.26	0.05
C_3	Propane	1.67	0.47
iC ₄	i-Butane	1.78	0.66
nC ₄	n-Butane	2.32	0.86
C ₅	Neo-Pentane	0.02	0.01
iC ₅	i-Pentane	2.74	1.26
nC ₅	n-Pentane	2.60	1.20
	Hexanes	7.05	3.88
C ₆			
	M-C-Pentane	1.62	0.87
	Benzene	0.02	0.01
_	Cyclohexane	1.27	0.68
C ₇	Heptanes	8.52	5.45
	M-C-Hexane	6.11	3.83
_	Toluene	0.02	0.01
C ₈	Octanes	10.52	7.69
	E-Benzene	0.19	0.13
	M/P-Xylene	0.52	0.35
	O-Xylene	0.10	0.07
C_9	Nonanes	6.94	5.68
	1,2,4-TMB	0.26	0.20
C_{10}	Decanes	5.79	5.26
C ₁₁	Undecanes	4.26	4.00
C_{12}	Dodecanes	3.38	3.47
C_{13}	Tridecanes	3.65	4.08
C ₁₄	Tetradecanes	3.03	3.67
C ₁₅	Pentadecanes	3.39	4.46
C ₁₆	Hexadecanes	2.93	4.15
C ₁₇	Heptadecanes	2.84	4.30
C ₁₈	Octadecanes	2.86	4.59
C ₁₉	Nonadecanes	2.19	3.68
C ₂₀	Eicosanes	1.83	3.22
C_{21}	Heneicosanes	1.51	2.81
C_{22}		1.27	2.47
	Docosanes		
C ₂₃	Tricosanes	1.08	2.20
C ₂₄	Tetracosanes	0.88	1.86
C ₂₅	Pentacosanes	0.74	1.64
C ₂₆	Hexacosanes	0.57	1.31
C ₂₇	Heptacosanes	0.48	1.14
C ₂₈	Octacosanes	0.37	0.91
C ₂₉	Nonacosanes	0.32	0.82
C ₃₀	Triacontanes	0.26	0.68
C_{31}	Hentriacontanes	0.22	0.60
C_{32}	Dotriacontanes	0.16	0.45
C_{33}	Tritriacontanes	0.14	0.41
C_{34}	Tetratriacontanes	0.11	0.33
C_{35}	Pentatriacontanes	0.09	0.27
C ₃₆ +	Hexatriacontanes plus	1.08	3.85
	Totals:	100.00	100.00
	Note: 0.00 means < 0.005.		

G.5

Compositional Analysis of Stocktank Oil to C36+

Calculated residue properties		
C ₇ +	Mole% Molecular Weight (g mol-1) Density at 15.6°C (g cm-3)	81.52 176 0.8048
C ₁₁ +	Mole% Molecular Weight (g mol-1) Density at 15.6°C (g cm-3)	39.64 243 0.8513
C ₂₀ +	Mole% Molecular Weight (g mol-1) Density at 15.6°C (g cm-3)	11.11 352 0.8879
C ₃₆ +	Mole % Molecular Weight (g mol-1) Density at 15.6°C (g cm-3)	1.08 560 0.9287
Whole sample properties		
	Average mole weight (g mol-1) Density at 15.6°C (g cm-3) [Measured] API	156.6 0.7925 48.0

Section H - Appendix

Data Used in Gas Compositional Calculations

Component		Mole Weight	Density	Component		Mole Weight	Density
		(g mol-1)	(g cm-3 at 60°F	·)		(g mol-1)	(g cm-3 at 60°F)
Hydrogen	*	2.016	N/A	33DMC5	*	100.20	0.6954
Oxygen/(Argon)	**	31.999	1.1410	Cyclohexane	*	84.16	0.7827
Nitrogen (Corrected)	**	28.013	0.8086	2MC6/23DMC5	*	100.20	0.6917
Methane	**	16.043	0.2997	11DMCYC5/3MC6	*	99.20	0.7253
Carbon Dioxide	**	44.010	0.8172	t13DMCYC5	*	98.19	0.7528
Ethane	**	30.070	0.3558	c13DMCYC5/3EC5	*	99.20	0.7262
Hydrogen Sulphide	**	34.080	0.8006	t12DMCYC5	*	98.19	0.7554
Propane	**	44.097	0.5065	Heptanes (nC7)	*	100.20	0.6875
i-Butane	**	58.123	0.5623	22DMC6	*	114.23	0.6994
n-Butane	**	58.123	0.5834	MCYC6	*	98.19	0.7740
Neo-Pentane	*	72.15	0.5968	ECYC5	*	98.19	0.7704
i-Pentane	**	72.150	0.6238	223TMC5/24&25DMC6	*	114.23	0.7060
n-Pentane	**	72.150	0.6305	ctc124TMCYC5	*	112.21	0.7511
22DMC4	*	86.18	0.6529	ctc123TMCYC5	*	112.21	0.7574
23DMC4/CYC5	*	78.16	0.7129	Toluene	*	92.14	0.8734
2MC5	*	86.18	0.6572	Octanes (nC8)	*	114.23	0.7063
3MC5	*	86.18	0.6682	E-Benzene	*	106.17	0.8735
Hexanes (nC6)	*	86.18	0.6631	M/P-Xylene	*	106.17	0.8671
22DMC5	*	100.20	0.6814	O-Xylene	*	106.17	0.8840
M-C-Pentane	*	84.16	0.7533	Nonanes (nC9)	*	128.26	0.7212
24DMC5	*	100.20	0.6757	Decanes	***	134	0.778
223TMC4	*	100.20	0.6947	Undecanes	***	147	0.789
Benzene	*	78.11	0.8820	Dodecanes	***	161	0.800

Data Source Refs:

- * ASTM Data Series Publication DS 4B (1991) Physical Constants of Hydrocarbon and Non-Hydrocarbon Compounds.
- ** GPA Table of Physical Constants of Paraffin Hydrocarbons and Other Components of Natural Gas, GPA 2145-96.
- *** Journal of Petroleum Technology, Nov 1978, Pages 1649-1655.

 Predicting Phase Behaviour of Condensate/Crude Oil Systems Using Methane Interaction Coefficients
 D.L. Katz & A. Firoozabadi.

Note:

The gas mole % compositions were calculated from the measured weight % compositions using the most detailed analysis results, involving as many of the above components as were identified. The reported component mole % compositions were then sub-grouped into the generic carbon number components.

AFL 20080022

Data Used in Liquid Compositional Calculations

Component				Component		Mole Weight	Density	
		(g mol-1) (g cm-3 at 60°F)				(g mol-1)	(g cm-3 at 60°F)	
					4.4.4			
Hydrogen	*	2.016	N/A	Undecanes	***	147	0.789	
Hyd. sulphide	**	34.080	0.8006	Dodecanes	***	161	0.800	
Carbon Dioxide	**	44.010	0.8172	Tridecanes	***	175	0.811	
Nitrogen	**	28.013	0.8086	Tetradecanes	***	190	0.822	
Methane	**	16.043	0.2997	Pentadecanes	***	206	0.832	
Ethane	**	30.070	0.3558	Hexadecanes	***	222	0.839	
Propane	**	44.097	0.5065	Heptadecanes	***	237	0.847	
i-Butane	**	58.123	0.5623	Octadecanes	***	251	0.852	
n-Butane	**	58.123	0.5834	Nonadecanes	***	263	0.857	
i-Pentane	**	72.150	0.6238	Eicosanes	***	275	0.862	
n-Pentane	**	72.150	0.6305	Heneicosanes	***	291	0.867	
Hexanes	**	86.177	0.6634	Docosanes	***	305	0.872	
Me-cyclo-pentane	*	84.16	0.7533	Tricosanes	***	318	0.877	
Benzene	*	78.11	0.8820	Tetracosanes	***	331	0.881	
Cyclo-hexane	*	84.16	0.7827	Pentacosanes	***	345	0.885	
Heptanes	**	100.204	0.6874	Hexacosanes	***	359	0.889	
Me-cyclo-hexane	*	98.19	0.7740	Heptacosanes	***	374	0.893	
Toluene	*	92.14	0.8734	Octacosanes	***	388	0.896	
Octanes	**	114.231	0.7061	Nonacosanes	***	402	0.899	
Ethyl-benzene	*	106.17	0.8735	Triacontanes	***	416	0.902	
Meta/Para-xylene	*	106.17	0.8671	Hentriacontanes	***	430	0.906	
Ortho-xylene	*	106.17	0.8840	Dotriacontanes	***	444	0.909	
Nonanes	**	128.258	0.7212	Tritriacontanes	***	458	0.912	
1-2-4-T-M-benzene	*	120.19	0.8797	Tetratriacontanes	***	472	0.914	
Decanes	**	142.285	0.7334	Pentatriacontanes	***	486	0.917	

Data Source Refs:

- * ASTM Data Series Publication DS 4B (1991) Physical Constants of Hydrocarbon and Non-Hydrocarbon Compounds.
- ** GPA Table of Physical Constants of Paraffin Hydrocarbons and Other Components of Natural Gas GPA 2145-96.
- *** Journal of Petroleum Technology, Nov 1978, Pages 1649-1655.

 Predicting Phase Behaviour of Condensate/Crude Oil Systems Using Methane Interaction Coefficients
 D.L. Katz & A. Firoozabadi.

Note:

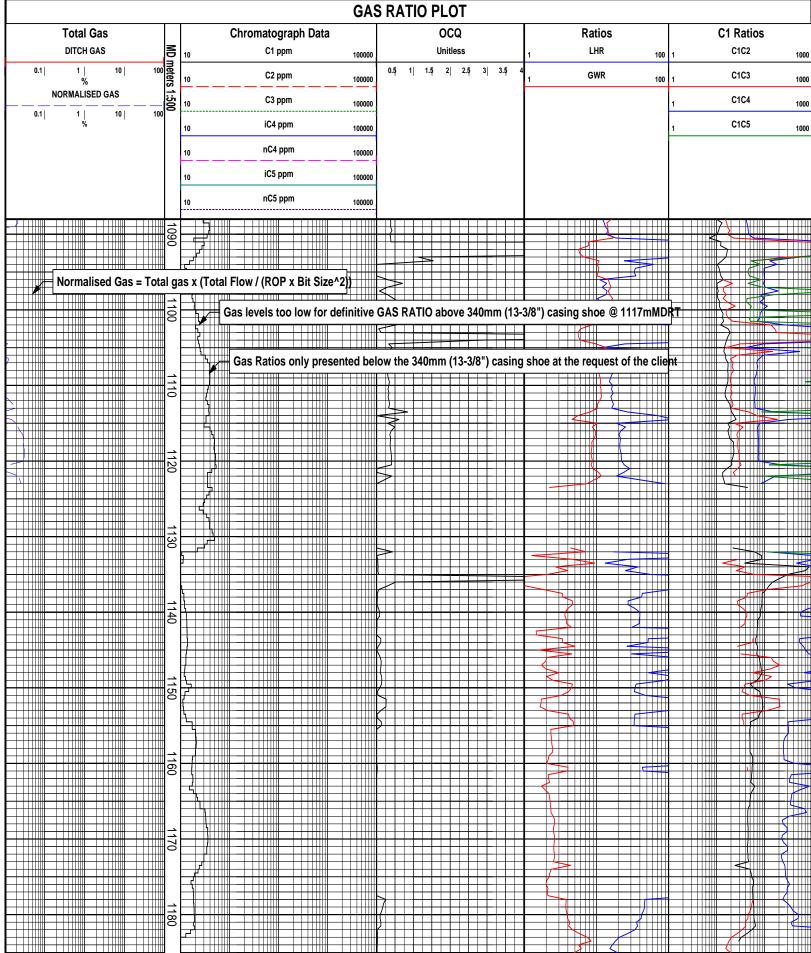
The residue mole weight and density values (eg heptanes plus, undecanes plus, eicosanes plus) are calculated so that the calculated average mole weights and densities correspond with the measured values. This can lead to anomalous residue mole weights and densities where the Katz and Firoozabadi values may not be suitable for the isomer groups detected.

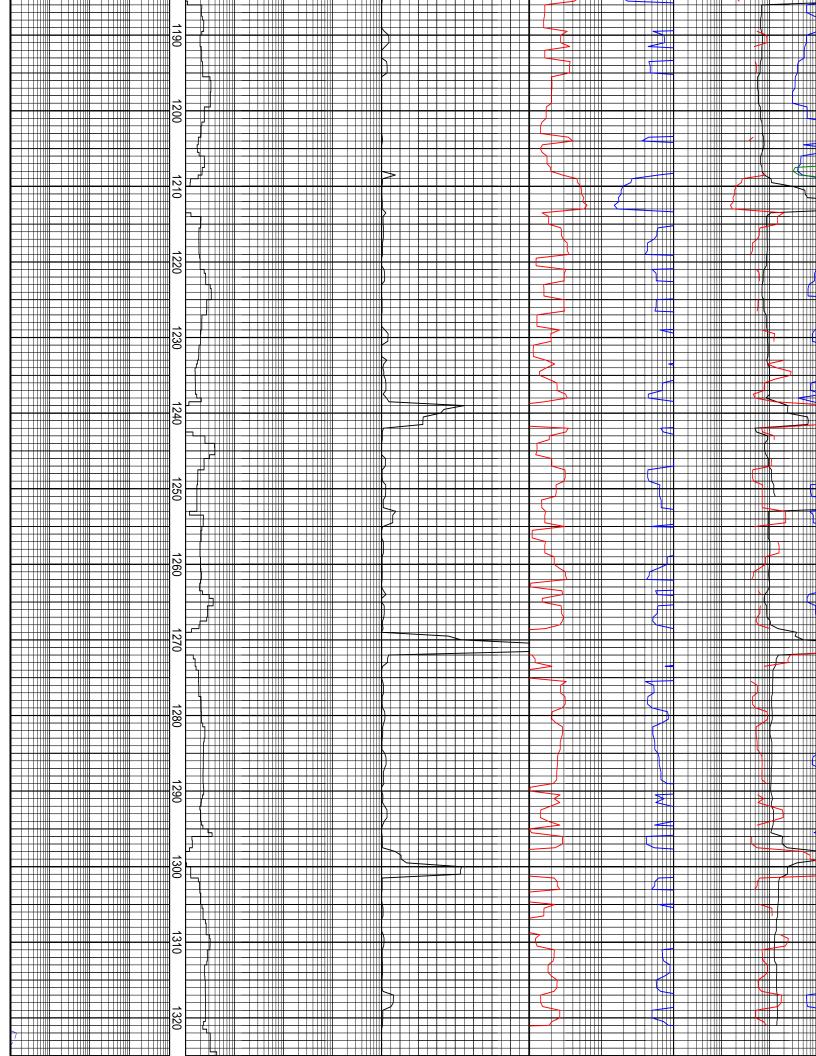
Report prepared by

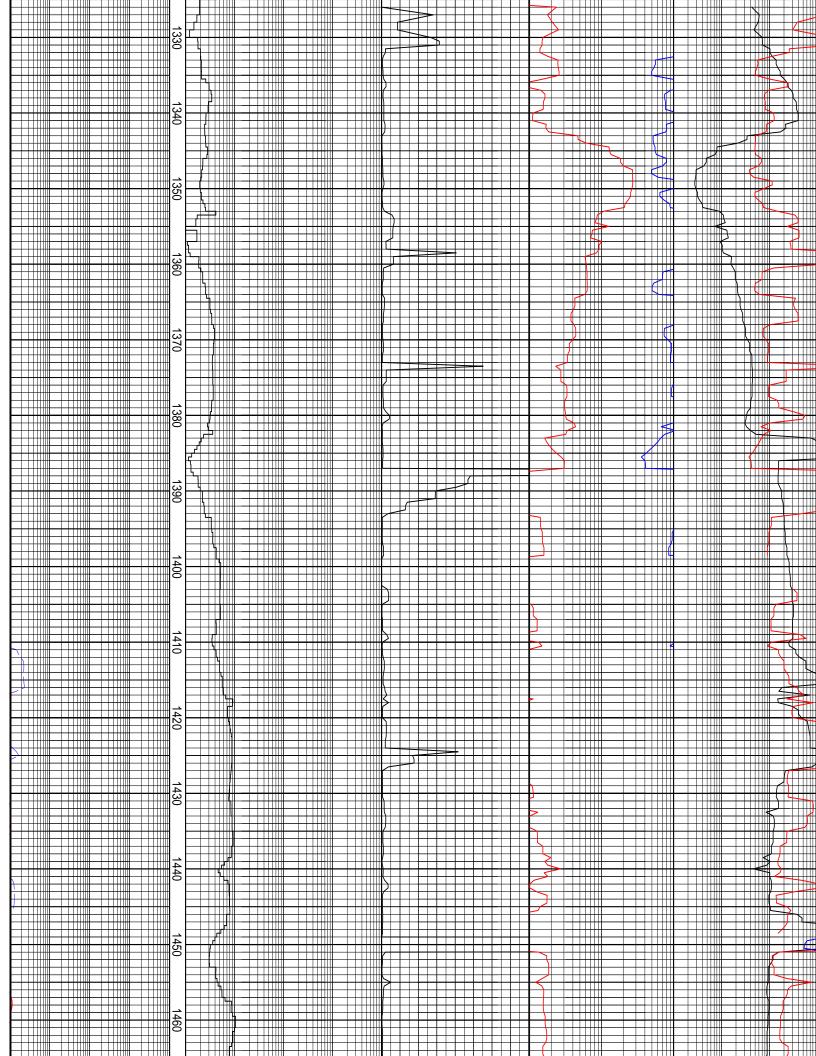
Report approved by

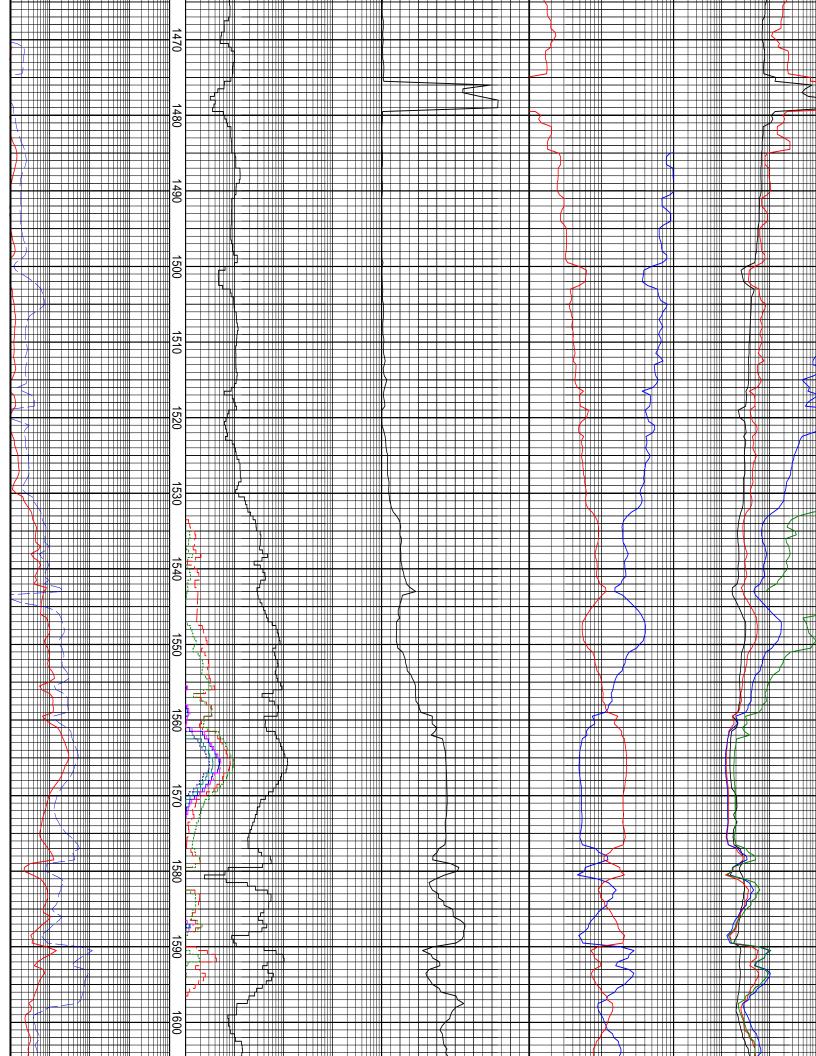
Damien Gerard Senior Reservoir Fluids Analyst Murray Macleod Laboratory Supervisor

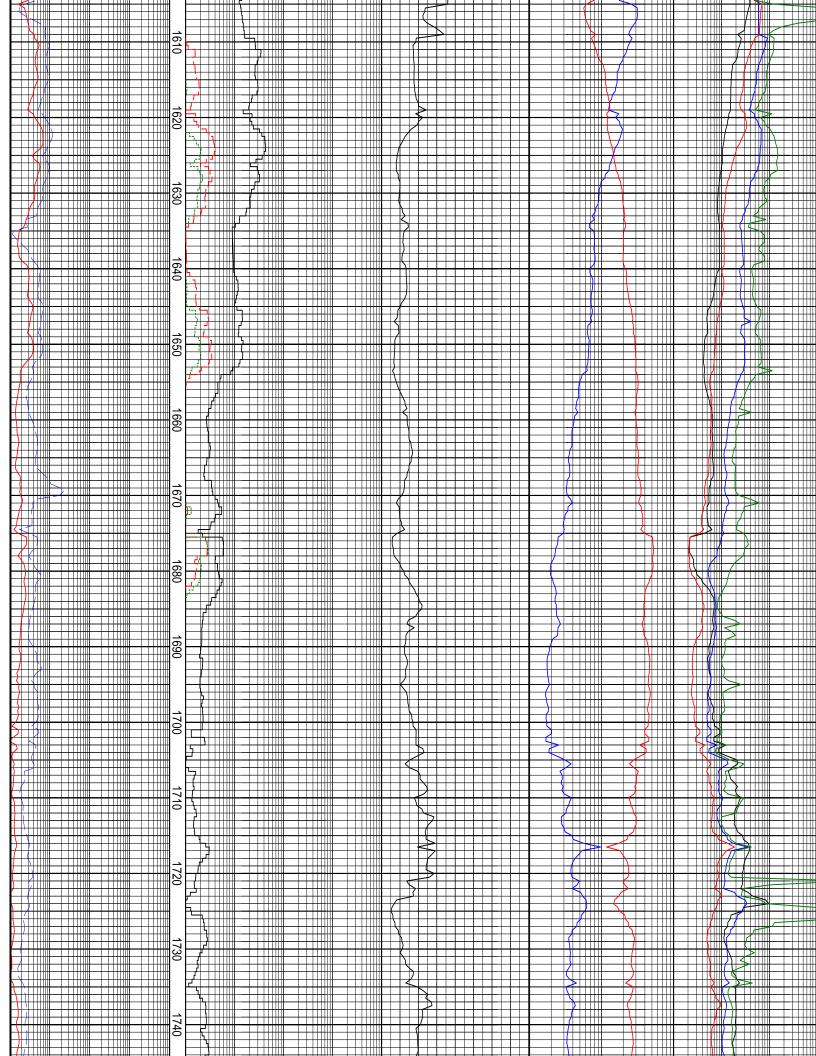
Gas Log Plot

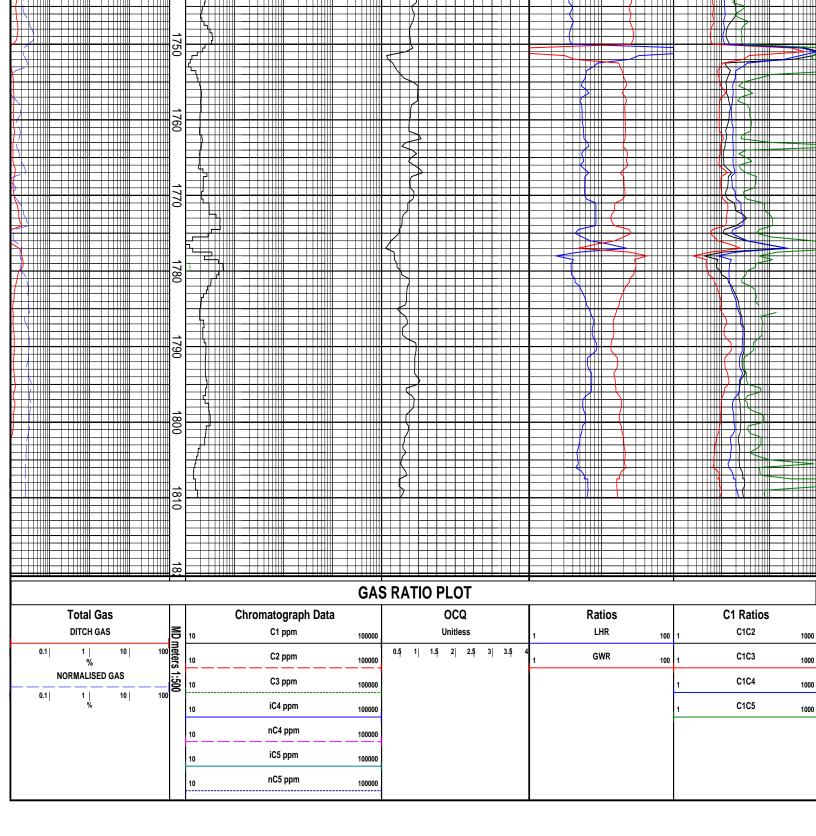

Company: 3D Oil Ltd


Well: West Seahorse-3

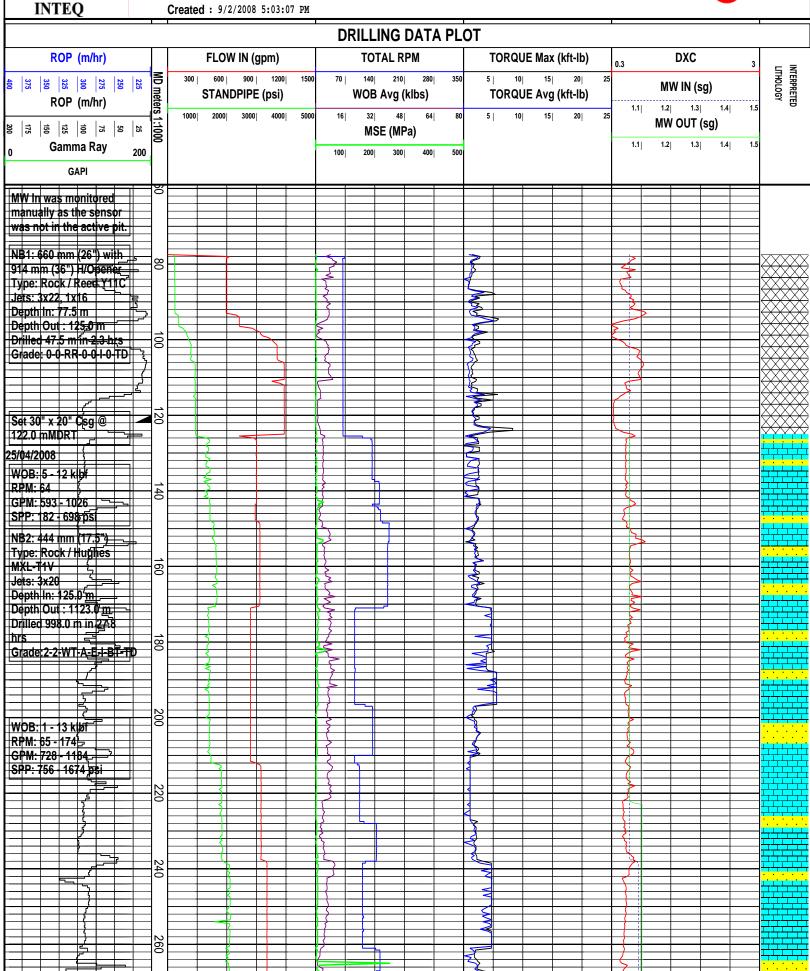

Interval: 1088.00 - 1820.38 meters

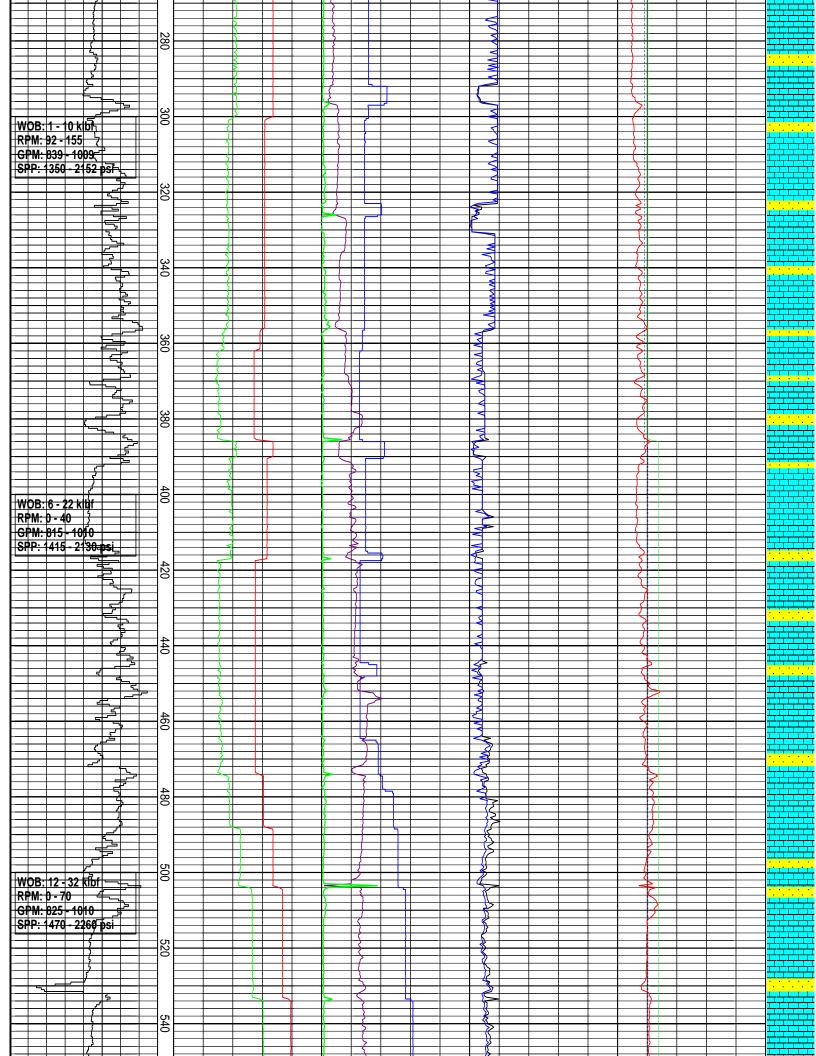


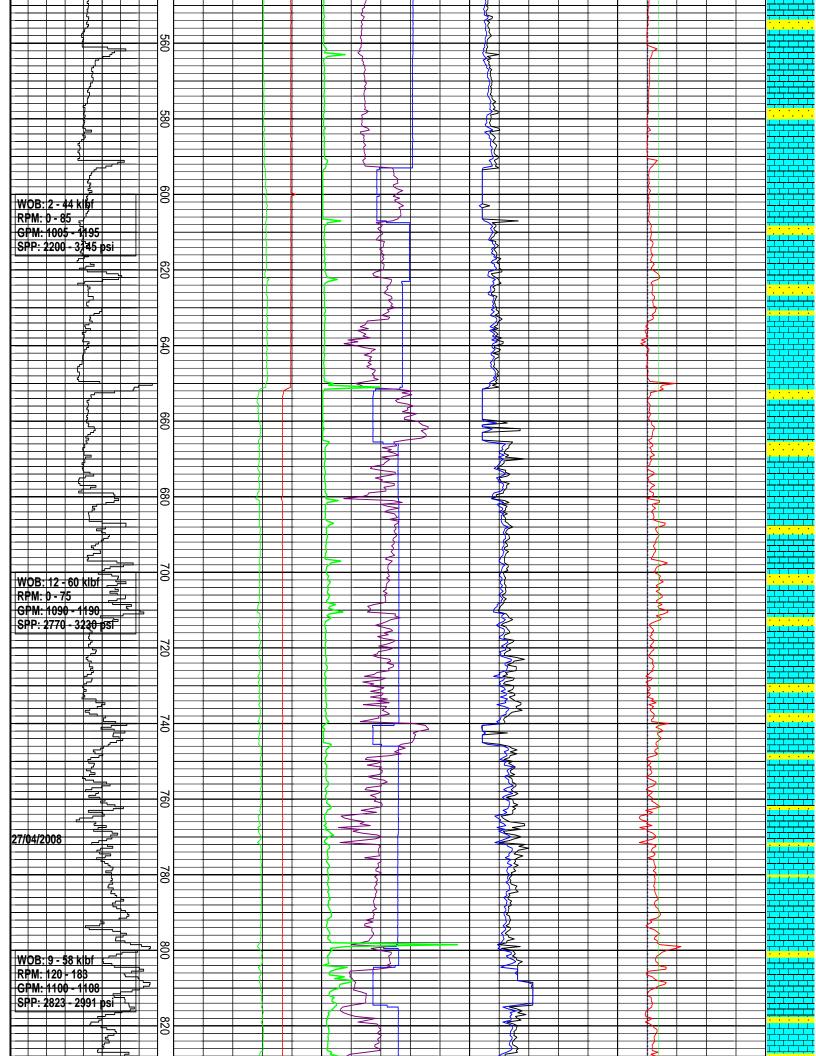

Created: 8/25/2008 11:36:05 AM

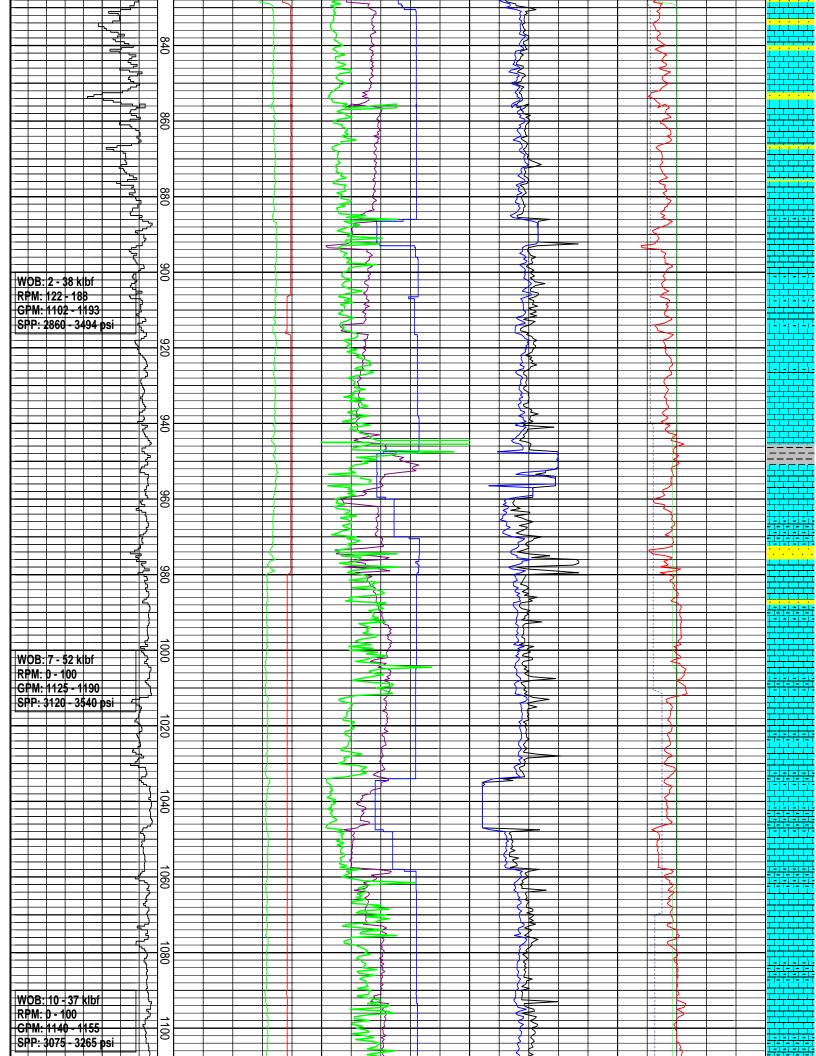


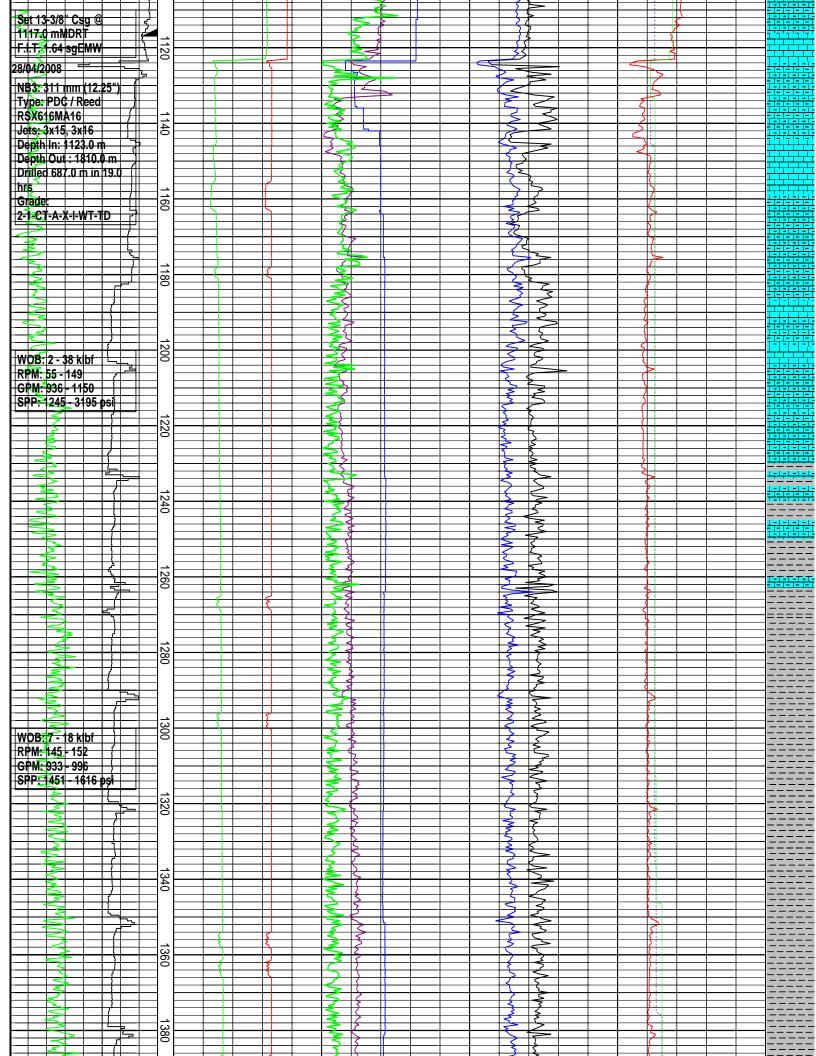
Drilling Data Plot

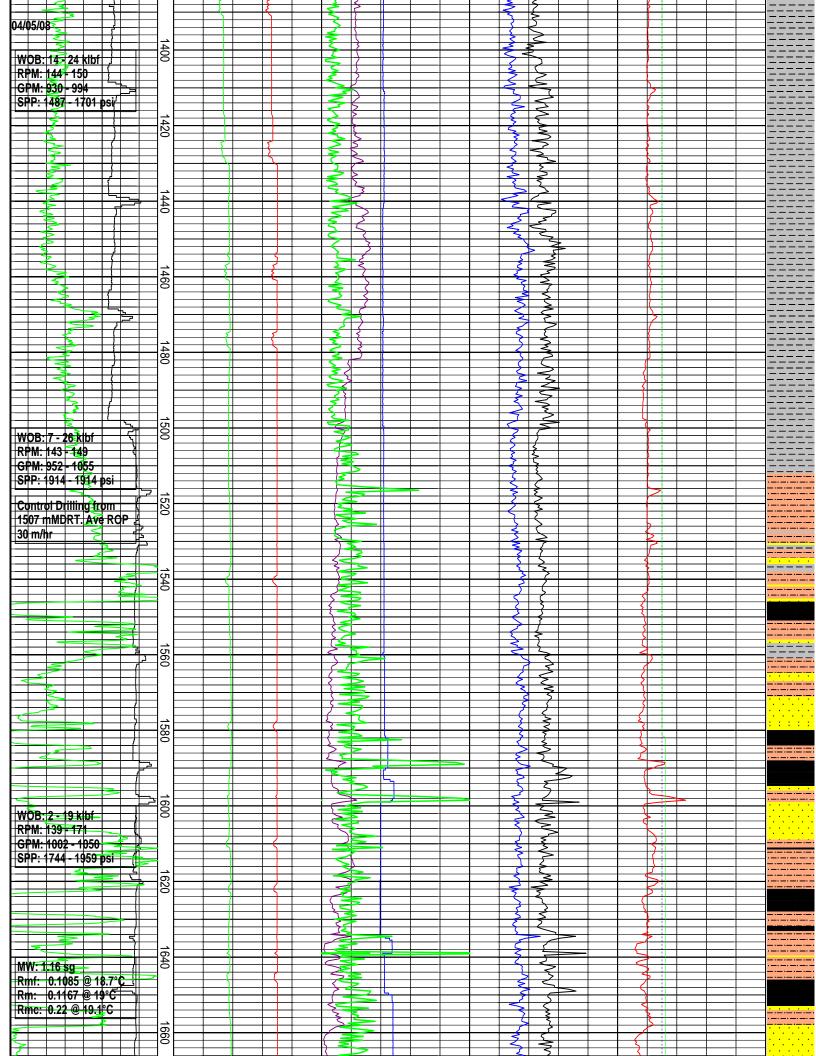


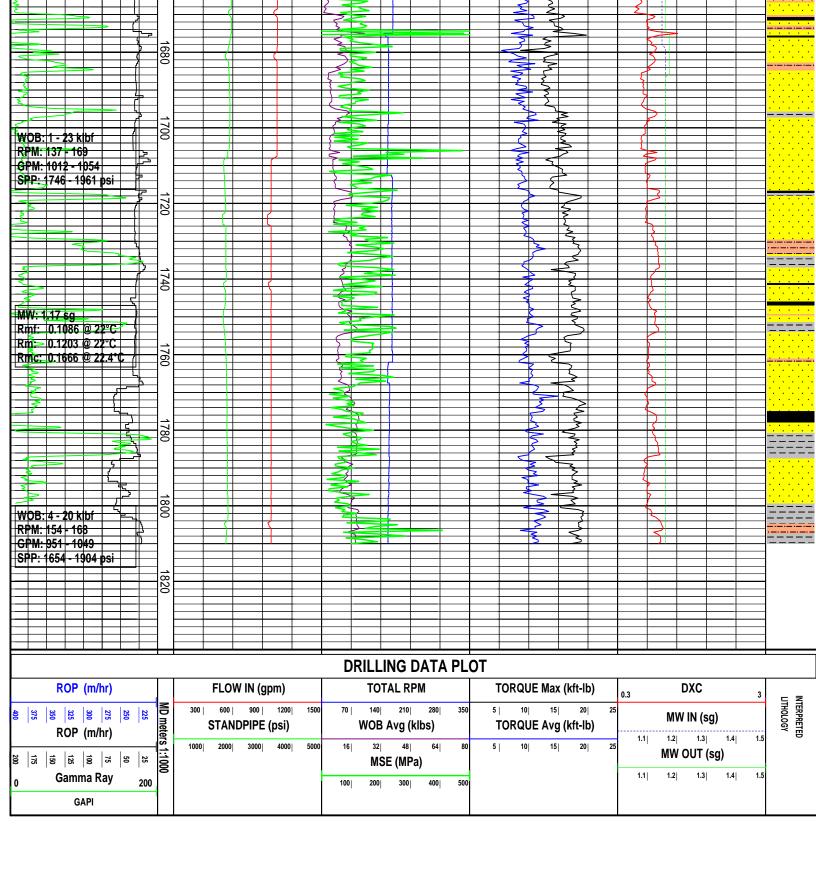

Company: 3D Oil Ltd


Well: West Seahorse-3


Interval: 59.00 - 1838.05 meters



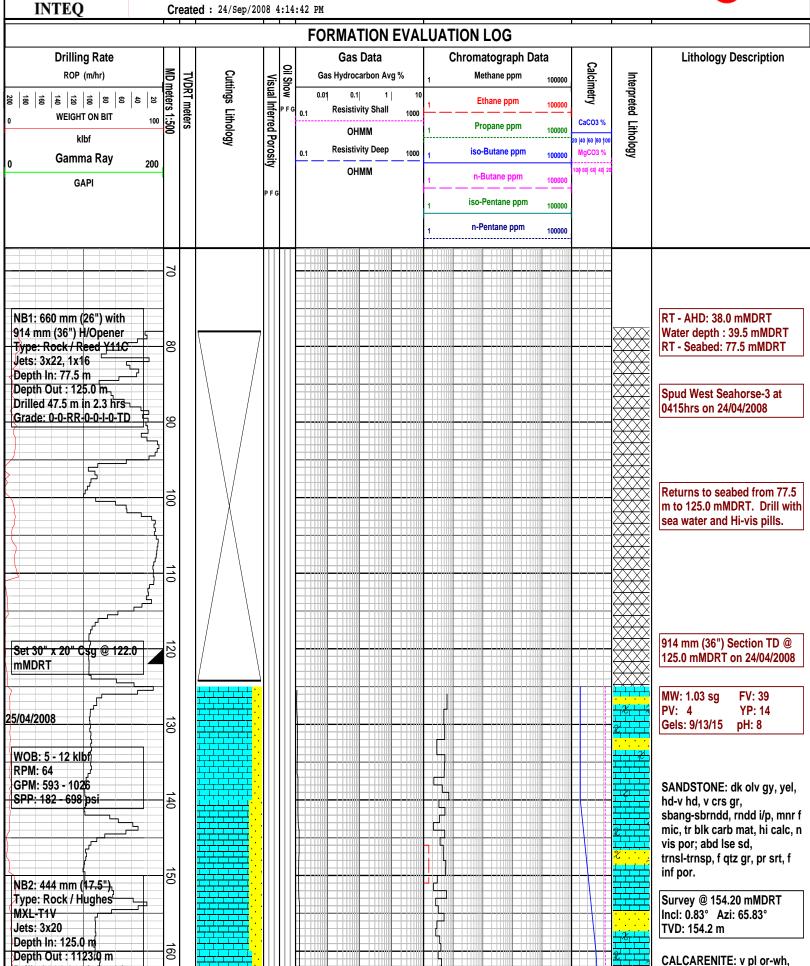


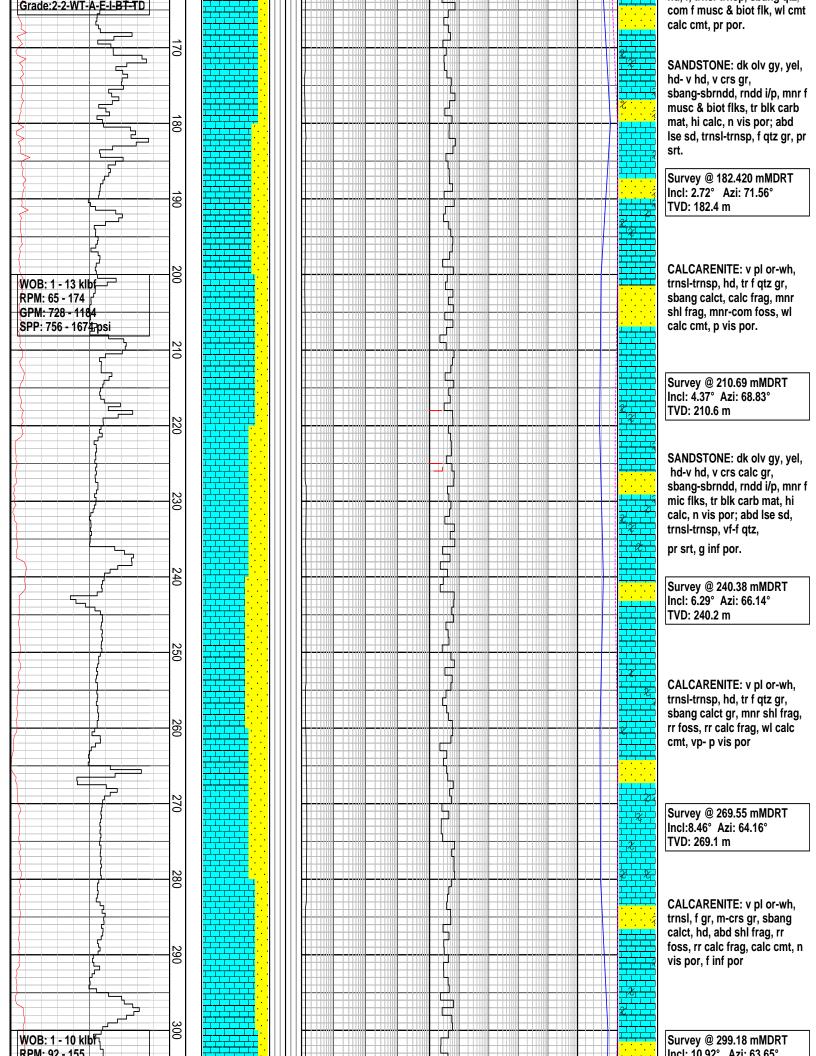


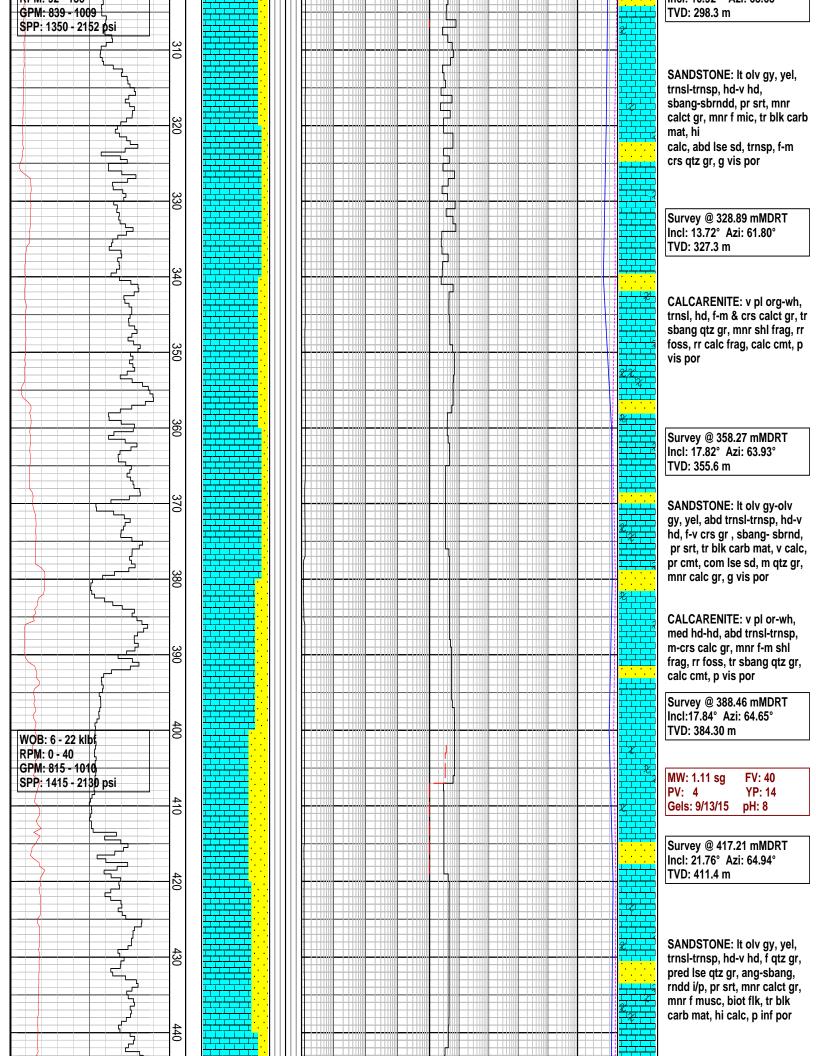
Mud Log Plot

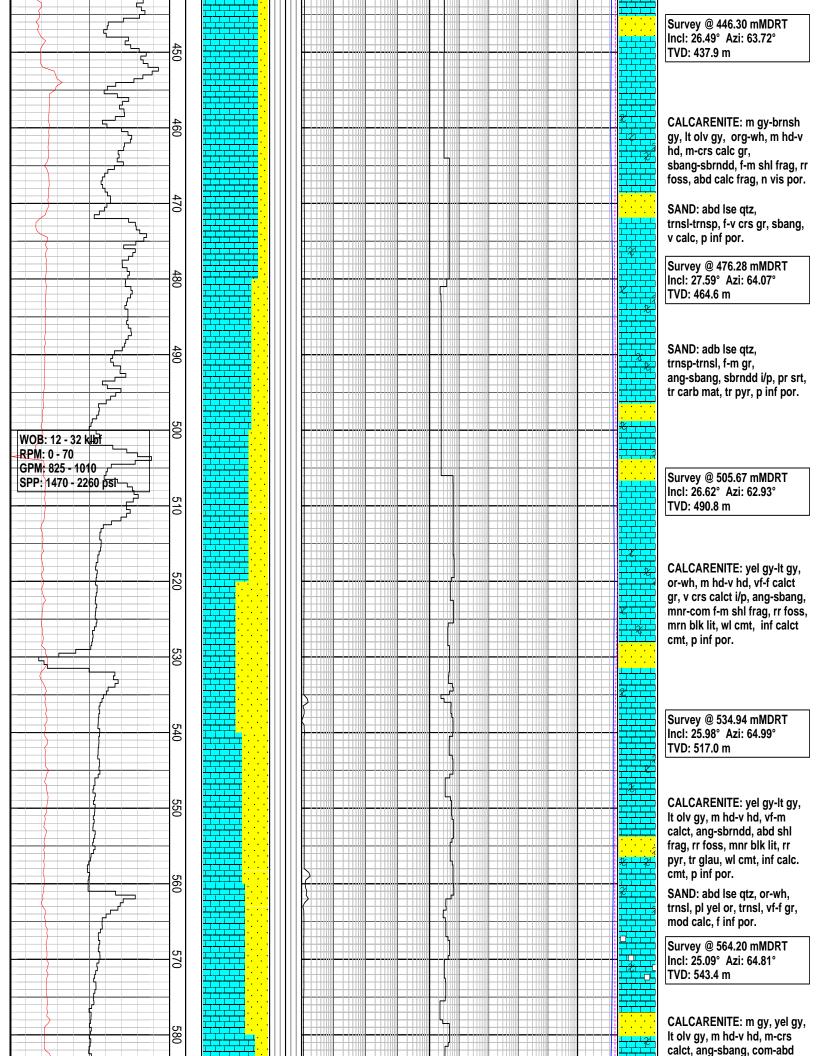
Drilled 998.0 m in 27.8 hrs

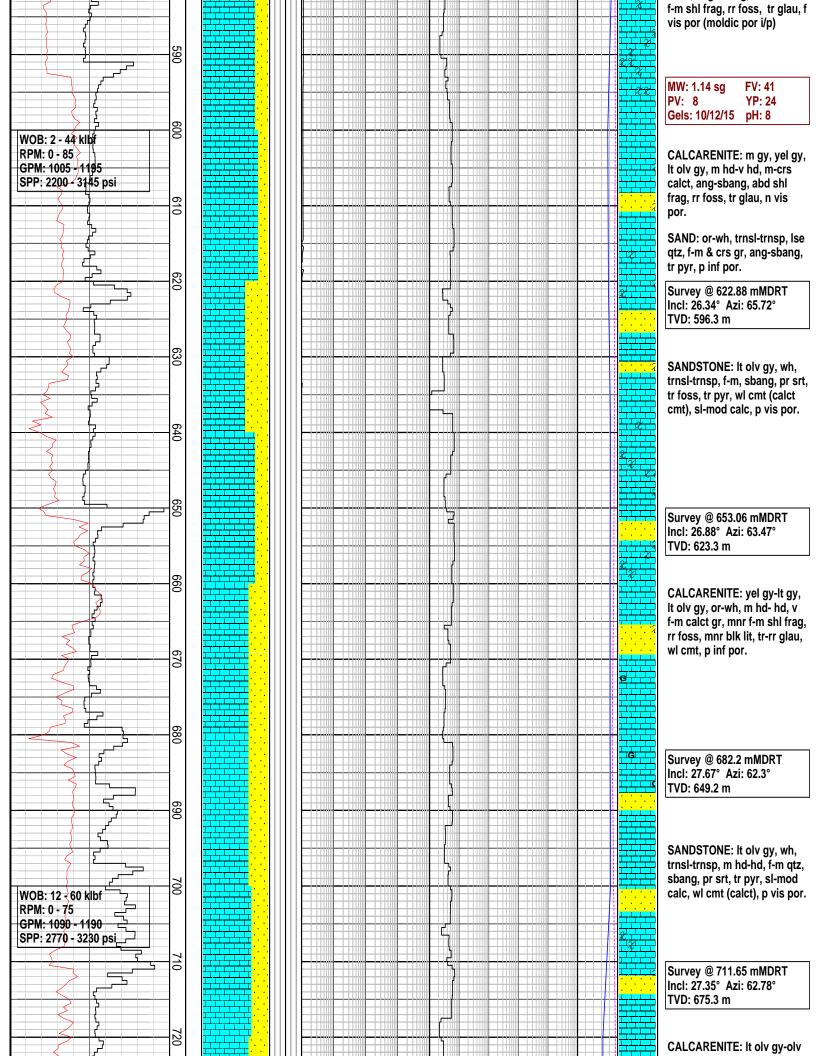
Company: 3D Oil Ltd

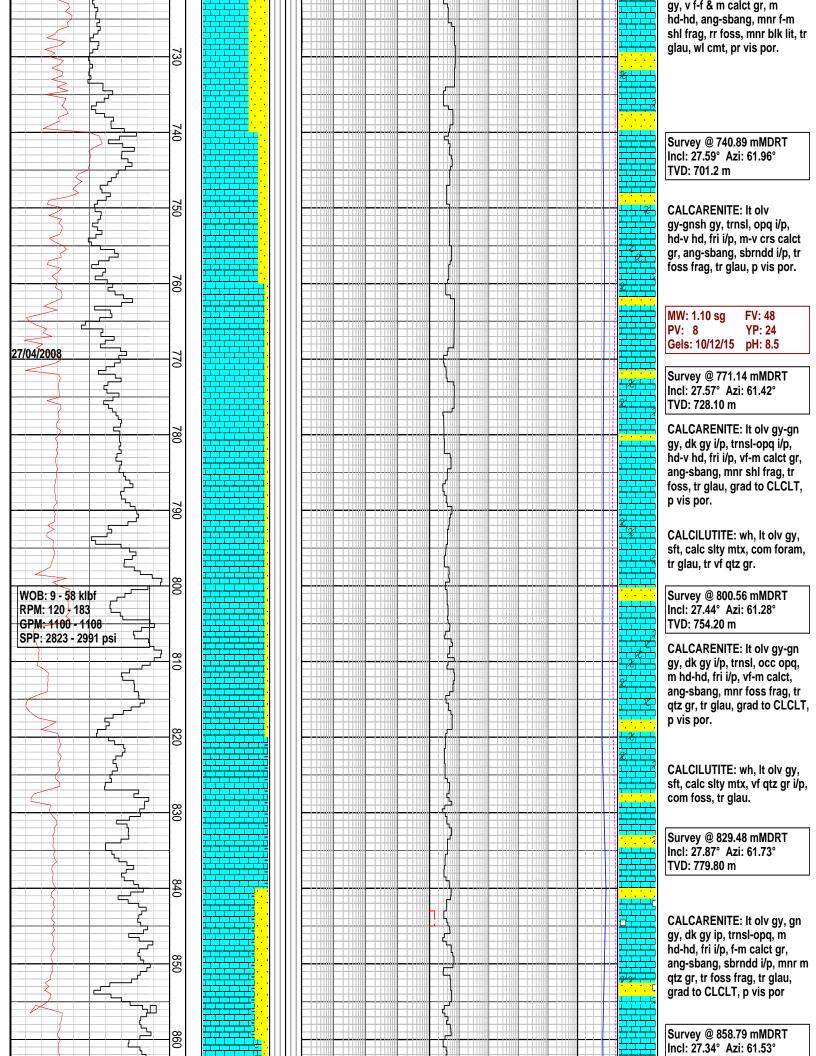

Well: West Seahorse-3

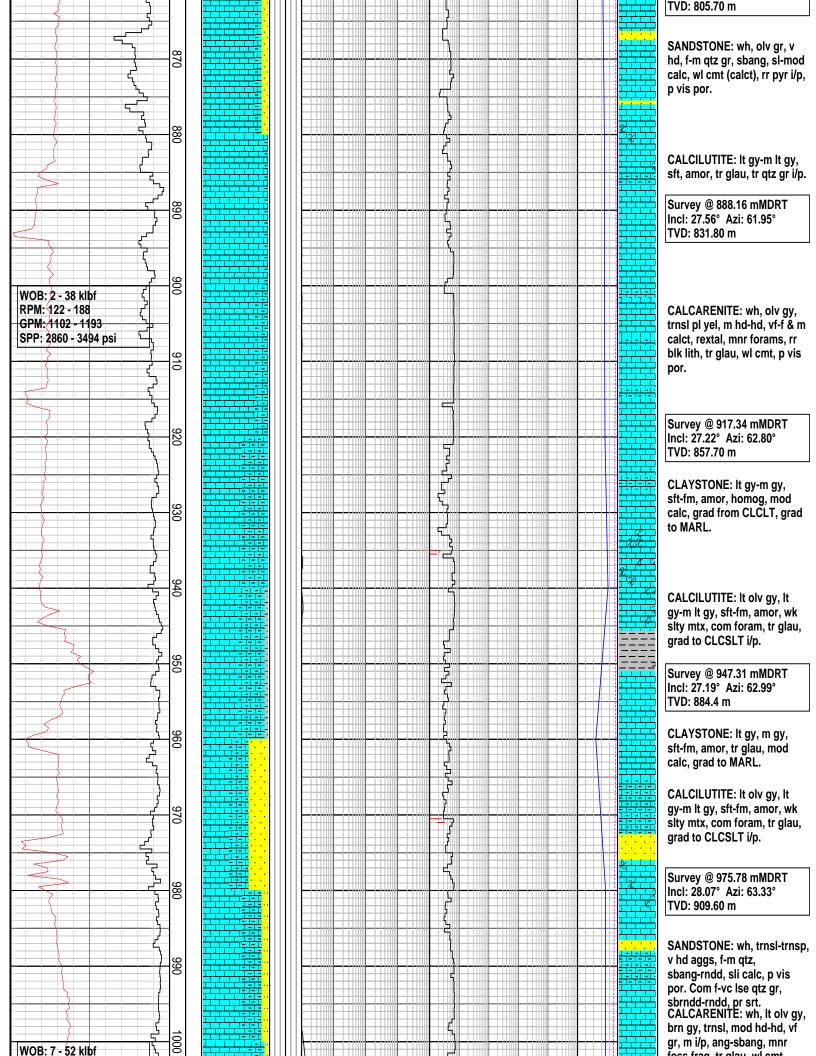

Interval: 67.00 - 1820.90 meters

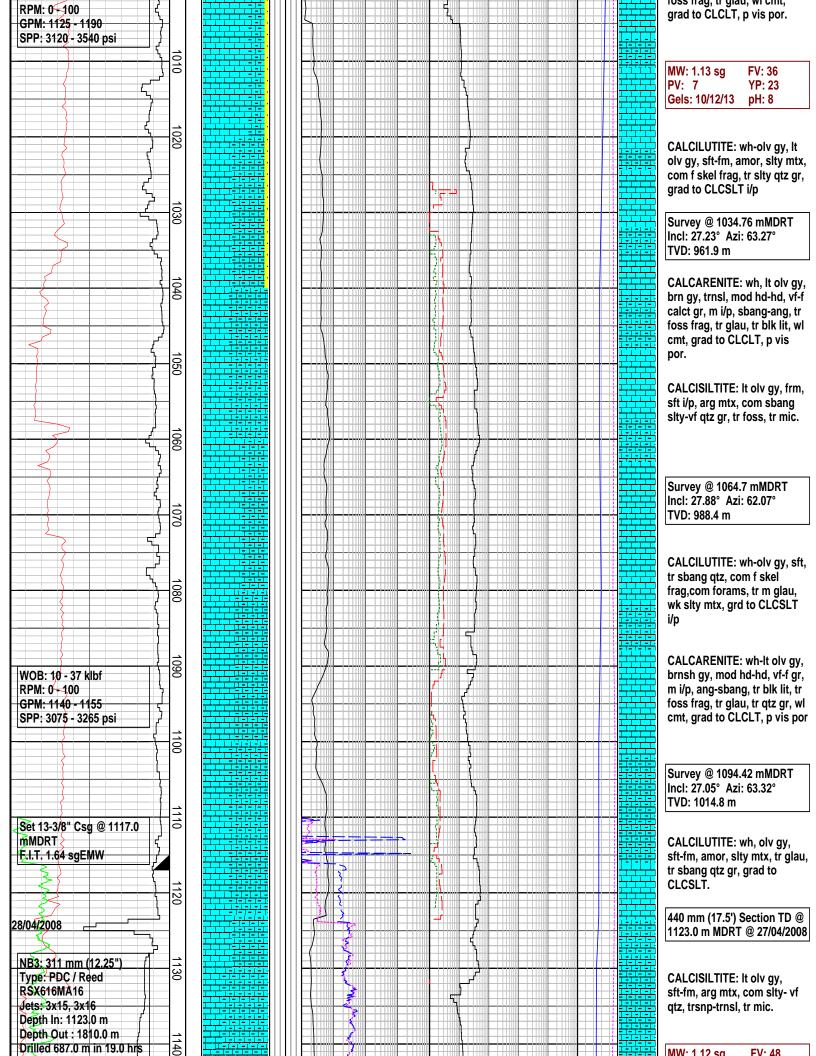


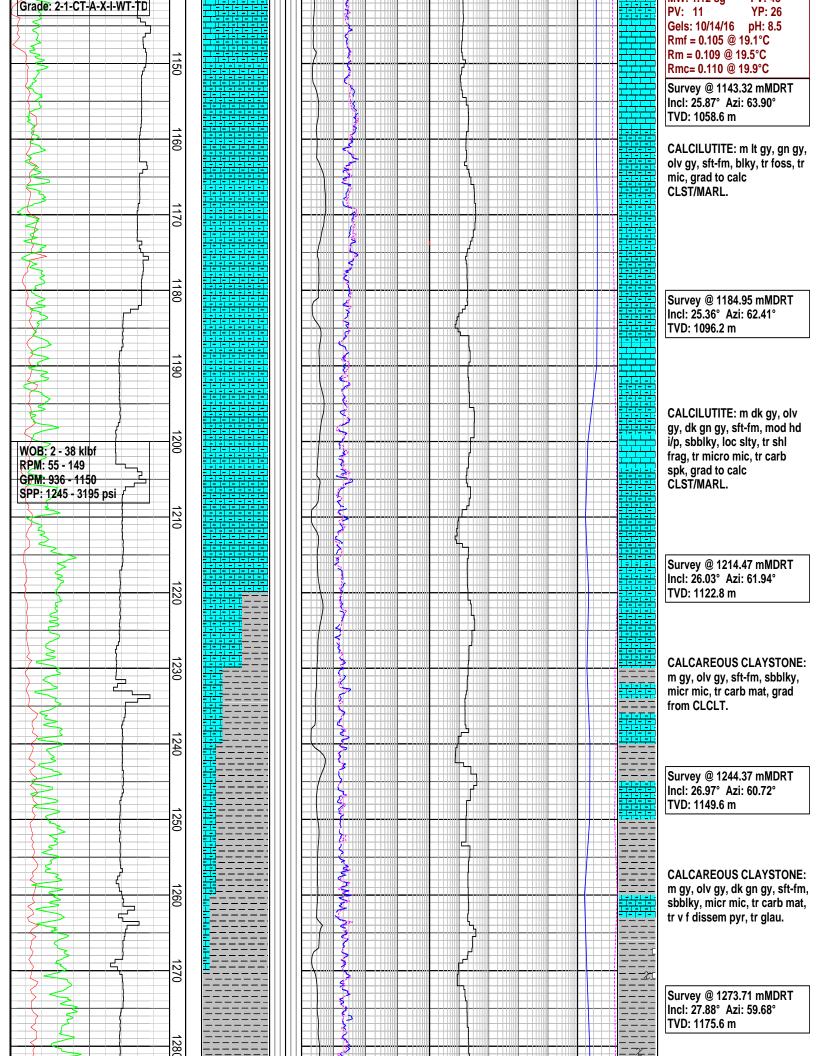

hd. f. trnsl-trnsp, sbang gtz.

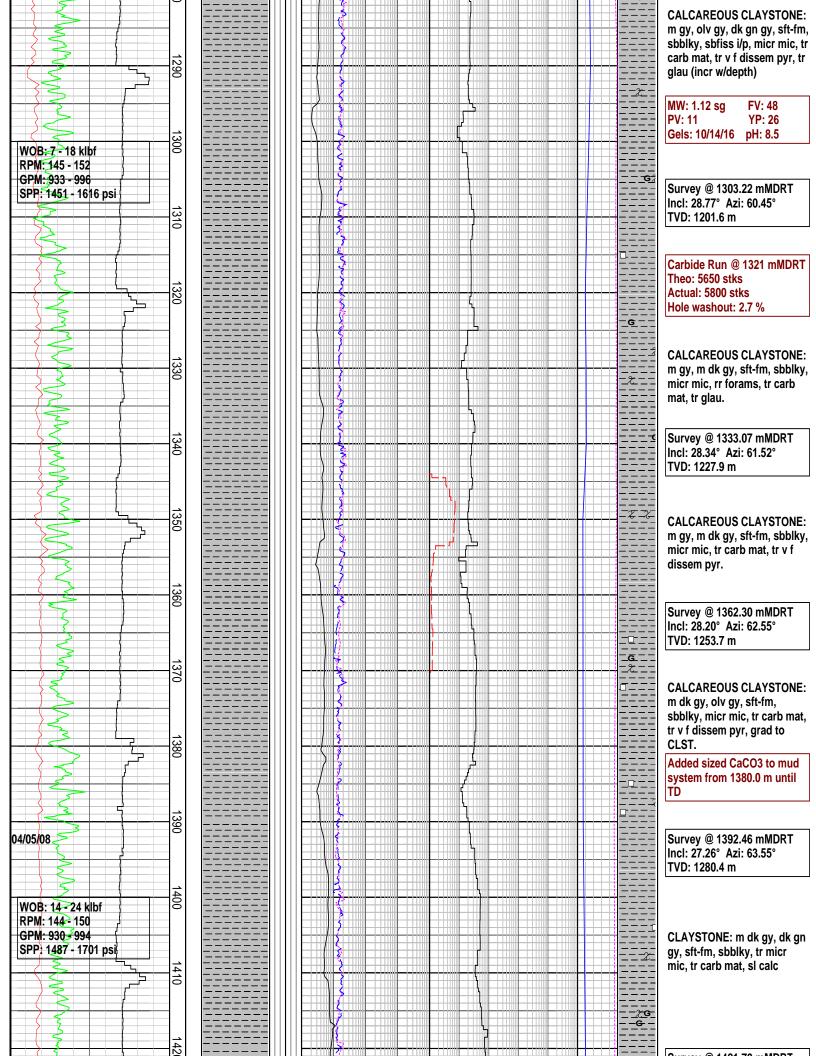

Created: 24/Sep/2008 4:14:42 PM

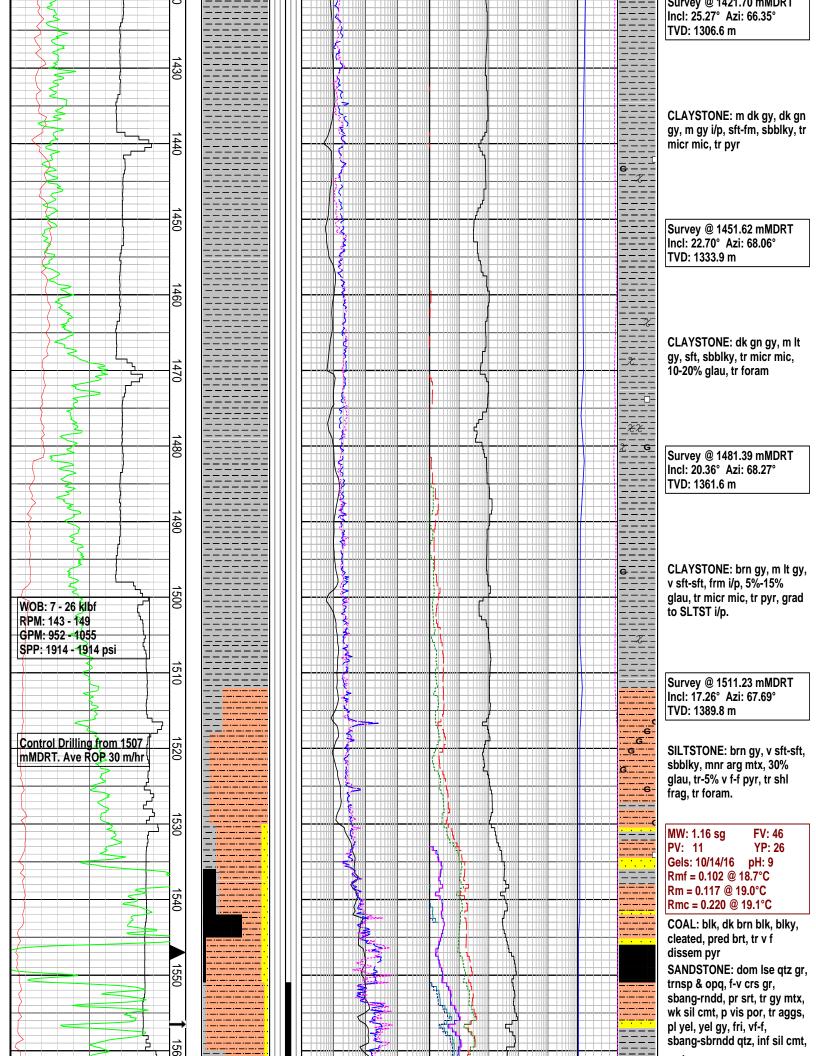


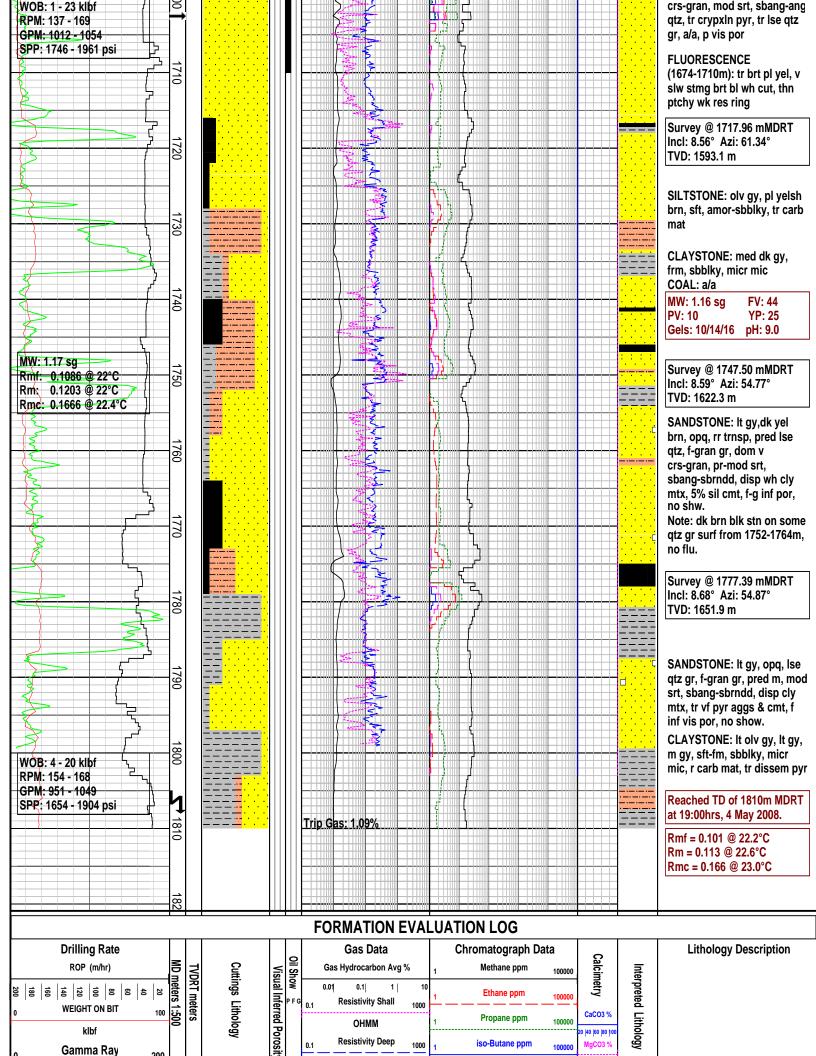












ОНММ		PFG	GAPI PFG

LWD Log Plot 1:500

_			

Well: Company: 3D Oil Limited West Seahorse-3

12.25 in. Section

West Seahorse

Rig: Field:

West Triton

State:

Victoria

Recorded Mode geoVISION* 825 Resistivity 1:500 Measured Depth

Run: Depth reference: Log measured from: Permanent datum:

Driller's Pipe Tally Rotary Table Mean Sea Level 24-Apr-2008 1810 m

West Triton

Bass Strait

West Seahorse

West Seahorse-3

Spud date: Total depth:

3D Oil Limited

Elevation G.L

Top Drive

-39.5m m

38.0m m

Elev.: 38.0 m above Perm. datum D F

E 147°37' 9.865" S 37°12' 24.942" Latitude

Longitude

See Remarks Other services: from ₽

Date logged:

2-May-08 To 5-May-08 1117.0 m To 1799.5 m

Mag dip: -68.778 deg. Mag decl: 12.844 deg.

36 in 17.5 in

0 m 125 m 1123 m

1123 m 1810 m

125 m

30 in. 13.375 in.

223 lbm/m 1017 lbm/m 0 m

0 m

125 m 1117 m

ರ

Size

Density

Casing record

Hole size

from

Bore hole record

12.25 in

Depth logged:

Rig:

Field:

Well:

08ASQ0005

E 554229.358 m

Location:

Company:

Service Order no. | N 5771044.135 m

Uniŧ

Surface equipment

Seawater PHG Sea Water

ype

Mud record from

0 3

WBM

1123 m 125 m

1810 m 1123 m 125 m

8.56 deg.

28.34 deg 28.05 deg

1123 m 125 m

Software record

0 deg. 2.71 deg.

0 deg.

0 m

1<u>25</u> m 1123 m 1810 m

Min

Borehole deviation record

Max from

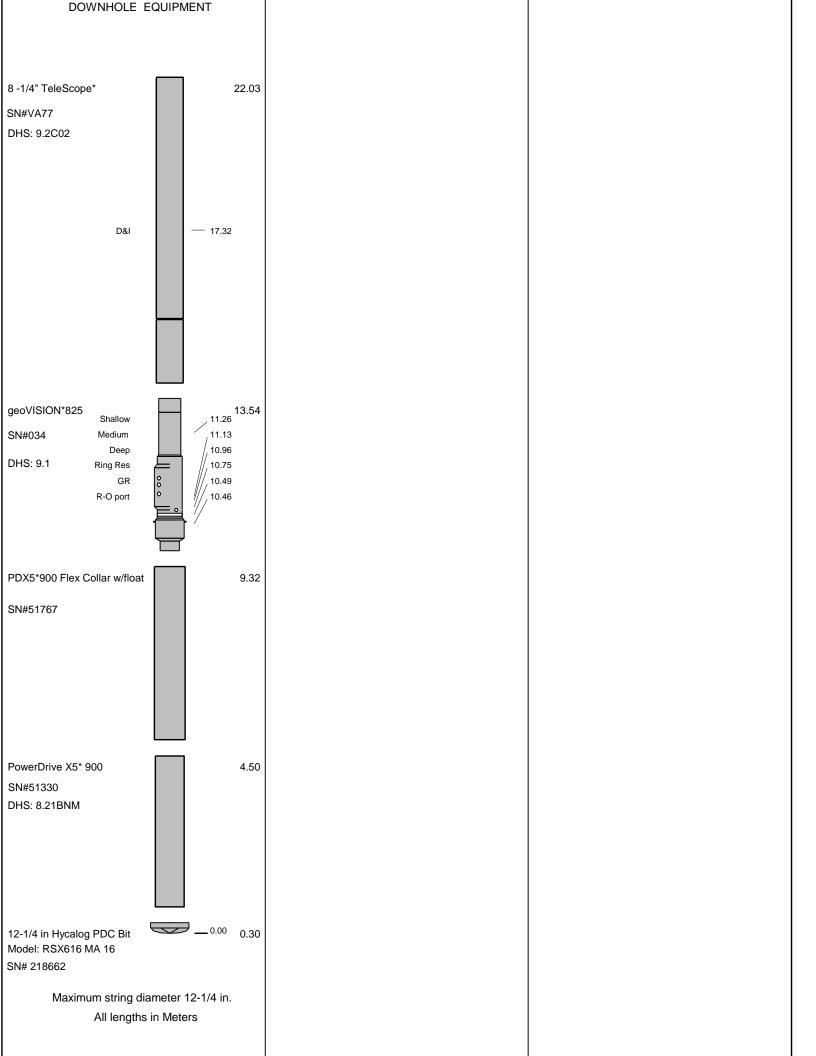
Depth system

PDA

SPM W D

MWD

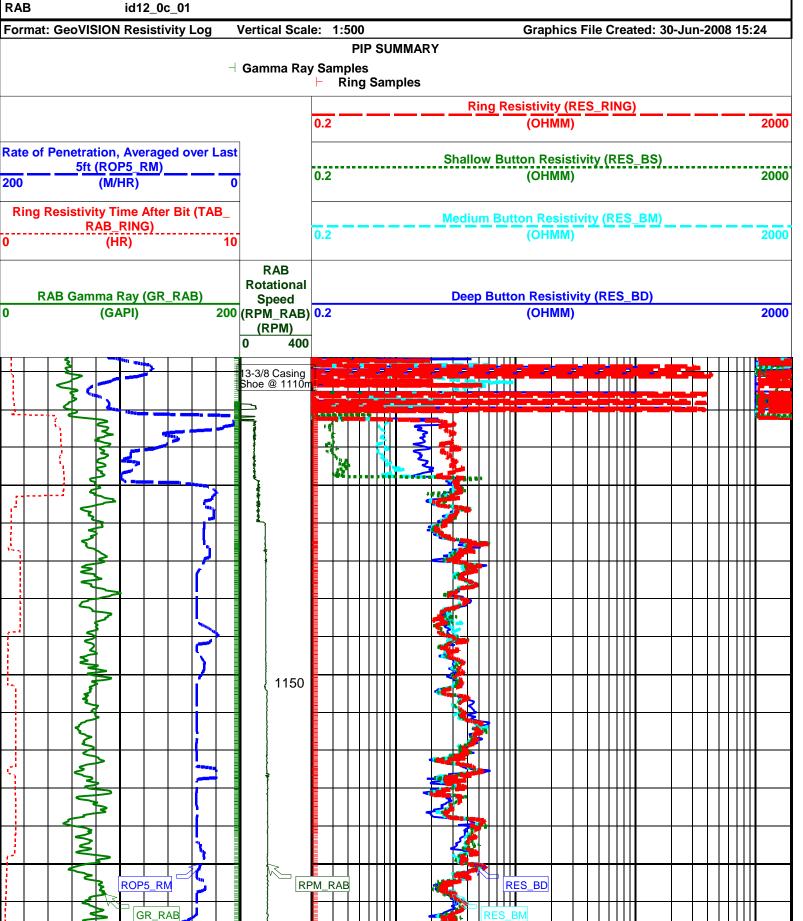
PUP V9.2C02 **GVR V9.1** HSPM13_0c_08 ID13_0c_08

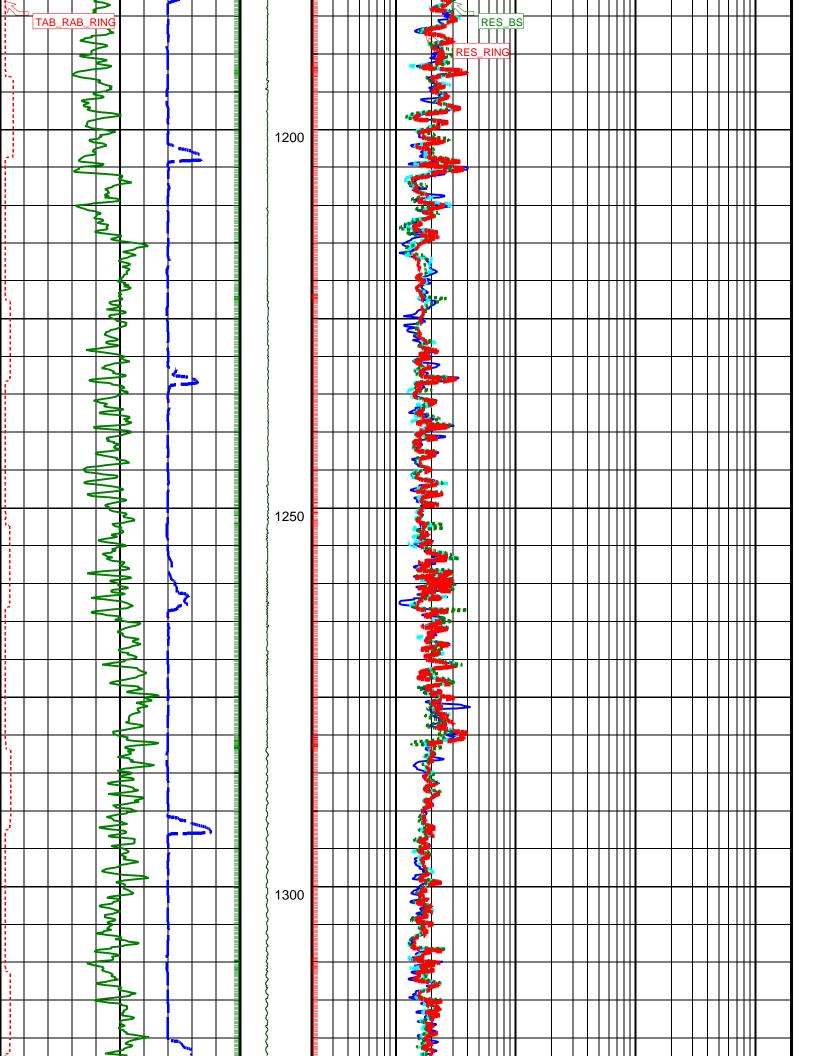

OLU_KC_0702

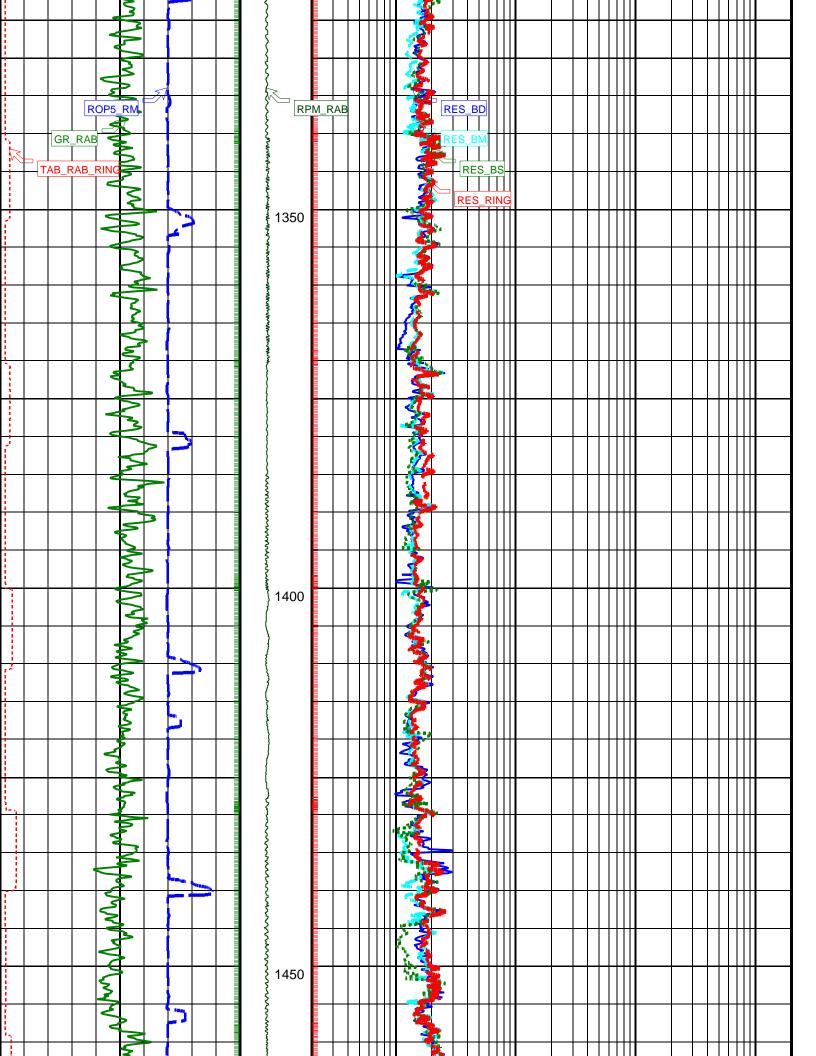
IDEAL Wis

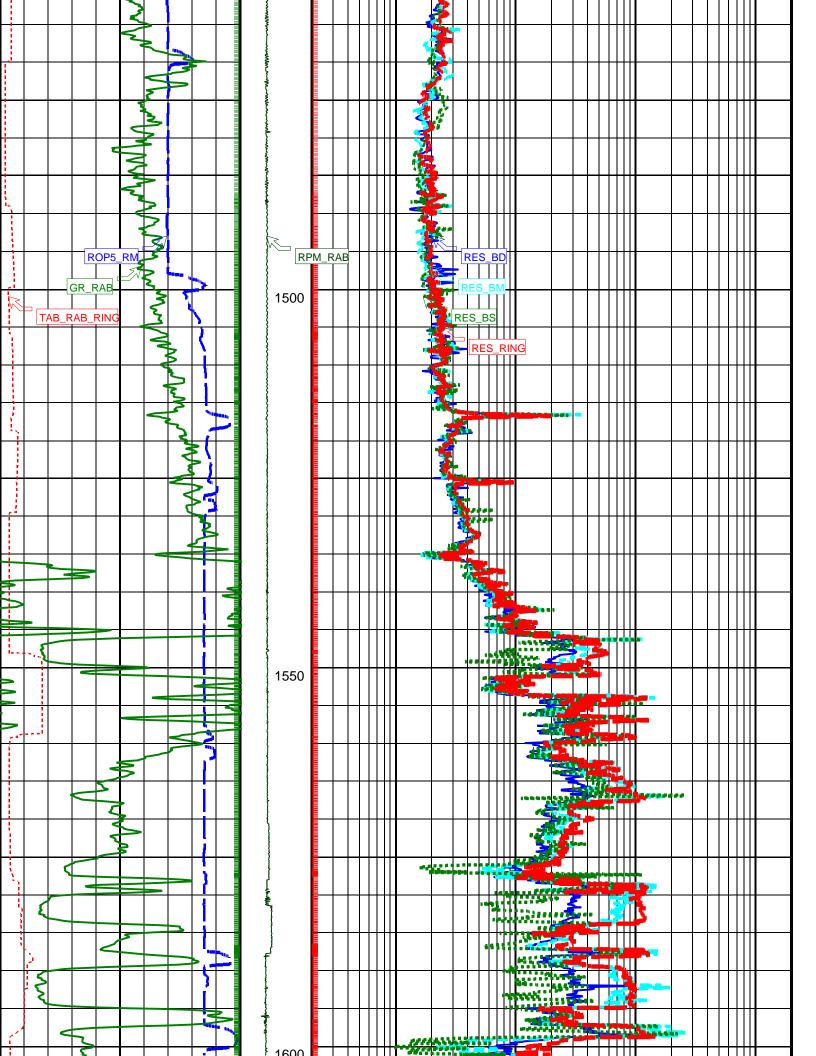
Bit Run Summary

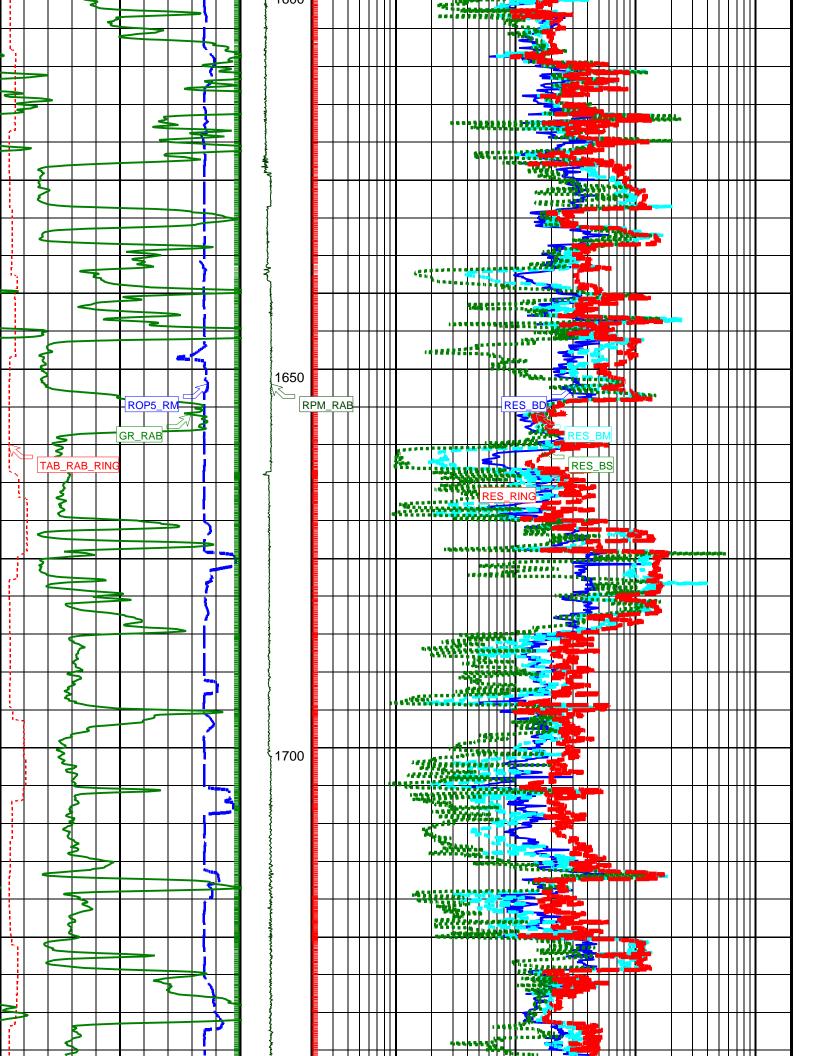
Run number	2					
Bit size ir	12.25					
Bit start depth m	1123					
Bit end depth m	1810					
Top interval logged m	1117					
Bottom interval logged m	1799.5					
Begin log: time	15:39					
Begin log: date	3-May-08					
End log: time	18:56					
End log: date	4-May-08					
Mud data						
Depth	1810					
Туре	KCL/PHPA					
Mud weight ppg	9.65					
Solids %	2.2					
Chlorides mg/L	36000					
Rm ohmm@℃	0.11@19.0					
Rmf ohmm@℃	0.10@18.7					
Rmc ohmm@℃	0.22@19.1					

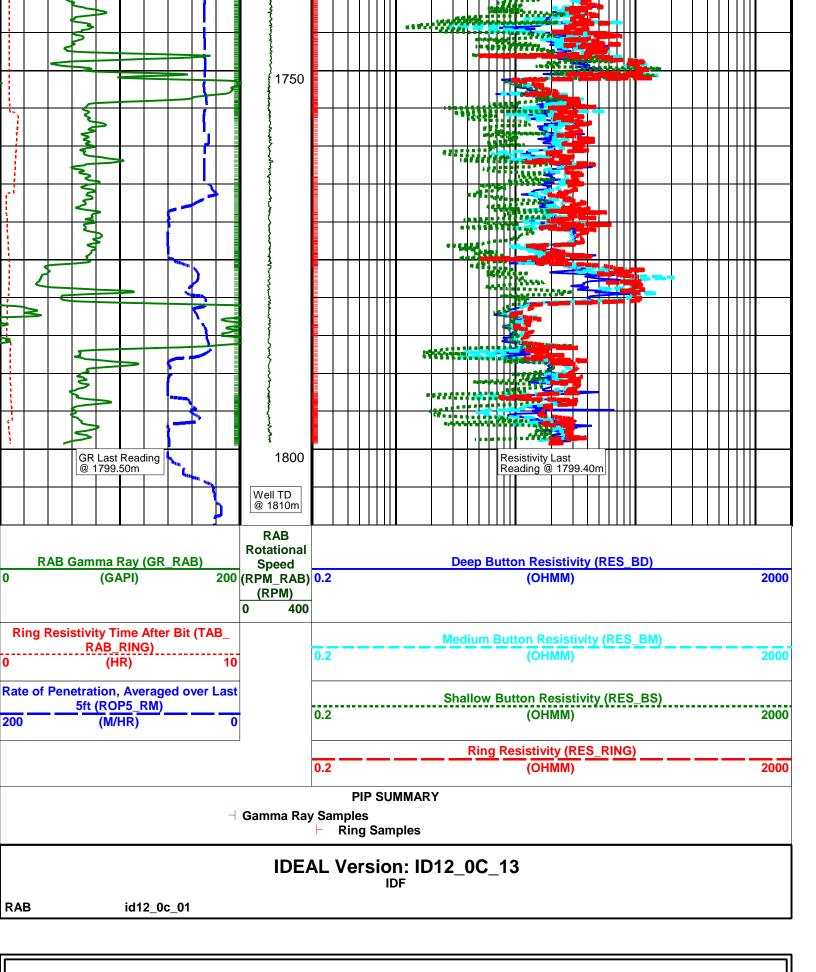

Potassium %	3.78									
Environmental data										
GR										
Mud weight ppg										
Bit size in Resistivity	12.25						+			
Resistivity										
Neutron porosity										
Hole Size in	12.25									
Mud weight ppg	9.65									
Temperature ℃	58									
Mud salinity ppm	N/A									
Formation salinity ppm	N/A									
Recording rate 1 SEC	10 (Sec)									_
Recording rate 2 SEC	5 (Sec)									
Filtering GR	3pt									
Filtering density	N/A									
Filtering Neutron	N/A						-			
Company representative	M. Ngatai									
Anadrill personnel	Jun Ikeda									
				DISCLAIM	-D					
THE USE OF AND RE AFFILIATES, PARTNE AND CONDITIONS AG USE OF THE RECOR COMPANY'S USE OF FOR ANY INFERENC	ERS, REPRESEI GREED UPON E DED-DATA; (b) AND RELIANCI	ITATIVE ETWEEI DISCLAII : UPON	S, AGENTS N SCHLUM MERS AND THE RECO	S, CONSULT BERGER AN WAIVERS RDED-DATA	TANTS AND ND THE COI OF WARRA A; AND (c) C	EMPLOYE MPANY, IN NTIES AND SUSTOMER	ES) IS SUBJ CLUDING: (i REPRESEN 'S FULL ANI	ECT TO TH a) RESTRIC ITATIONS R D SOLE RES	E TERMS TIONS ON REGARDING SPONSIBILIT	TY
OTHER SERVICES FOR RUN2	2									
Directional Surveys	_									
Directional Drilling										
Bricotional Brilling										
REMARKS: RUN NUMBER 2										
Depth is referenced to Driller's	s Pina Tally									
Deptit is referenced to Diffier s	s ripe raily.									
Run 1 was a MWD D&I run or	nly.									
geoVISION* 825 Gamma Ray	is corrected									
for mud weight, bit size, and to	ool collar size.									
KCL content of the mud was r	•									
by vol and Potassium content	of 40,000 mg/l									
(Daily Mud Report 11, 4 May 2	2008).									
(2 a)aa . topo.t ,ay 2	-000).									
										1
GR is NOT corrected for Potas	ssium content.									1
POOH due to well TD.										1
POOT due to well TD.										1
										- 1
										- 1
										- 1
										1
										- 1
										- 1
										1
	EQUIPMENT DESCRIPTION									
		-QU	ILIMF	וט ווי	- 50KI	L HOI	N			1
RUN2										
										1
										1
										- 1
										1




Variable Variable Name Description	Run Name & Value		
	Run Number		2
BHT_RM BSAL_RM BS_RM COEF_M C_WS FEXP FNUM FPHI_RM MST_RM MW_RM OBMF_RM RHOF_RM RHOM_RM RMS_RM RWA_COMP_M RWA_DEN_AD RWA_DEN_AD	General Information Bottom Hole Temperature (RM) Mud Salinity (RM) Bit Size (RM) User Defined FEXP in Clean Sand Overpressure correction to Sw and M Formation Factor Exponent(RM) Formation Factor Enumerator(RM) Formation Factor Porosity Source (RM) Mud Sample temperature (RM) Mud Weight (RM) Oil Based Mud (RM) Mud Filtrate Density (RM) Matrix density (RM) Resistivity of Mud Sample (RM) Rwa computation model Rwa Density Input ADN Rwa Density Input CDN	DEGC PPK IN DEGC LB/G G/C3 G/C3 OHMM	56.000 0.000 12.250 1.650 1.000 2.000 1.000 XPLOT 19.000 9.600 NO 1.000 2.710 0.167
RWA_DEN_IN RWA_FORM_M RWA_RES_IN RWS_RM SHT_RM TD_RM TWS_RM VF_ILLI VF_KAOL VF_MONT XPDM_RM XPNM_RM	Rwa Density Input Rwa computation formation model Rwa computation resistivity input Resistivity of Connate Water (RM) Ground Level Temperature (Mud-Line When Offshore) (RM) Total Measured Depth (RM) Temperature of Connate Water (RM) Fraction of illite in shales Fraction of kaolinite in shales Fraction of montmorillonite in shales Cross plot density porosity multiplier Cross plot neutron porosity multiplier	OHMM DEGC M DEGC	1.000 10.000 1810.000 23.889 0.500 0.500 0.000 0.675 0.325
RAB/BTN_SLV_SIZE/PARAMETER RAB/STAB_SIZE/PARAMETER BDBHCA BDBHCB BHA_COEF_VER BITBHCA BITBHCB BIT_K_FACTOR BMBHCA BMBHCB BSBHCA BSBHCB BUT_KIMP_A BUT_KIMP_B DBUTTON_K_FACTO DHS_VERSION GR_BHC_TOOLSIZE HI_CSDEPTH_OUT HI_DLIS_OUT	RAB: IN RAB: Button Sleeve Diameter RAB: Stabilizer Diameter RAB: Button Deep Borehole A Factor RAB: Button Deep Borehole B Factor RAB: BHA Coef Generator Version RAB: Bit A Borehole Factor RAB: Bit B Borehole Factor RAB: Bit K Factor RAB: Bit K Factor RAB: Button Medium Borehole A Factor RAB: Button Medium Borehole B Factor RAB: Button Shallow Borehole A Factor RAB: Button Shallow Borehole B Factor RAB: Button Impedance Coeff A RAB: Button Impedance Coeff B RAB: Button Deep K factor RAB: DownHole Software Version RAB: Gamma-Ray Borehole Coeff 1 RAB: Allow Hi-Resolution CS_DEPTH Image Data Output RAB: Allow Hi-Resolution DLIS Image Data Output	IN IN 	11.875 12.25 -0.035 -0.019 80012.000 0.101 -0.074 14.024 0.006 -0.020 -0.020 -0.036 0.002 0.002 0.003 9.100 8.250 NO
HI_RIVER_OUT IMAGE_MAX_GR IMAGE_MAX_RES IMAGE_MIN_GR IMAGE_MIN_RES JSD_RAB KPER MAG_DECL_RAB MAG_INCL_RAB MBUTTON K FACTO	RAB: Allow Hi-Resolution River for Image Data Output RAB: GR Image Maximum Scale Value RAB: Image Maximum Resistivity Value RAB: GR Image Minimum Scale Value RAB: Image Minimum Resistivity Value RAB Acquisition start date Potassium Concentration (RM) RAB: Magnetic Declination RAB: Magnetic Dip RAB: Button Medium K Factor	GAPI OHMM GAPI OHMM OHMM DEG DEG	NO 120.000 100.000 20.000 1.000 0.000 12.840 -68.780 0.004
OBM ORIENTATION_RM RABBDA0 RABBDA1 RABBDA2 RABBDA3 RABBDA4 RABBDA5 RABBDMIN RABBITA0 RABBITA1 RABBITA3 RABBITA3 RABBITA3 RABBITA4 RABBITA4 RABBITA7 RABBITA7 RABBITA7 RABBITA7 RABBITA7 RABBMA0 RABBMA1 RABBMA2 RABBMA2 RABBMA3 RABBMA4 RABBMA5 RABBMA4 RABBMA5 RABBMA1 RABBMA6 RABBMA1 RABBMA7 RABBMA7 RABBMA8 RABBMA8 RABBMA8 RABBMA8 RABBMA8 RABBMA9 RABBSA0 RABBSA0	RAB: Oil base Mud Rab Image Orientation RAB: Button Deep AO Coeff RAB: Button Deep A1 Coeff RAB: Button Deep A2 Coeff RAB: Button Deep A3 Coeff RAB: Button Deep A4 Coeff RAB: Button Deep A5 Coeff RAB: Button Deep A6 Coeff RAB: Button Deep Minimum Value RAB: Bit A0 Coeff RAB: Bit A1 Coeff RAB: Bit A2 Coeff RAB: Bit A3 Coeff RAB: Bit A3 Coeff RAB: Bit A3 Coeff RAB: Bit A6 Coeff RAB: Bit A7 Coeff RAB: Bit A7 Coeff RAB: Bit A7 Coeff RAB: Bit A7 Coeff RAB: Bit A7 Coeff RAB: Bit Minimum Value RAB: Button Medium A1 Coeff RAB: Button Medium A2 Coeff RAB: Button Medium A3 Coeff RAB: Button Medium A4 Coeff RAB: Button Medium A4 Coeff RAB: Button Medium A5 Coeff RAB: Button Medium A6 Coeff RAB: Button Medium A7 Coeff RAB: Button Medium A7 Coeff RAB: Button Medium Minimum Value RAB: Button Medium Minimum Value RAB: Button Shallow A1 Coeff RAB: Button Shallow A1 Coeff		NO TCHH -0.122 0.010 -0.050 0.010 -0.001 0.000 0.038 3.851 -10.910 27.436 -30.307 16.137 -3.339 22.440 -0.121 0.107 -0.045 0.009 -0.001 0.001


RABBSA3	RAB: Button Shallow A3 Coeff		0.048
RABBSA4	RAB: Button Shallow A4 Coeff		-0.001
RABBSA5	RAB: Button Shallow A5 Coeff		0.000
RABBSMIN	RAB: Button Shallow Minimum Value		0.055
RABDHS	RAB Down Hole Software		4.000
RABEC	RAB: Resistivity Env-Cor		YES
RABRNGAO	RAB: RING A0 Coeff		-0.119
RABRNGA1 RABRNGA2	RAB: RING Al Coeff RAB: RING A2 Coeff		0.116 -0.051
RABRNGA3	RAB: RING A3 Coeff		0.010
RABRNGA4	RAB: RING A4 Coeff		-0.001
RABRNGA5	RAB: RING A5 Coeff		0.000
RABRNGMIN	RAB: Ring Minimum Value		1.150
RAB_BIT_ECAL	Bit Resistivity for ECAL_RAB?		YES
RAB_BIT_INVERSI	Input Bit Resistivity for Inversion? (Recommended at the bit)		YES
RAB_CALIPER_CAL	Compute ECAL_RAB?		иo
RAB_DATA_FIX	RAB: Create A Corrected RAB Time Data File		ΝO
RAB_DATA_LTB	RAB: Create An RAB LTB Data File		NO
RAB_DEEPBTN_ECA	Deep Button Resistivity for ECAL_RAB?		YES
RAB_DEEPBTN_INV RAB_INVERSION	Input Deep Button Resistivity for Inversion? Perform Rt Inversion?		YES NO
RAB_INVERSION_B	RAB Bit Sensor Weight for Inversion[0,1]		1.000
RAB_INVERSION_B	Ending Depth for GR Cutoff in Zonel (default through the whole well)	М	30480.000
RAB_INVERSION_B	Ending Depth of Zone10	М	-304.571
RAB_INVERSION_B	Ending Depth of Zone2	M	-304.571
RAB_INVERSION_B	Ending Depth of Zone3	M	-304.571
RAB_INVERSION_B	Ending Depth of Zone4	M	-304.571
RAB_INVERSION_B	Ending Depth of Zone5	M	-304.571
RAB_INVERSION_B	Ending Depth of Zone6	M	-304.571
RAB_INVERSION_B	Ending Depth of Zone?	M	-304.571 -304.571
RAB_INVERSION_B RAB_INVERSION_B	Ending Depth of Zone8 Ending Depth of Zone9	M M	-304.571 -304.571
RAB_INVERSION_B	Continuity Multiplier[0,1]		0.500
RAB_INVERSION_D	RAB Deep Button Sensor Weight for Inversion[0,1]		1.000
RAB_INVERSION_D	RAB inversion for Dh?		YES
RAB_INVERSION_D	RAB inversion for Di?		YES
RAB_INVERSION_G	GR Cutoff for Shale Formation		75.0 0 0
RAB_INVERSION_G	GR Cutoff for Shale Formation in Zonel(default through the whole well)	GAPI	75.0 0 0
RAB_INVERSION_G	GR Cutoff in Zone10	GAPI	75.090
RAB_INVERSION_G	GR Cutoff in Zone2	GAPI	75.000
RAB_INVERSION_G	GR Cutoff in Zone3	GAPI	75.000
RAB_INVERSION_G	GR Cutoff in Zone4 GR Cutoff in Zone5	GAPI GAPI	75.0 0 0 75.0 0 0
RAB_INVERSION_G RAB_INVERSION_G	GR Cutoff in Zone6	GAPI	75.000
RAB_INVERSION_G	GR Cutoff in Zone7	GAPI	75.000
RAB_INVERSION_G	GR Cutoff in Zone8	GAPI	75.000
RAB_INVERSION_G	GR Cutoff in Zone9	GAPI	75.000
RAB_INVERSION_M	RAB Medium Button Sensor Weight for Inversion[0,1]		1.000
RAB_INVERSION_R	Resistivity Cutoff for Shale Formation	OHMM	2.000
RAB_INVERSION_R	Resistive Invasion Allowed		иo
RAB_INVERSION_R	RAB Ring Sensor Weight for Inversion[0,1]		1.000
RAB_INVERSION_R	RAB inversion for Rmud?		NO
RAB_INVERSION_R	RAB inversion for Rt?		YES
RAB_INVERSION_R RAB_INVERSION_R	Rt to R-deepest separation penalty multiplier[0,1] RAB inversion for Rxo?		0.500 YES
RAB_INVERSION_S	GR of Clean Sand Formation		-999.250
RAB_INVERSION_S	GR of Shale Formation		-999.250
RAB_INVERSION_S	RAB Shallow Button Sensor Weight for Inversion[0,1]		1.000
RAB_INVERSION_T	Inversion Threshold[0, 0.3]		0.010
RAB_INVERSION_W	Formation Water Resistivity	OHMM	0.100
RAB_INVERSION_W	Formation Water Temperature		150.000
RAB_MEDIUMBTN_E	Medium Button Resistivity for ECAL_RAB?		YES
RAB_MEDIUMBTN_I	Input Medium Button Resistivity for Inversion?		YES
RAB_QUAD	RAB: Process Quadrant data ? Bit on Bottom?		YES YES
RAB_RIGMODE_ECA RAB_RING_ECAL	Ring Resistivity for ECAL_RAB?		YES
RAB_RING_INVERS	Imput RING Resistivity for Inversion?		YES
RAB_SHALLOWBTN_	Shallow Button Resistivity for ECAL_RAB?		YES
RAB_SHALLOWBTN_	Input Shallow Button Resistivity for Inversion?		YES
RAB_TAB	RAB: Compute TAB ?		YES
RAB_TECHLOG	RAB: Generate Techlog ?		YES
RAB_TEMP_SELECT	RAB Temperature Selection		MEASURED
RAB_TICKS	RAB: Generate Ticks ?		YES
READOUT_PORT_MP RINGBHCA	RAB: ROP to Bit Face Distance RAB: Ring Borehole A Factor	M	10.4 6 0 0.298
RINGBHCB	RAB: Ring Borehole B Factor		-0.112
RING_KIMP_A	RAB: Ring Impedance Coeff A		0.000
RING_KIMP_B	RAB: Ring Impedance Coeff B		0.000
RING_K_FACTOR	RAB: Ring K Factor		0.102
RWA_COMP_MOD	Rwa computation model		BASIC
RWA_DEN_ADN	Rwa Density Input		RHOB
RWA_DEN_CDN	Rwa Density Input		RHOB RHOB
RWA_DEN_INPUT RWA_FORM_MOD	Rwa Density Input Rwa computation formation model		RHOB CLASTIC
RWA_FORM_MOD RWA_RES_INPUT	Rwa computation resistivity input		RT
SBUTTON_K_FACTO	RAB: Button Shallow K Factor		0.005
SCALE_IMAGES	RAB: Process Image Data		YES
STAB	RAB: Run with Stabilizer		YES
TFF_OFFSET_RAB	RAB Time-Frame File Time Offset	S	0.000
TIMEFRAME_FILE_	RAB: Time Frame File Name	S	0.000
TOOLTYPE	RAB: Azimuthal Tool		YES
TS_VERSION	RAB: ToolScope Software Version		0.000
VRAB6	Rab Tool type (ENP/PILOT) RAB: Window Size for Scaling Dynamic Image	 M	RAB8_ENP 0.914
WIN_SIZE_DYN_IM WRK	to Report Potassium Concentration (RM)	M 1	0.914 K by Wat %


IDEAL Version: ID12_0C_13



Master:	2-Apr-2008 10:14									
				8.25-in. Resistivity At-the-B	it Calibra	tion				
				Resistivity: Fixtu	re					
Phase	Ring/T1 factor	Value	Phase	Ring/T2 factor		Value	Phase	M0/T1 factor		Value
Master		0.01090	Master			0.01093	Master			1.055
0.00 (Minin		0.01250 (Maximum)	0.009 (Minim		0.01 (Maxir		0.90 (Minim		1.20 (Maxir	
Phase	M0/T2 factor	Value	Phase	M2/T1 factor		Value	Phase	M2/T2 factor		Value
Master		1.042	Master			0.9832	Master			0.9552
0.90	00 1.050	1.200	0.85	00 1.000	1.15	50	0.85	00 1.000	1.15	50
(Minin	num) (Nominal)	(Maximum)	(Minim	num) (Nominal)	(Maxir	num)	(Minim	num) (Nominal)	(Maxir	num)
Phase	BTN shallow/T1 factor	- Value	Phase	BTN shallow/T2 factor		Value	Phase	BTN medium/T1 factor ·		Value
Master		0.0006639	Master			0.0006665	Master			0.0006641
0.000 (Minin		0.0007700 (Maximum)	0.000 (Minim		0.000 (Maxir)7700 mum)	0.000 (Minim		0.000 (Maxir)7700 num)
Phase	BTN medium/T2 factor	- Value	Phase	BTN deep/T1 factor -		Value	Phase	BTN deep/T2 factor		Value
Master		0.0006662	Master			0.0006589	Master			0.0006598
0.000 (Minin		0.0007700 (Maximum)	0.000 (Minim		0.000 (Maxir	07700 mum)	0.000 (Minim		0.000 (Maxir	07700 mum)

Master: 2-Apr-2008 11:0	6		
	8.25-in. Resistivity At-the-Bit Calibration		
	Gamma Ray: Blanket		
Phase	Gamma ray factor		Value
Master			9.065
6.5		9.50	
(Mini	mum) (Nominal)	(Maxim	num)

SCHLUMBERGER

Survey report 7-May-2008 15:42:14

Client: 3D Oil Limited Field: West Seahorse	ı		
Well: West Seahorse-Service Order Number: 08ASQ0005 Engineer: J. Ikeda/S. Au Rig:: West Triton		Spud date: Last survey date: Total accepted surveys: MD of first survey: MD of last survey:	04-May-08 58 0.00 m
STATE: Victoria			
Survey calculation methods Method for positions: Minimum curvat Method for DLS: Mason & Taylor	ture	Geomagnetic data Magnetic model: Magnetic date: Magnetic field strength:	BGGM version 2007 02-May-2008
Depth reference Permanent datum: Mean Sea Level Depth reference: Driller's Pipe	L	Magnetic dec (+E/W-): Magnetic dip:	-68.78 degrees
GL above permanent: -39.50 m KB above permanent: 38.00 m DF above permanent: 38.00 m		MWD survey Reference Reference G: Reference H: Reference Dip:	1000.02 mGal 1198.93 HCNT
Vertical section origin Latitude (+N/S-): 0.00 m Departure (+E/W-): 0.00 m		Tolerance of G: Tolerance of H: Tolerance of Dip:	(+/-) 6.00 HCNT
Platform reference point Latitude (+N/S-): Departure (+E/W-):		Corrections Magnetic dec (+E/W-): Grid convergence (+E/W-).: Total az corr (+E/W-):	12.84 degrees
Azimuth from Vsect Origin to target: 62	2.96 degrees	(Total az corr = magnetic Survey Correction Type I=Sag Corrected Inclinat M=Schlumberger Magnetic S=Shell Magnetic Correct F=Failed Axis Correction R=Magnetic Resonance Too D=Dmag Magnetic Correct	c dec - grid conv) cion Correction cion l cl Correction

=== Seq # -	====== Measured depth (m)	Incl angle (deg)	====== Azimuth angle (deg)	Course length (m)	TVD depth (m)	Vertical section (m)	Displ +N/S- (m)	Displ +E/W- (m)	Total At displ Azim (m) (deg)	DLS Srvy Tool (deg/ tool Corr 100f) type (deg)
=== 1 2 3 4 5	0.00 77.50 182.42 210.69 240.38	0.00 0.00 2.71 4.37 6.29	0.00 0.00 71.37 68.61 65.93	0.00 77.50 104.92 28.27 29.69	0.00 77.50 182.38 210.60 240.16	0.00 0.00 2.45 4.19 6.94	0.00 0.00 0.79 1.40 2.47	0.00 0.00 2.35 3.99 6.53	0.00 0.00 0.00 0.00 2.48 71.37 4.23 70.67 6.98 69.23	0.00 TIP None 0.00 Mudline None 0.79 DMAG None 1.80 DMAG None 1.99 DMAG None
6	269.55	8.46	63.88	29.17	269.08	10.68	4.07	9.91	10.72 67.67	2.28 DMAG None 2.52 DMAG None 2.91 DMAG None 4.29 DMAG None 0.23 DMAG None
7	299.18	10.91	63.41	29.63	298.29	15.66	6.29	14.38	15.69 66.38	
8	328.89	13.72	61.49	29.71	327.31	22.00	9.23	19.99	22.02 65.22	
9	358.27	17.82	63.61	29.38	355.58	29.98	12.89	27.08	29.99 64.55	
10	388.46	17.83	64.35	30.19	384.32	39.22	16.94	35.38	39.23 64.41	
11	417.21	21.75	64.50	28.75	411.37	48.95	21.14	44.16	48.96 64.42	4.16 DMAG None
12	446.30	26.47	63.34	29.09	437.91	60.83	26.38	54.83	60.84 64.31	4.97 DMAG None
13	476.28	27.58	63.58	29.98	464.62	74.45	32.46	67.01	74.46 64.15	1.13 DMAG None
14	505.67	26.63	62.50	29.39	490.78	87.84	38.53	78.95	87.85 63.99	1.11 DMAG None
15	534.94	25.97	64.51	29.27	517.02	100.80	44.32	90.55	100.82 63.92	1.15 DMAG None
16	564.20	25.07	64.48	29.26	543.43	113.41	49.75	101.93	113.42 63.99	0.94 DMAG None
17	622.88	26.33	65.24	58.68	596.30	138.84	60.55	124.97	138.87 64.15	0.68 DMAG None
18	653.06	26.86	63.15	30.18	623.29	152.34	66.44	137.13	152.38 64.15	1.09 DMAG None
19	682.20	27.68	61.89	29.14	649.19	165.69	72.60	148.97	165.72 64.02	1.05 DMAG None
20	711.65	27.35	62.23	29.45	675.31	179.30	78.97	160.99	179.32 63.87	0.38 DMAG None
21	740.89	27.59	61.54	29.24	701.25	192.78	85.33	172.89	192.80 63.73	0.42 DMAG None
22	771.14	27.55	61.08	30.25	728.07	206.78	92.05	185.17	206.79 63.57	0.22 DMAG None
23	800.56	27.43	60.89	29.42	754.17	220.35	98.64	197.05	220.36 63.41	0.15 DMAG None
24	829.48	27.85	61.35	28.92	779.78	233.76	105.12	208.79	233.76 63.28	0.49 DMAG None
25	858.79	27.32	61.21	29.31	805.76	247.32	111.64	220.70	247.33 63.17	0.56 DMAG None
26	888.16	27.56	61.54	29.37	831.83	260.85	118.12	232.58	260.85 63.07	0.29 DMAG None
27	917.34	27.23	62.29	29.18	857.74	274.28	124.44	244.42	274.28 63.02	0.50 DMAG None
28	947.31	27.18	62.67	29.97	884.39	287.98	130.77	256.57	287.98 62.99	0.18 DMAG None
29	975.78	28.05	62.94	28.47	909.62	301.18	136.81	268.31	301.18 62.98	0.94 DMAG None
30	1005.05	27.38	63.78	29.27	935.53	314.79	142.91	280.48	314.79 63.00	0.81 DMAG None
31	1034.76	27.21	62.92	29.71	961.93	328.41	149.02	292.65	328.41 63.01	0.44 DMAG None
32	1064.70	27.86	61.70	29.94	988.48	342.25	155.45	304.91	342.25 62.99	0.88 DMAG None
33	1094.42	27.04	62.76	29.72	1014.85	355.95	161.84	317.03	355.95 62.96	0.98 DMAG None
34	1143.32	25.87	63.39	48.90	1058.63	377.73	171.70	336.45	377.73 62.96	0.79 DMAG None
35	1155.24	25.60	63.14	11.92	1069.37	382.91	174.03	341.07	382.91 62.97	0.81 DMAG None
36	1184.95	25.36	62.55	29.71	1096.19	395.69	179.87	352.45	395.69 62.96	0.57 DMAG None
37	1214.47	26.04	61.37	29.52	1122.79	408.49	185.88	363.74	408.49 62.93	0.72 DMAG None
38	1244.37	26.98	60.10	29.90	1149.55	421.82	192.41	375.38	421.82 62.86	1.11 DMAG None
39	1273.71	27.90	59.30	29.34	1175.59	435.32	199.23	387.06	435.32 62.76	1.07 DMAG None
40	1303.22	28.28	59.93	29.51	1201.62	449.19	206.26	399.04	449.20 62.67	0.55 DMAG None
41 42 43 44 45	1333.07 1362.30 1392.46 1421.70 1451.62	28.34 28.22 27.26 25.28 22.71	61.42 62.76 63.75 65.76 67.51	29.85 29.23 30.16 29.24 29.92	1227.90 1253.64 1280.33 1306.55 1333.89	463.34 477.18 491.22 504.15 516.29	213.19 219.68 225.99 231.52 236.35	411.38 423.62 436.16 447.86 459.02	463.35 62.61 477.19 62.59 491.23 62.61 504.16 62.66 516.30 62.76	0.53 DMAG None 1.06 DMAG None 2.44 DMAG None 2.71 DMAG None
46	1481.39	20.37	68.53	29.77	1361.58	527.18	240.45	469.15	527.18 62.86	2.40 DMAG None
47	1511.23	17.28	67.57	29.84	1389.82	536.77	244.04	478.08	536.77 62.96	3.17 DMAG None
48	1540.81	13.06	64.38	29.58	1418.36	544.49	247.16	485.16	544.49 63.00	4.45 DMAG None
49	1570.48	10.61	59.84	29.67	1447.40	550.57	249.99	490.55	550.57 63.00	2.68 DMAG None
50	1600.19	8.73	58.08	29.71	1476.68	555.55	252.55	494.83	555.55 62.96	1.94 DMAG None
51	1629.88	8.74	67.66	29.69	1506.03	560.04	254.60	498.83	560.04 62.96	1.54 DMAG None
52	1658.96	8.56	72.15	29.08	1534.78	564.38	256.10	502.93	564.38 63.01	0.76 DMAG None
53	1688.35	8.90	69.06	29.39	1563.83	568.80	257.59	507.13	568.80 63.07	0.69 DMAG None
54	1717.96	8.56	61.83	29.61	1593.10	573.28	259.45	511.22	573.28 63.09	1.25 DMAG None
55	1747.50	8.58	55.23	29.54	1622.31	577.66	261.74	514.97	577.67 63.06	1.01 DMAG None
56	1777.39	8.69	54.55	29.89	1651.86	582.11	264.32	518.64	582.11 62.99	0.09 DMAG None
57	1789.31	8.74	56.02	11.92	1663.64	583.90	265.35	520.12	583.90 62.97	0.46 DMAG None
58	1810.00	8.74	56.02	20.69	1684.09	587.02	267.11	522.73	587.02 62.93	0.01 Projected to TD

[(c)2008 IDEAL ID13_0C_08]

Company: 3D Oil Limited

Well: West Seahorse-3
Field: West Seahorse

Victoria

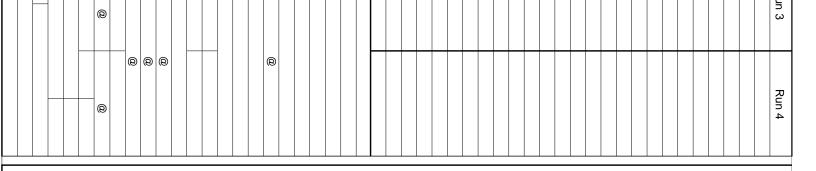
Rig: West Triton

State:

12.25 in. Section

Schlumberger

geoVISION*825 Resistivity 1:500 Measured Depth Recorded Mode Log


Geomarket APG	Location	Sale	'		
Job Date 24-April-2008	Customer	3D Oil limited	,		Data Onality Report
Rig West Triton	Field/Well	West Seahorse	Type of	Type of Measurement	<u>ק</u>
Engineer J. Ikeda, S. T. Aung	Job Number	08ASQ0005	Res GR		When data does not meet standards, put a number in the colum corresponding to the measurement
	•				with a corresponding number and remark below. Use additional pages for remarks Positive remarks are welcome: do not append them with a number.
			_ [Domarko
	Presentation				Remarks
Description of Well - Names, Geometry, Services, Location and References; General Content Header, user of trademarks, directional data, well plot, order of components, spelling and style, units sensor to toolface angle recorded	Services, Locat a, well plot, orde	ion and References; General Content r of components, spelling and style, units			
Equiment and Software Description					
Tool sketch, equipment numbers, software versions, data rates, filtering weights	versions, data ra	ates, filtering weights			
Processing Traceability and Environment Description Acquisition environment, parameters and key constants for each run or zone, complete and relavant remarks	nt Description ey constants for	each run or zone, complete and relavant			c
Annotations, Presented Formats, QC Curves, Print Quality Documented splice points; data gap explanations, mud changes, movement indicator, color selection	ı rves, Print Qua nations, mud cha	l ity inges, movement indicator, color			ty ver 1.
Calibratio	Calibration and Verifications	ations			Line of the second seco
Calibration / Before survey verification / After survey verification	After survey ve	erification			l
Validity, completeness (includes equipment number), timeliness, unedited, descrepency explained	t number), timeli	ness, unedited, descrepency explained	-		QR He
Operati	Operating Procedures	S			
Depth Control Comparison with driller's depth, other logs, other bit runs, between RT and RM. Depth summary listing	other bit runs, b	etween RT and RM. Depth summary			
Logging speed and sampling rates					
As recommended in reference manual or job planner. No loss of data or spatial resolution	bb planner. No k	oss of data or spatial resolution			ents
Between runs and passes, with data from nearby wells, other conveyance, mud log and markers	nearby wells, oth	er conveyance, mud log and markers			urem
Operating Anomalies/Failure/Missing Data/Sensor Orientation/Transmission Losses	ta/Sensor Orier	ntation/Transmission Losses			Meas
Ausenice di nuise ana spanicus vananions, anomaly repeated, contected, reported di explained	anomaly repeate	a, collected, lebolted of explained.			ng &
Digita	Digital Delivery]	Drillir
Digital Products Labeled, verification listing with complete digital record, backup for archival; record matches hard copy.	igital record, bac	skup for archival; record matches			bberger
Job Quality Rating (JQR) Number of boxes without number X 10	วR) out number ×	10			Schlum
Irregular Operation Excessive ROP or speed, high deviation, shocks, vibrations, sticking conditions	hocks, vibrations	s, sticking conditions			GR is not corrected for Potassium content due to errors in measurements in mud report
Borehole Geometry Shape (caves, etc), rugosity, spiralled hole, mud induced fractures.	, mud induced fr	actures. Casing, tubing conditions			
Borehole Fluid	-				
Interferences	COOC				0002
External noise, nearby casing or drillpipe, debris, unusual formation composition Operation Outside Tool Specifications	ebris, unusual fo	mation composition			l l l l l l l l l l l l l l l l l l l
GeomarketTemperature, pressure, hole size, hole deviation, dog-leg severity, flow value of parameter	e, hole deviation	n, dog-leg severity, flow rate, rpm, solids			seed Jan
Environmental Quality Rating (EQR) Number of boxes without number × 2	ty Rating (E thout number	(QR) × 20			Cell Manager: J. Ikeda FSM: M. McDermott e

Enclosure 5

Wireline Log Plot 1:500

				Run 1	Run 2	R
		Schlumberger				
	3D Oil I imited					
Well: Wes	West Seahorse 3					
Field: Wes	West Seahorse					
Rig: Wes	West Triton Country	Country: Australia				
	PEX-G					
Soni	Sonic-Resistivity-Density-Neutron-G	ron-G				
) ((
	Suite 1 Run 1 – Scale 1:500 (MD)))				
ss St se 3 d	Vic P/57, Bass Strait	Elev.:				
eahor 7, Bas eahor ₋imite ION	N 5771044.135 m, E 554229.358 m	G.L39.50 m				
est S Oil	Permanent Datum: MSL	Elev.: 0.00 m				
W Vi W 3E	Log Measured From: Drill Floor	_ 38.00 m above Perm. Datum	tum			
any:	Drilling Measured From: Drill Floor					
Rig: Field: Locat Well: Comp State: Victoria	ia Max. Well Deviation 28.3 deg	Longitude Latitude E 147 37 9.865 S 38 12 24.94	le 4.942			
Logging Date	5-May-2008		Logging Date			
Run Number	3000		Run Number			
Schlumberger Depth	1775.5 m		Schlumberger Depth			
Bottom Log Interval	1773 m		Bottom Log Interval			
Top Log Interval	1116.8 m		Top Log Interval			
Casing Driller Size @ Depth	13.375 in @ 1117 m	(9)	Casing Driller Size @ Depth		@	
Casing Schlumberger	1116.8 m		Casing Schlumberger			
Bit Size	12.250 in		Bit Size			
Id In Hole	44		Id In Hole			
D Fluid Loss PH	5.8 cm ³ 9		D Fluid Loss PH			
Source Of Sample	O		Source Of Sample			
RM @ Measured Temperature		@	RM @ Measured Temperature		@	
RMF @ Measured Temperature	e 0.101 ohm.m @		RMF @ Measured Temperature		@	
RMC @ Measured Temperature	0.166 ohm.m @	@	RMC @ Measured Temperature		@	
TI	Press Press		T1			
RM @ MRT RMF @ MRT	0.056 @ 68 0.050	@	RM @ MRT RMF @ MRT	@	@	
Maximum Recorded Temperatures Circulation Stopped Time	Time 4-May-2008 68 69		Maximum Recorded Temperatures Circulation Stopped Time			
Logger On Bottom						
Unit Number Location			Unit Number Location			
Recorded By	A. Dandi, K. Aung		Recorded By			
Witnessed By	M. Ngatai , D. Archer		Witnessed By			

DEPTH SUMMARY LISTING

Date Created: 7-MAY-2008 6:55:27

Logging Cable

Depth System Equipment

Tension Device

<u> </u>					
Type:	IDW-H	Type:	CMTD-B/A	Type:	7-46ZV-XS
Serial Number:	796	Serial Number:	1721	Serial Number:	77178
Calibration Date:	29-Jan-2008	Calibration Date:	27-Feb-2008	Length:	7584.95 M
Calibrator Serial Number:	1009	Calibrator Serial Number:	1051	Canada Mathada	Minalina
Calibration Cable Type:	7-46ZV-XS	Calibration Gain:	0.81	Conveyance Method:	
Wheel Correction 1:	-5	Calibration Offset:	-610.00	Rig Type:	Offshore_Fixed
Wheel Correction 2:	-5				

Depth Control Parameters

First Log In the Well Log Sequence:

Rig Up Length At Surface: 77.16 M Rig Up Length At Bottom: 77.12 M Rig Up Length Correction: 0.04 M Stretch Correction: 1.10 M Tool Zero Check At Surface: 0.60 M

Depth Measuring Device

Depth Control Remarks

- 1. Schlumberger Depth control policy followed.
- 2. IDW used as primary depth control, Z-chart as secondary.
- 3.
- 4.
- 5.

DISCLAIMER

THE USE OF AND RELIANCE UPON THIS RECORDED-DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS AFFILIATES, PARTNERS, REPRESENTATIVES, AGENTS, CONSULTANTS AND EMPLOYEES) IS SUBJECT TO THE TERMS AND CONDITIONS AGREED UPON BETWEEN SCHLUMBERGER AND THE COMPANY, INCLÚDING: (a) RESTRICTIONS ON USE OF THE RECORDED-DATA; (b) DISCLAIMERS AND WAIVERS OF WARRANTIES AND REPRESENTATIONS REGARDING COMPANY'S USE OF AND RELIANCE UPON THE RECORDED-DATA; AND (c) CUSTOMER'S FULL AND SOLE RESPONSIBILITY FOR ANY INFERENCE DRAWN OR DECISION MADE IN CONNECTION WITH THE USE OF THIS RECORDED-DATA.

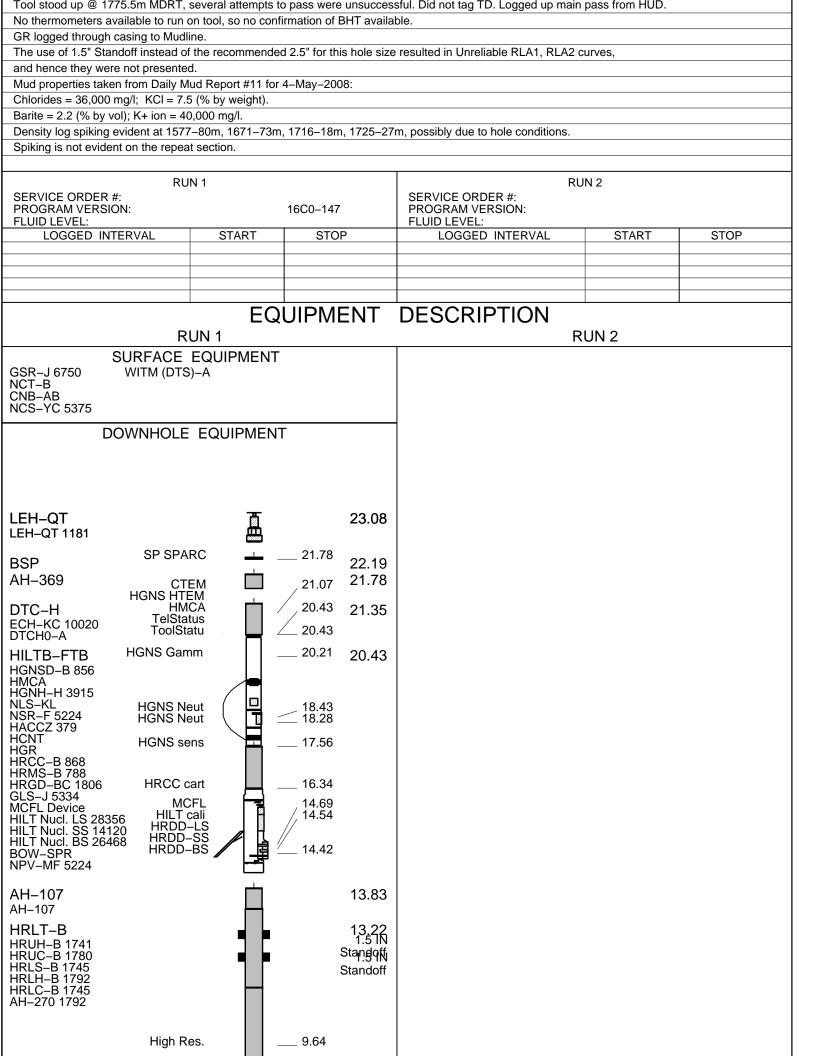
OTHER SERVICES1 OS1: MDT-GR

OS2: MSCT-GR

OS3: OS4: OS5:

REMARKS: RUN NUMBER 1

Tool String run as per tool sketch with 7 x 1.5" standoffs and a bowspring.

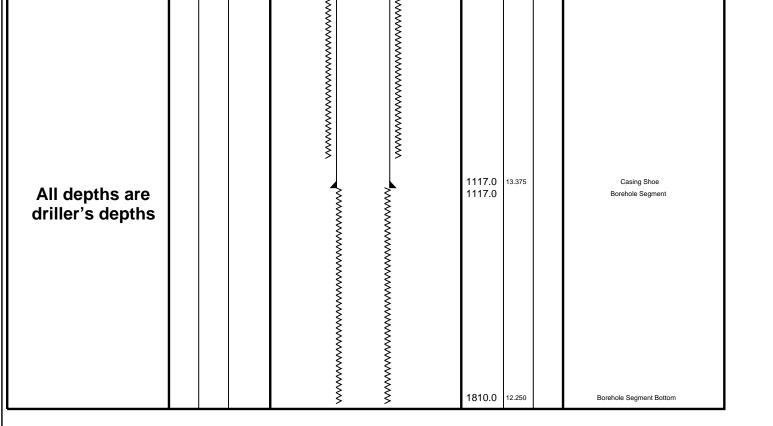

Maximum recorded temperature was 68 degC sourced from HGNS sensor.

Neutron porosity corrected for hole size and mud weight.

Density corrected for bit size.

Logs were recorded on 2 separate DLIS files because of software problem during logging. 1st pass from 1778.4m to 1513.2m MDRT,

2nd pass from 1562m to 100m MDRT. DLIS files from both passes were spliced @ 1513m MDRT.


Client: 3D Oil

Well: West Seahorse 3 Field: West Seahorse

Rig Name: West Triton

State: Victoria Reference Datum: Mean Sea Level

State: Victoria			Reference Datum:	Mean Sea	a Level	
Country: Australia			Elevation:	38.0	m	
Production String	(in)	(m) MD	Well Schematic	(m)	(in)	Casing String
Kelly Bushing Elevation Mean Sea Level		0.0		39.0 122.0	36.000 30.000 13.375	Borehole Segment Casing Shoe

Schlumberger

Standard Resolution Pass 1:500

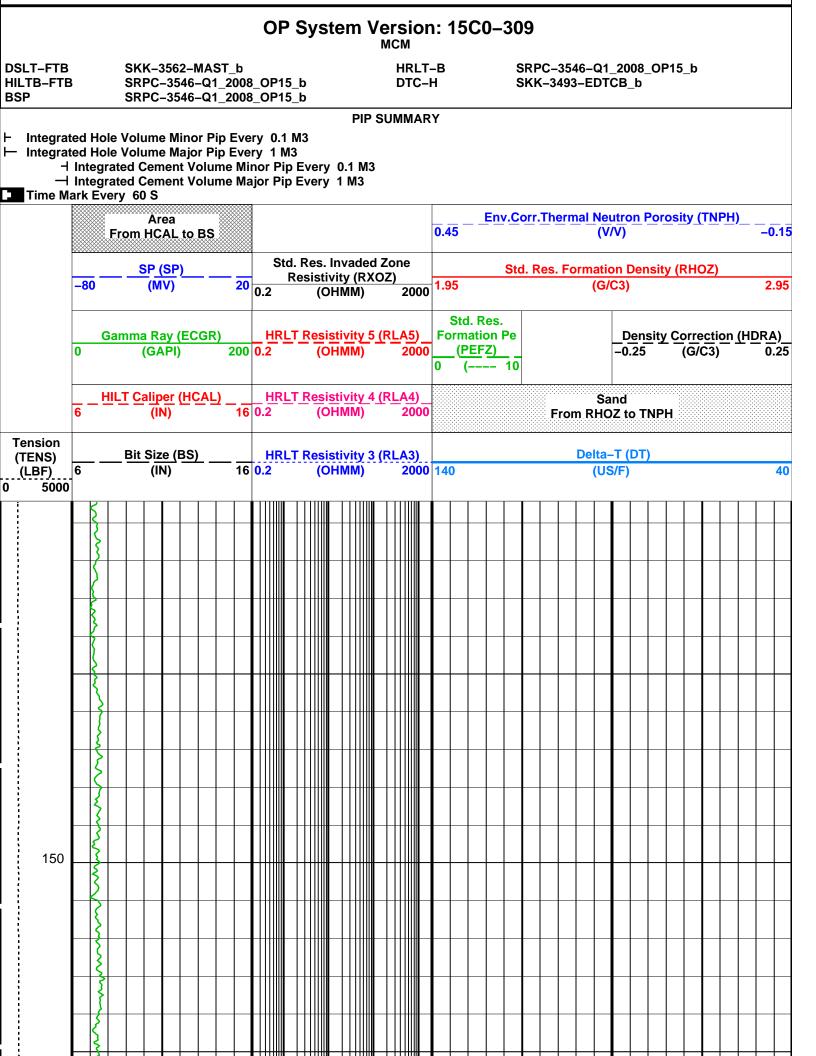
MAXIS Field Log

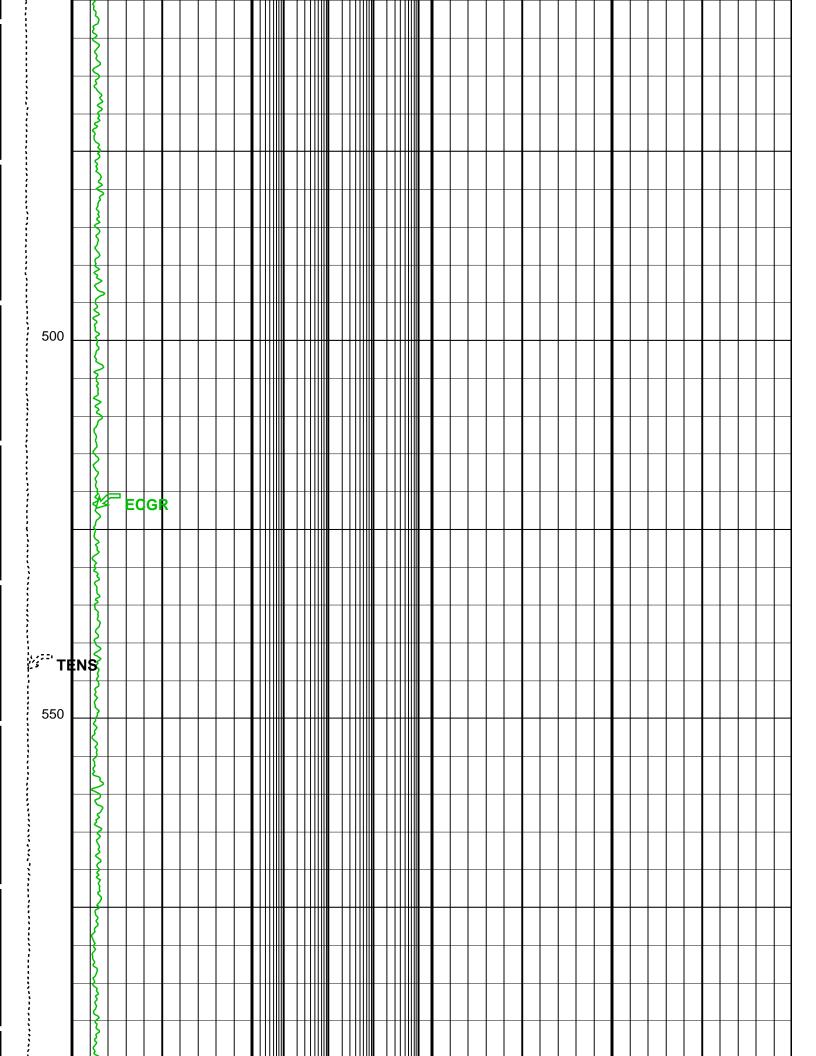
Company: 3D Oil Well: West Seahorse 3

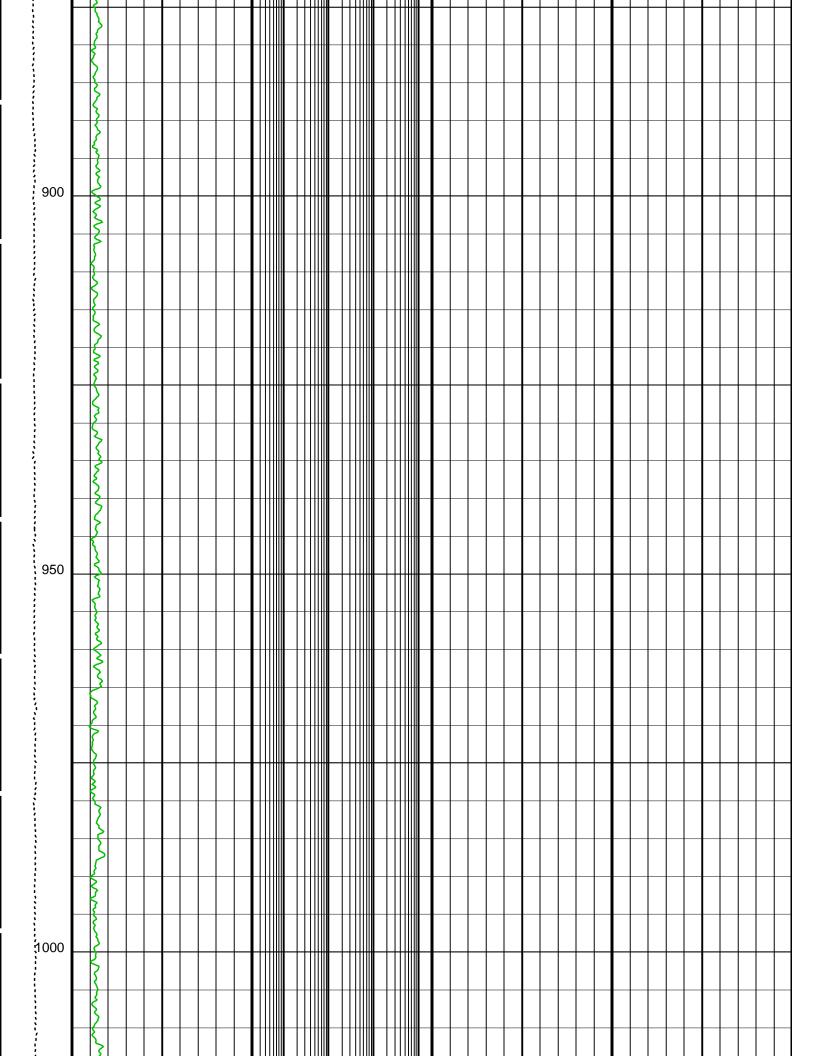
Input DLIS Files

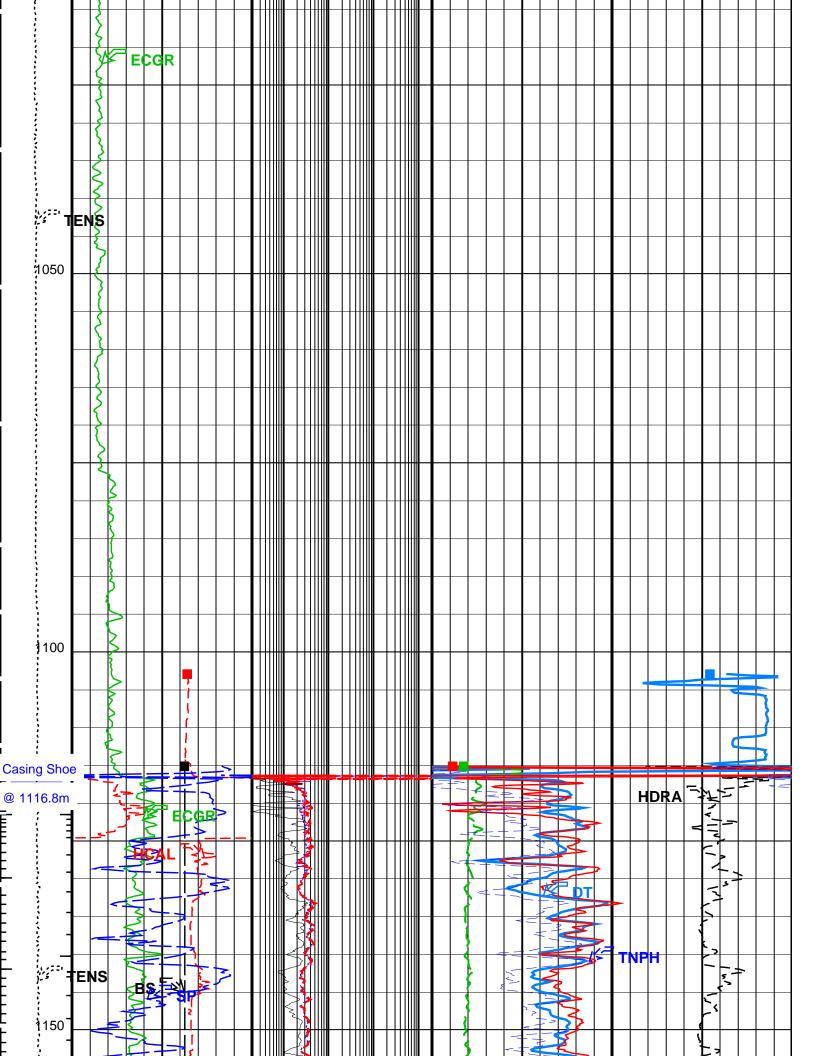
Splice_SONIC_HRLA_006CUP FN:1 07-May-2008 21:02 1778.4 M 101.5 M

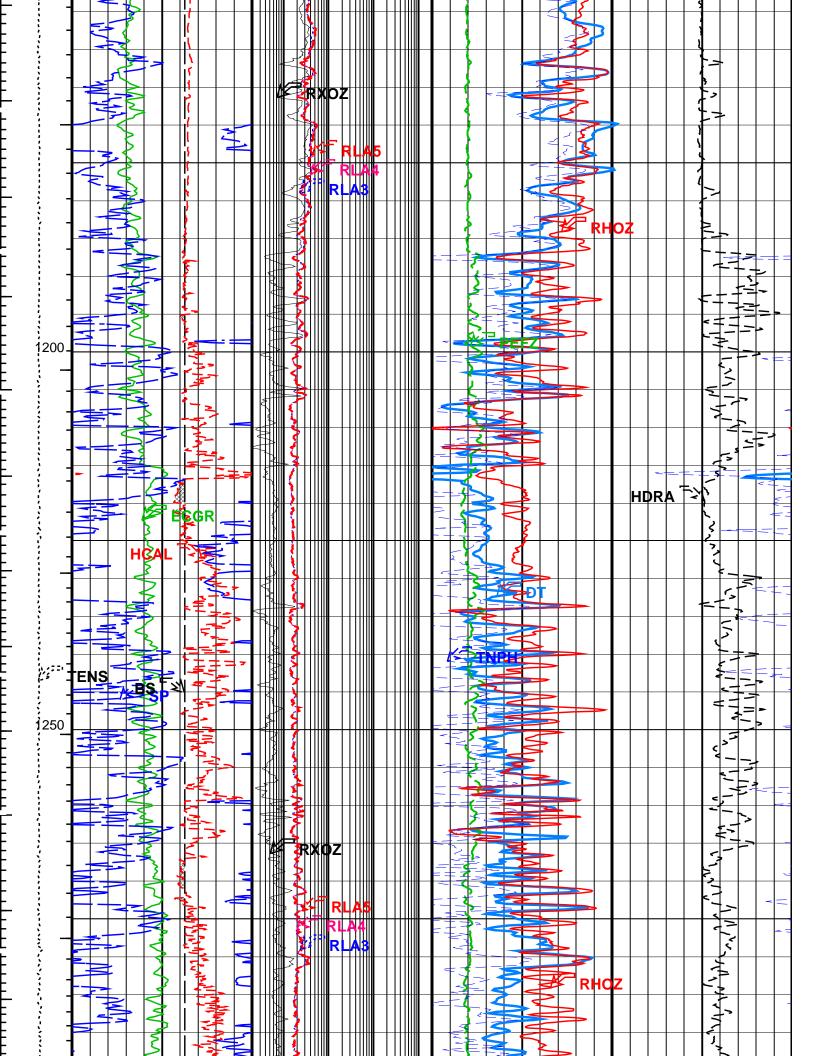
Output DLIS Files

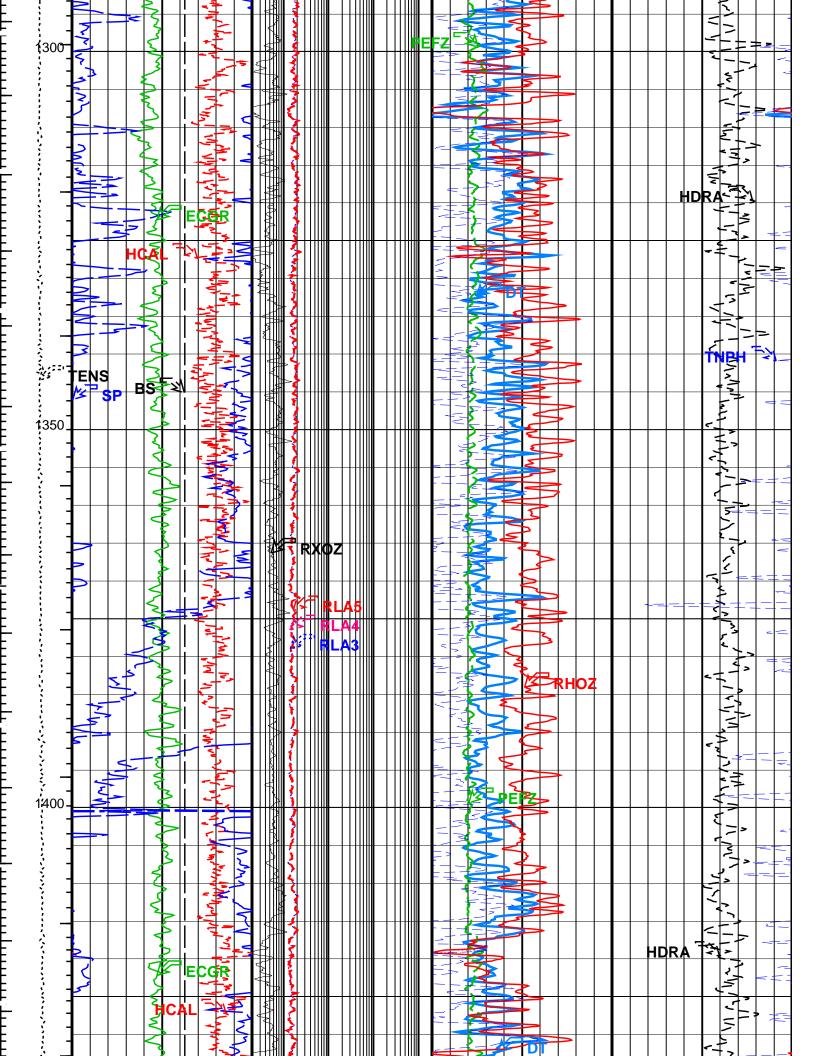

DEFAULT SONIC_HRLA_TLD_MCFL_008PUP FN:13 PRODUCER 10-May-2008 15:46 1778.4 M 102.1 M CUSTOMER SONIC_HRLA_TLD_MCFL_008PUC FN:14 CUSTOMER 10-May-2008 15:46 1778.4 M 102.1 M

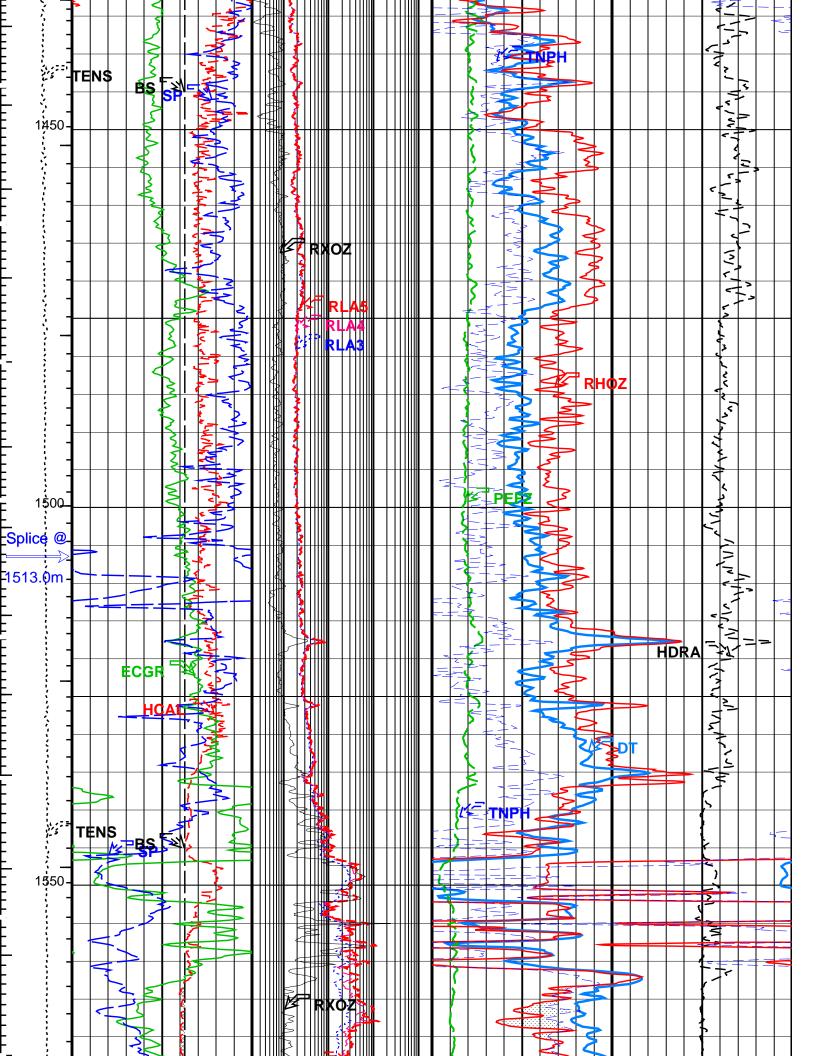

Integrated Hole/Cement Volume Summary

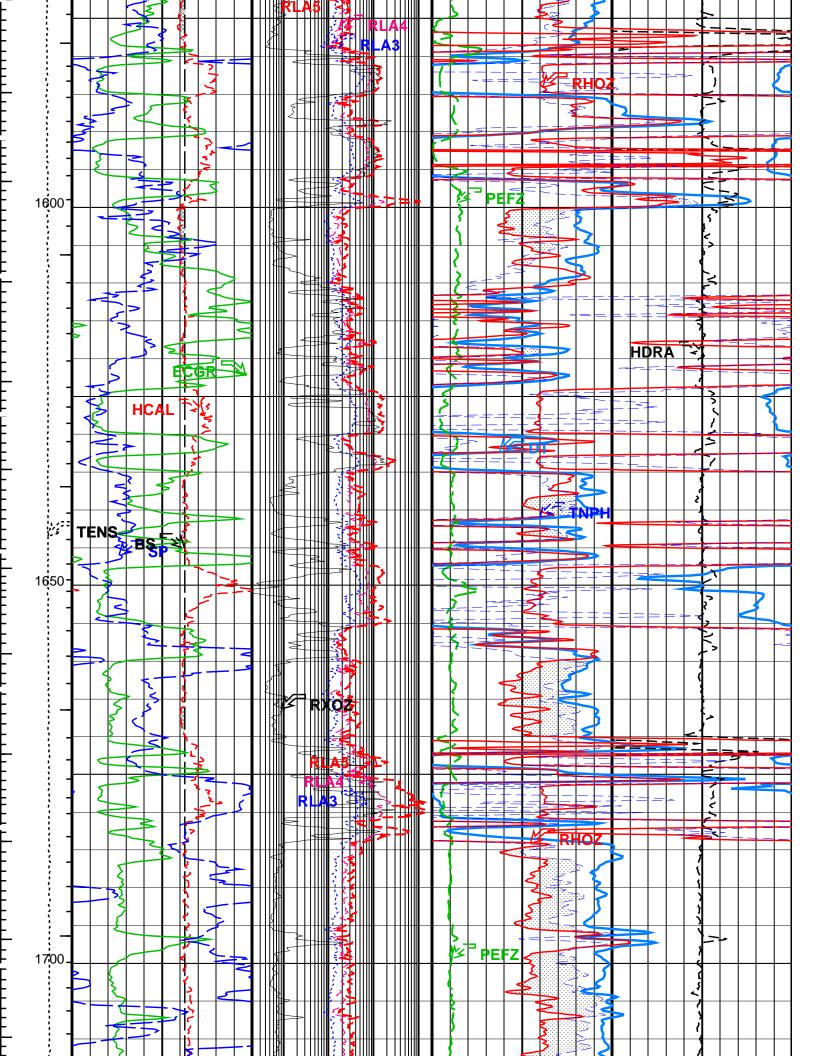

Hole Volume = 56.92 M3

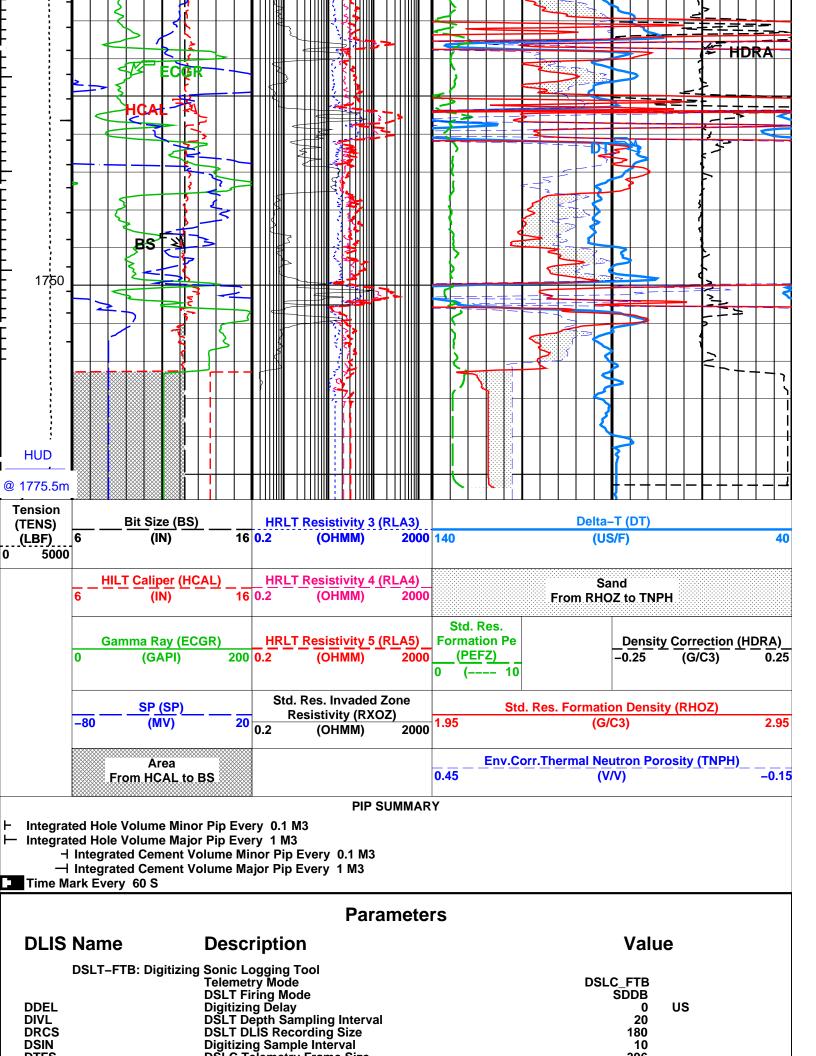

Cement Volume = 26.64 M3 (assuming 9.63 IN casing O.D.)


Computed from 1761.0 M to 1116.0 M using data channel(s) HCAL









DIFS	DSLC Telemetry Frame Size 396	
DWCO	Digitizing Word Count 180	
GAI MAHTR	Manual Gain 40 Manual High Threshold Reference 120	
MGAI	Maximum Gain 60	
MNHTR	Minimum High Threshold Reference 100	
NMSG	Near Minimum Sliding Gate 140	US
NMXG RATE	Near Maximum Sliding Gate 1060 Firing Rate R15	US
SFAF	Firing Rate R15 Sonic Formation Attenuation Factor 10	DB/M
SGCL	Sliding Gate Closing Delta-T	US/F
SGDT	Sliding Gate Delta-T 40	US/F
SGW	Sliding Gate Width 110	US
SLEV	Signal Level for AGC 5000	
WMOD	Waveform Firing Mode FULL HRLT-B: High Resolution Laterolog Array – E	
BHS	Borehole Status OPEN	
GCSE	Generalized Caliper Selection HCAL	
GDEV	Average Angular Deviation of Borehole from Normal 0	DEG
GGRD	Geothermal Gradient 0.018227	DC/M
KFAC_H MATR		
SHT	Rock Matrix for Neutron Porosity Corrections LIMESTONE Surface Hole Temperature 35	DEGC
	HILTB-FTB: High resolution Integrated Logging Tool-DTS	DEGG
BHFL	Borehole Fluid Type WATER	
BHFL_T		
BHS	Borehole Status OPEN Borohole Salinity Correction Option	
BSCO CCCO	Borehole Salinity Correction Option NO Casing & Cement Thickness Correction Option NO	
DHC	Density Hole Correction BS	
FSAL	Formation Salinity –50000	PPM
FSCO	Formation Salinity Correction Option NO	
GCLF	Germany Coal-like Formation Option NO	
GCSE GDEV	Generalized Caliper Selection HCAL Average Angular Deviation of Borehole from Normal 0	DEG
GGRD	Geothermal Gradient 0.018227	DC/M
HSCO	Hole Size Correction Option YES	20,
MATR	Rock Matrix for Neutron Porosity Corrections LIMESTONE	
MCCO	Mud Cake Correction Option NO	
MCOR	Mud Correction BARI	
MPOF MWCO	MCFL Processing Operation Mode ON Mud Weight Correction Option YES	
NAAC	HRDD APS Activation Correction OFF	
NMT	HILT Nuclear Mud Type BARITE	
NPRM	HRDD Processing Mode StdRes	
NSAR	HRDD Depth Sampling Rate 1	IN
PTCO SDAT	Pressure/Temperature Correction Option NO Standoff Data Source SOCN	
SHT	Surface Hole Temperature 35	DEGC
SOCN	Standoff Distance 0.125	IN
soco	Standoff Correction Option NO	
	BSP: Bridle SP	B43./
SPNV	SP Next Value 0	MV
SPVD	DIR: Directional Survey Computation TVD of Starting Point 0	М
TIMD	Along-hole depth of Tie-in Point 0	M
TIVD	TVD of Tie-in Point 0	M
B. 10	HOLEV: Integrated Hole/Cement Volume	
BHS FCD	Borehole Status OPEN Future Casing (Outer) Diameter 9.625	IN
GCSE	Future Casing (Outer) Diameter 9.625 Generalized Caliper Selection HCAL	IN
GDEV	Average Angular Deviation of Borehole from Normal 0	DEG
GGRD	Geothermal Gradient 0.018227	DC/M
HVCS	Integrated Hole Volume Caliper Selection HCAL	
MATR	Rock Matrix for Neutron Porosity Corrections LIMESTONE	DECC
SHT	Surface Hole Temperature 35 STI: Stuck Tool Indicator	DEGC
TDL	Total Depth – Logger 1775.50	М
	System and Miscellaneous	
BS	Bit Size 12.250	IN
BSAL	Borehole Salinity 51637.00	PPM
DO DO DO DO	Depth Offset for Playback 0.0	M
DORL PP	Depth Offset for Repeat Analysis 0.0 Playback Processing RECOMPUTE	М
TD	Total Depth 1761	М
	ON_RES_DENS_NEU_GR_SP_D500 Vertical Scale: 1:500 Graphics File Created:	
	Orapinos i ne oreateu.	
	OP System Version: 15C0-309	

SKK-3562-MAST_b SRPC-3546-Q1_2008_OP15_b SRPC-3546-Q1_2008_OP15_b SRPC-3546-Q1_2008_OP15_b SKK-3493-EDTCB_b **DSLT-FTB** HRLT-B HILTB-FTB DTC-H

BSP

Input DLIS Files

Splice_SONIC_HRLA_006CUP FN:1 07-May-2008 21:02 1778.4 M 101.5 M

Output DLIS Files

DEFAULT SONIC_HRLA_TLD_MCFL_008PUP FN:13 PRODUCER 10-May-2008 15:46 CUSTOMER SONIC_HRLA_TLD_MCFL_008PUC FN:14 CUSTOMER 10-May-2008 15:46

Schlumberger

Caliper

MAXIS Field Log

Company: 3D Oil Limited Well: West Seahorse 3

Input DLIS Files

Output DLIS Files

DEFAULT SONIC_HRLA_TLD_MCFL_018PUP FN:17 PRODUCER 19-Jun-2008 15:48 1778.4 M 1112.4 M

Integrated Hole/Cement Volume Summary

Hole Volume = 56.92 M3

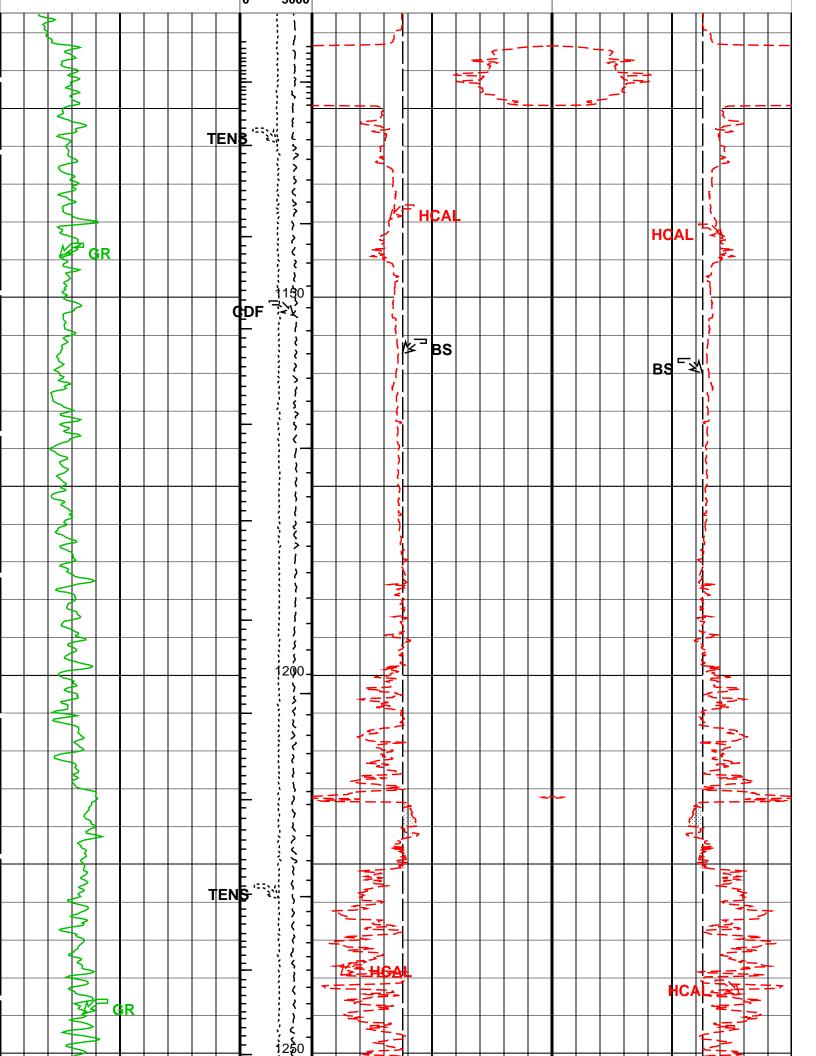
Cement Volume = 26.64 M3 (assuming 9.63 IN casing O.D.)

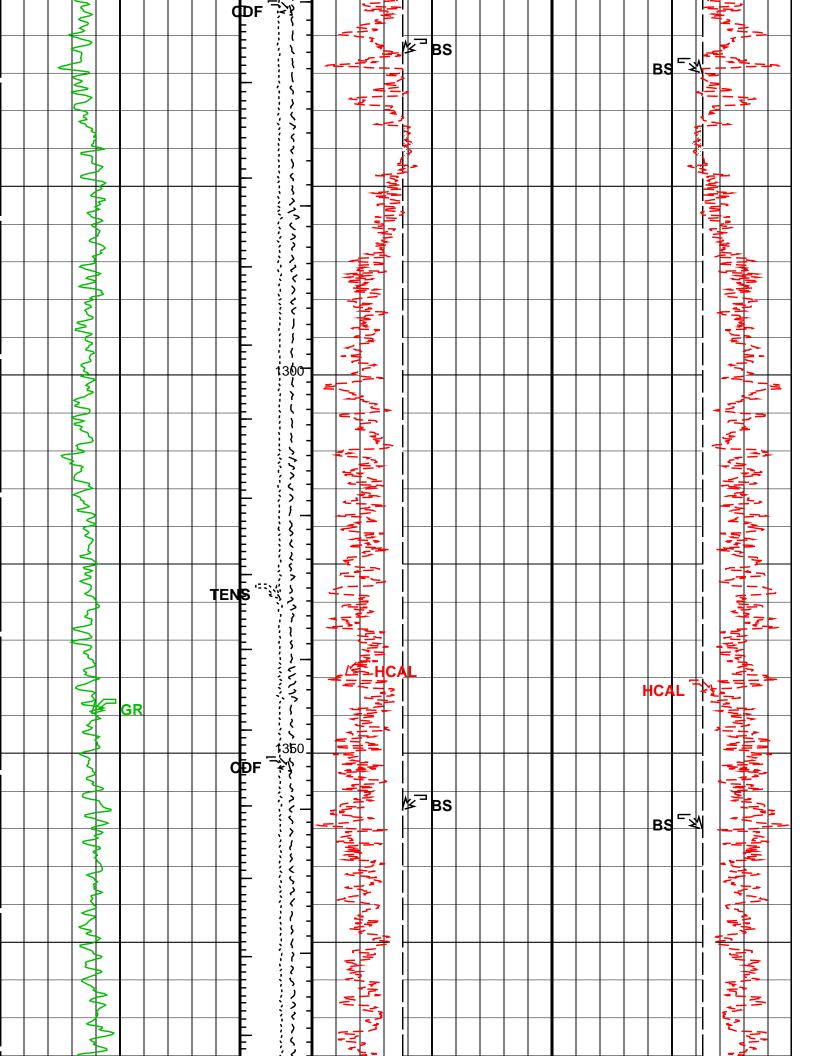
Computed from 1761.0 M to 1116.0 M using data channel(s) HCAL

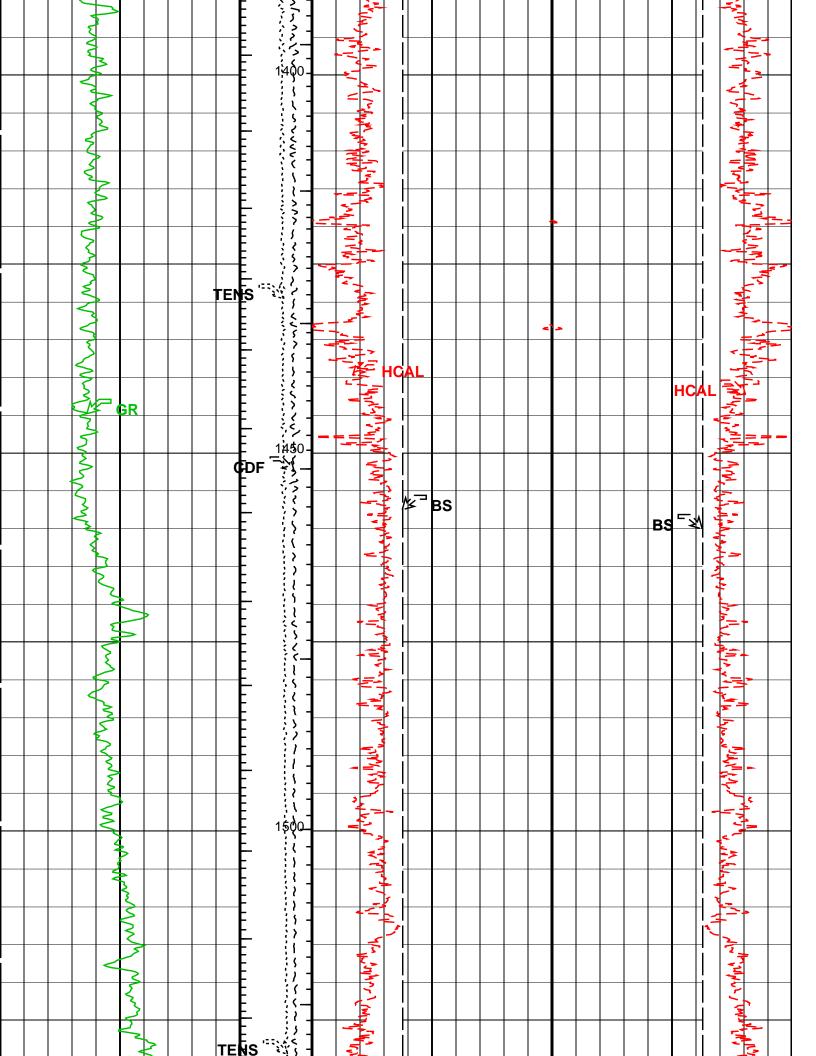
OP System Version: 15C0-309

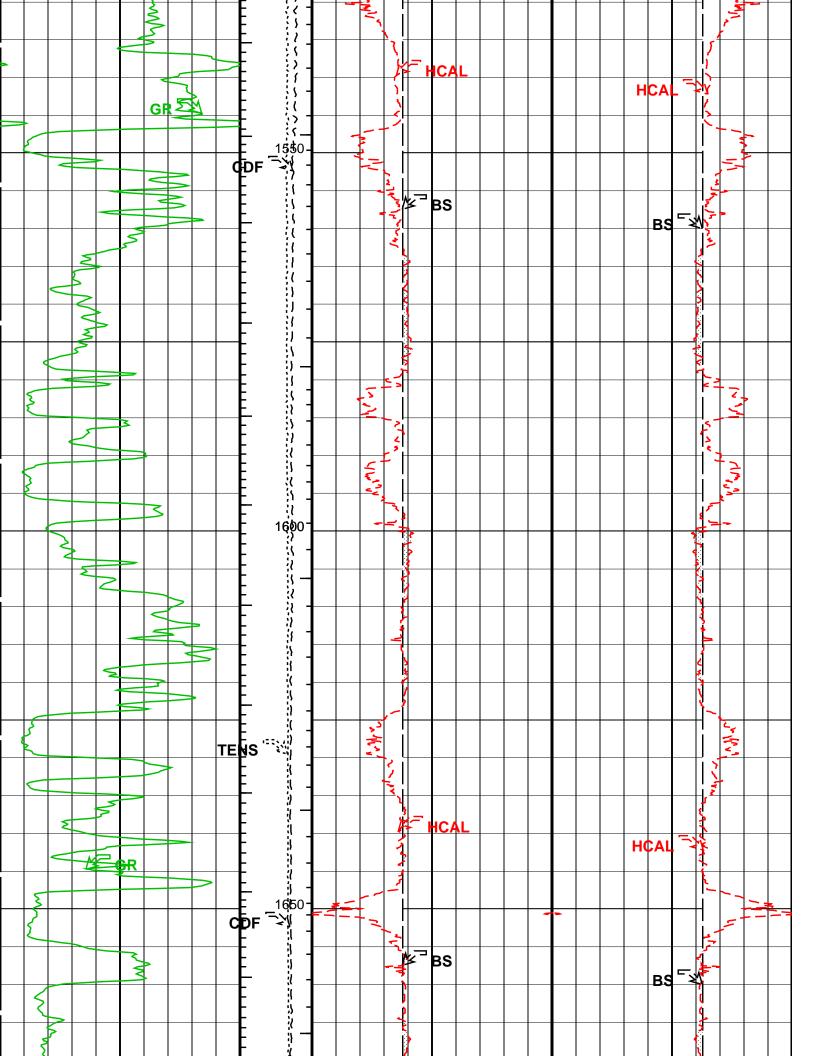
MCM

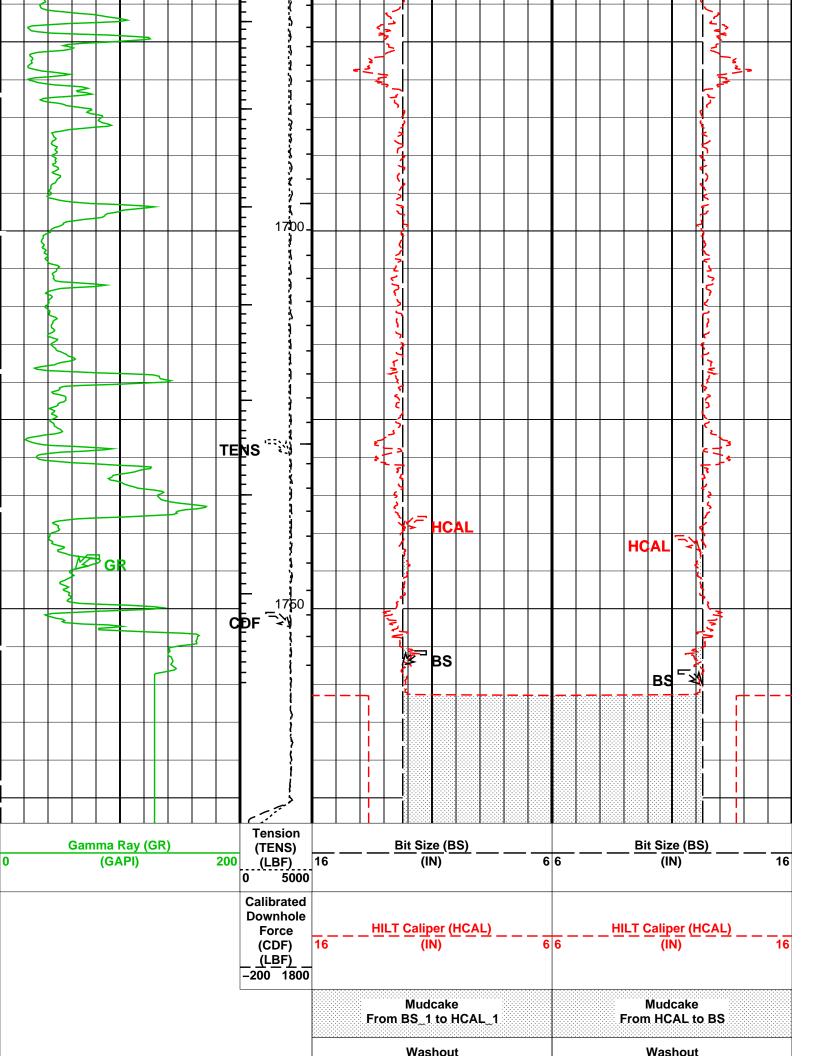
DSLT-FTB SRPC-3546-Q1_2008_OP15 HRLT-B SRPC-3546-Q1_2008_OP15 HILTB-FTB SRPC-3546-Q1_2008_OP15 DTC-H SRPC-3546-Q1_2008_OP15


BSP SRPC-3546-Q1_2008_OP15


PIP SUMMARY


- - ☐ Integrated Cement Volume Minor Pip Every 0.1 M3
 - ── Integrated Cement Volume Major Pip Every 1 M3


Time Mark Every 60 S


			Washout From HCAL_1 to BS_1		Washout From BS to HCAL	
			Mudcake From BS_1 to HCAL_1		Mudcake From HCAL to BS	
		Calibrated Downhole Force (CDF) (LBF) -200 1800	HILT Caliper (HCAL) 16 (IN)	66	HILT Caliper (HCAL) (IN)	
0	Gamma Ray (GR) (GAPI)	Tension (TENS) 200 (LBF)	Bit Size (BS) (IN)	6 6	Bit Size (BS) (IN)	16

From HCAL_1 to BS_1

From BS to HCAL

PIP SUMMARY

- **⊢** Integrated Hole Volume Minor Pip Every 0.1 M3
- ☐ Integrated Hole Volume Major Pip Every 1 M3
 - → Integrated Cement Volume Minor Pip Every 0.1 M3
 - ─ Integrated Cement Volume Major Pip Every 1 M3

Time Mark Every 60 S

Parameters

DLIS	Name	Description	Valu	ie
	DIR: Directional	Survey Computation		
SPVD		TVD of Starting Point	0	M
TIMD		Along-hole depth of Tie-in Point	1094.42	М
TIVD		TVD of Tie-in Point	1014.85	M
	HOLEV: Integrate	ed Hole/Cement Volume		
FCD	J	Future Casing (Outer) Diameter	9.625	IN
HVCS		Integrated Hole Volume Caliper Selection	HCAL	
	System and Misc	cellaneous		
BS	•	Bit Size	12.250	IN
DO		Depth Offset for Playback	0.0	M
DORL		Depth Offset for Repeat Analysis	0.0	M
PP		Playback Processing	RECOMPUTE	
TD		Total Depth	1761	M
ormat: CA	ALIPER LOG 500	Vertical Scale: 1:500	Graphics File Created:	19-Jun-2008 15:48

OP System Version: 15C0-309

MCM

DSLT-FTB SRPC-3546-Q1_2008_OP15 HRLT-B SRPC-3546-Q1_2008_OP15 HILTB-FTB SRPC-3546-Q1_2008_OP15 DTC-H SRPC-3546-Q1_2008_OP15

BSP SRPC-3546-Q1_2008_OP15

Input DLIS Files

Output DLIS Files

DEFAULT SONIC_HRLA_TLD_MCFL_018PUP FN:17 PRODUCER 19-Jun-2008 15:48

Schlumberger

Calibrations

MAXIS Field Log

		Calibration and	Check Summary						
Measurement	Nominal	Master	Before	After	Change	Limit	Units		
High Resolution Laterolog Array – B Wellsite Calibration – HRLT M01 Before: 5-May-2008 10:46									
HRLT M0-M1 Voltage Plus - 0	0	N/A	-318.4	N/A	N/A	9.681	UV		
HRLT M0-M1 Voltage Plus - 1	0	N/A	-348.5	N/A	N/A	9.681	UV		
HRLT M0-M1 Voltage Plus - 2	0	N/A	-355.0	N/A	N/A	9.681	UV		
HRLT M0-M1 Voltage Plus - 3	0	N/A	-342.6	N/A	N/A	9.681	UV		
HRLT M0-M1 Voltage Plus - 4	0	N/A	-323.0	N/A	N/A	9.681	UV		
HRLT M0-M1 Voltage Plus - 5	0	N/A	-330.4	N/A	N/A	9.681	UV		
HRLT M0-M1 Voltage Plus - 6	0	N/A	311.7	N/A	N/A	9.681	UV		
HRLT M0-M1 Voltage Plus - 7	0	N/A	-322.7	N/A	N/A	9.681	UV		

High Resolution Laterolog Array – B Wellsite	Calibration – I	HRLT M12						
Before: 5-May-2008 10:46	•	A1/A	4740	N1/A	N1/A	FO 10	1.07	
HRLT M1–M2 Voltage Plus – 0	0	N/A	1749	N/A	N/A	53.42	UV	
HRLT M1–M2 Voltage Plus – 1	0	N/A	1913	N/A	N/A	53.42	UV	
HRLT M1–M2 Voltage Plus – 2	0	N/A	1944	N/A	N/A	53.42	UV	
HRLT M1–M2 Voltage Plus – 3	0	N/A	1876	N/A	N/A	53.42	UV	
HRLT M1–M2 Voltage Plus – 4	0	N/A	1770	N/A	N/A	53.42	UV	
HRLT M1–M2 Voltage Plus – 5	0	N/A	1812	N/A	N/A	53.42	UV	
HRLT M1–M2 Voltage Plus – 6	0	N/A	-1719	N/A	N/A	53.42	UV	
HRLT M1-M2 Voltage Plus - 7	0	N/A	1781	N/A	N/A	53.42	UV	
Himb Decelution Letonales Anno. D.Welleite	0-10	IDI T. MOO						
High Resolution Laterolog Array – B Wellsite	Calibration – I	HRLI M23						
Before: 5-May-2008 10:46	0	N1/A	4704	NI/A	NI/A	50.40	1.157	
HRLT M2–M3 Voltage Plus – 0	0	N/A	1731	N/A	N/A	53.42	UV	
HRLT M2–M3 Voltage Plus – 1	0	N/A	1898	N/A	N/A	53.42	UV	
HRLT M2–M3 Voltage Plus – 2	0	N/A	1932	N/A	N/A	53.42	UV	
HRLT M2–M3 Voltage Plus – 3	0	N/A	1869	N/A	N/A	53.42	UV	
HRLT M2-M3 Voltage Plus - 4	0	N/A	1760	N/A	N/A	53.42	UV	
HRLT M2–M3 Voltage Plus – 5	0	N/A	1804	N/A	N/A	53.42	UV	
HRLT M2–M3 Voltage Plus – 6	0	N/A	-1695	N/A	N/A	53.42	UV	
HRLT M2–M3 Voltage Plus – 7	0	N/A	1781	N/A	N/A	53.42	UV	
High Resolution Laterolog Array – B Wellsite	Calibration – I	HKLI V34						
Before: 5-May-2008 10:46	_							
HRLT A3–A4 Voltage Plus – 0	0	N/A	68570	N/A	N/A	2100	UV	
HRLT A3–A4 Voltage Plus – 1	0	N/A	75520	N/A	N/A	2100	UV	
HRLT A3–A4 Voltage Plus – 2	0	N/A	77060	N/A	N/A	2100	UV	
HRLT A3-A4 Voltage Plus - 3	0	N/A	74690	N/A	N/A	2100	UV	
HRLT A3-A4 Voltage Plus - 4	0	N/A	70130	N/A	N/A	2100	UV	
HRLT A3-A4 Voltage Plus - 5	0	N/A	71800	N/A	N/A	2100	UV	
HRLT A3-A4 Voltage Plus - 6	0	N/A	-66420	N/A	N/A	2100	UV	
HRLT A3-A4 Voltage Plus - 7	0	N/A	70000	N/A	N/A	2100	UV	
High Resolution Laterolog Array – B Wellsite	Calibration – I	HRLT V45						
Before: 5-May-2008 10:46								
HRLT A4-A5 Voltage Plus – 0	0	N/A	68380	N/A	N/A	2100	UV	
HRLT A4–A5 Voltage Plus – 1	0	N/A	75380	N/A	N/A	2100	UV	
HRLT A4–A5 Voltage Plus – 2	0	N/A	76900	N/A	N/A	2100	UV	
HRLT A4–A5 Voltage Plus – 3	0	N/A	74530	N/A	N/A	2100	UV	
HRLT A4-A5 Voltage Plus - 4	0	N/A	69960	N/A	N/A	2100	UV	
HRLT A4-A5 Voltage Plus - 5	0	N/A	71630	N/A	N/A	2100	UV	
HRLT A4-A5 Voltage Plus - 6	0	N/A	-66300	N/A	N/A	2100	UV	
HRLT A4-A5 Voltage Plus - 7	0	N/A	70000	N/A	N/A	2100	UV	
High Resolution Laterolog Array – B Wellsite	Calibration - I	HRLT V56						
Before: 5-May-2008 10:46								
HRLT A5-A6 Voltage Plus - 0	0	N/A	68530	N/A	N/A	2100	UV	
HRLT A5-A6 Voltage Plus - 1	0	N/A	75670	N/A	N/A	2100	UV	
HRLT A5-A6 Voltage Plus - 2	0	N/A	77170	N/A	N/A	2100	UV	
HRLT A5-A6 Voltage Plus - 3	0	N/A	74750	N/A	N/A	2100	UV	
HRLT A5-A6 Voltage Plus - 4	0	N/A	70110	N/A	N/A	2100	UV	
HRLT A5-A6 Voltage Plus - 5	0	N/A	71760	N/A	N/A	2100	UV	
HRLT A5-A6 Voltage Plus - 6	0	N/A	-66600	N/A	N/A	2100	UV	
HRLT A5-A6 Voltage Plus - 7	0	N/A	70000	N/A	N/A	2100	UV	
y			-			-		
High Resolution Laterolog Array - B Wellsite	Calibration - I	HRLT VTP						
Before: 5-May-2008 10:46								
HRLT Torpedo-M0 Voltage - 0	0	N/A	-68100	N/A	N/A	2100	UV	
HRLT Torpedo–M0 Voltage – 1	0	N/A	-75370	N/A	N/A	2100	UV	
HRLT Torpedo–M0 Voltage – 2	Ö	N/A	-76950	N/A	N/A	2100	UV	
HRLT Torpedo–M0 Voltage – 3	Ö	N/A	-74650	N/A	N/A	2100	UV	
HRLT Torpedo–M0 Voltage – 4	Ö	N/A	-70110	N/A	N/A	2100	UV	
HRLT Torpedo–M0 Voltage – 5	Ö	N/A	-71770	N/A	N/A	2100	UV	
HRLT Torpedo–M0 Voltage – 6	Ö	N/A	66260	N/A	N/A	2100	UV	
HRLT Torpedo–M0 Voltage – 7	Ö	N/A	-70000	N/A	N/A	2100	UV	
,	-			-	-		-	
High Resolution Laterolog Array – B Wellsite	Calibration – I	HRLT VBD						
Before: 5–May–2008 10:46								
HRLT Bridle#9–M0 Voltage – 0	0	N/A	-67680	N/A	N/A	2100	UV	
HRLT Bridle#9–M0 Voltage – 1	Ö	N/A	-75750	N/A	N/A	2100	UV	
HRLT Bridle#9–M0 Voltage – 2	Ö	N/A	-76880	N/A	N/A	2100	UV	
HRLT Bridle#9–M0 Voltage – 3	Ö	N/A	-74400	N/A	N/A	2100	UV	
HRLT Bridle#9-M0 Voltage - 4	0	N/A	-70870	N/A	N/A	2100	UV	
HRLT Bridle#9–M0 Voltage – 5	0	N/A	-72260	N/A	N/A	2100	UV	
HRLT Bridle#9-M0 Voltage - 6	0	N/A	66590	N/A	N/A	2100	UV	
HRLT Bridle#9–M0 Voltage – 7	0	N/A	-70000	N/A	N/A	2100	UV	
TITLE Bridie#3-IND VOILage - 1	J	111/7	-10000	IN/A	IN/A	Z 100	ΟV	
High Resolution Laterolog Array – B Wellsite	Calibration - I	HRLT ISO						
Before: 5–May–2008 10:46	Janbranon – I	L1 100						
HRLT Source Current Plus – 0	0	N/A	283.9	N/A	N/A	8.520	UA	
HRI T Source Current Plus _ 1	0	N/A N/Δ	203.9 281.1	N/A N/Δ	N/A N/Δ	8.520 8.520	UΑ	

TINET Obdite Oditelik Flas - 1	U	FN/ / N	201.1	14/74	14/7-1	0.020	υ Λ
HRLT Source Current Plus – 2	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 3	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 4	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 5	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 6	0	N/A	281.1	N/A	N/A	8.520	UA
HRLT Source Current Plus – 7	0	N/A	281.1	N/A	N/A	8.520	UA
High Resolution Laterolog Array – B Wellsite Ca Before: 5–May–2008 10:46	llibration – HRL	T MV					
HRLT Vertical Voltage PI – 0	0	N/A	-320.1	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 1	0	N/A	-343.3	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 2	0	N/A	-348.2	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 3	0	N/A	-334.2	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 4	0	N/A	-311.8	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 5	0	N/A	-334.3	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 6	0	N/A	320.0	N/A	N/A	9.681	UV
HRLT Vertical Voltage PI – 7	0	N/A	-322.7	N/A	N/A	9.681	UV
High resolution Integrated Logging Tool–DTS W	ellsite Calibrati	on – Stab Meas	urement Summa	ry			
Before: 3-May-2008 4:06							
BS Window Ratio	0.7659	N/A	0.7656	N/A	N/A	N/A	
BS Window Sum	10570	N/A	10540	N/A	N/A	N/A	CPS
SS Window Ratio	0.4894	N/A	0.4901	N/A	N/A	N/A	ODO
SS Window Sum	10320	N/A	10290	N/A	N/A	N/A	CPS
LS Window Ratio LS Window Sum	0.3022	N/A N/A	0.2976 1152	N/A	N/A N/A	N/A N/A	CPS
LS Window Sum	1161	IN/A	1152	N/A	IN/A	IN/A	CPS
High resolution Integrated Logging Tool–DTS W Before: 3–May–2008 4:06	ellsite Calibrati	on – Photo-mul	tiplier High Volta	ges Calibrations	i		
BS PM High Voltage (Command)	1234	N/A	1249	N/A	N/A	N/A	V
SS PM High Voltage (Command)	1926	N/A	1932	N/A	N/A	N/A	V
LS PM High Voltage (Command)	1402	N/A	1406	N/A	N/A	N/A	V
High resolution Integrated Logging Tool-DTS W							
Before: 3-May-2008 4:06		•	•				
BS Crystal Resolution	9.798	N/A	9.751	N/A	N/A	N/A	%
SS Crystal Resolution	10.64	N/A	10.76	N/A	N/A	N/A	%
LS Crystal Resolution	9.358	N/A	9.342	N/A	N/A	N/A	%
High resolution Integrated Logging Tool-DTS W	'ellsite Calibrati	on – MCFL Cali	hration				
		oo. = oa	bration				
Before: 3-May-2008 3:59				NI/A	N1/A	NI/A	OLIMANA
Before: 3-May-2008 3:59 Raw B0 Resistivity	3875	N/A	4140	N/A	N/A	N/A	OHMM
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity	3875 3830	N/A N/A	4140 4129	N/A	N/A	N/A	OHMM
Before: 3-May-2008 3:59 Raw B0 Resistivity	3875	N/A	4140				_
Before: 3–May–2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool–DTS W	3875 3830 3830	N/A N/A N/A	4140 4129 3987	N/A	N/A	N/A	ОНММ
Before: 3–May–2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool–DTS W Before: 3–May–2008 4:02	3875 3830 3830	N/A N/A N/A	4140 4129 3987	N/A	N/A	N/A	ОНММ
Before: 3–May–2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool–DTS W	3875 3830 3830 'ellsite Calibrati	N/A N/A N/A on – HILT Calip	4140 4129 3987 er Calibration	N/A N/A	N/A N/A	N/A N/A	OHMM OHMM
Before: 3–May–2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool–DTS W Before: 3–May–2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool–DTS W	3875 3830 3830 'ellsite Calibration 8.000 12.00	N/A N/A N/A on – HILT Calip N/A N/A	4140 4129 3987 er Calibration 8.099 12.26	N/A N/A	N/A N/A N/A	N/A N/A	OHMM OHMM
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57	3875 3830 3830 'ellsite Calibration 8.000 12.00 'ellsite Calibration	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C	4140 4129 3987 er Calibration 8.099 12.26 alibration	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	OHMM OHMM IN IN
Before: 3–May–2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool–DTS W Before: 3–May–2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool–DTS W Before: 3–May–2008 3:57 Gamma Ray Background	3875 3830 3830 'ellsite Calibration 8.000 12.00 'ellsite Calibration 30.00	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	OHMM OHMM IN IN
Before: 3–May–2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool–DTS W Before: 3–May–2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool–DTS W Before: 3–May–2008 3:57 Gamma Ray Background Gamma Ray (Jig – Bkg)	3875 3830 3830 'ellsite Calibration 8.000 12.00 'ellsite Calibration 30.00 172.9	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72	OHMM OHMM IN IN GAPI GAPI
Before: 3–May–2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool–DTS W Before: 3–May–2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool–DTS W Before: 3–May–2008 3:57 Gamma Ray Background	3875 3830 3830 'ellsite Calibration 8.000 12.00 'ellsite Calibration 30.00	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	OHMM OHMM IN IN
Before: 3–May–2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool–DTS W Before: 3–May–2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool–DTS W Before: 3–May–2008 3:57 Gamma Ray Background Gamma Ray (Jig – Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool–DTS W	3875 3830 3830 'ellsite Calibration 8.000 12.00 'ellsite Calibration 30.00 172.9 165.0	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72	OHMM OHMM IN IN GAPI GAPI
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2	3875 3830 3830 'ellsite Calibration 8.000 12.00 'ellsite Calibration 30.00 172.9 165.0 'ellsite Calibration	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00	OHMM OHMM IN IN GAPI GAPI GAPI
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background	3875 3830 3830 'ellsite Calibration 8.000 12.00 'ellsite Calibration 172.9 165.0 'ellsite Calibration 2008 4:01 29.71	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas 29.71	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00	OHMM OHMM IN IN GAPI GAPI GAPI
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2	3875 3830 3830 'ellsite Calibration 8.000 12.00 'ellsite Calibration 30.00 172.9 165.0 'ellsite Calibration	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00	OHMM OHMM IN IN GAPI GAPI GAPI
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W	3875 3830 3830 'ellsite Calibration 8.000 12.00 'ellsite Calibration 172.9 165.0 'ellsite Calibration 2008 4:01 29.71 33.75	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas 29.71 33.75	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00	OHMM OHMM IN IN GAPI GAPI GAPI
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21	3875 3830 3830 'ellsite Calibration	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas 29.71 33.75 on – Ratio Meas	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00 4.457 5.063	OHMM OHMM IN IN GAPI GAPI GAPI CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank)	3875 3830 3830 'ellsite Calibration 8.000 12.00 'ellsite Calibration 172.9 165.0 'ellsite Calibration 29.71 33.75 'ellsite Calibration 18.000 'ellsite Calibration 18.000 'ellsite Calibration 18.000	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas 29.71 33.75 on – Ratio Meas 5605	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34 surement N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00 4.457 5.063	OHMM OHMM IN IN GAPI GAPI GAPI CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank) Thermal Far Corr. (Tank)	3875 3830 3830 'ellsite Calibration	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas 29.71 33.75 on – Ratio Meas	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00 4.457 5.063	OHMM OHMM IN IN GAPI GAPI GAPI CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank)	3875 3830 3830 3830 'ellsite Calibration 8.000 12.00 'ellsite Calibration 30.00 172.9 165.0 'ellsite Calibration 29.71 29.71 33.75 'ellsite Calibration 5800 2400	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas 29.71 33.75 on – Ratio Meas 5605 2340	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34 surement N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00 4.457 5.063	OHMM OHMM IN IN GAPI GAPI GAPI CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank) Thermal Far Corr. (Tank)	3875 3830 3830 3830 'ellsite Calibration	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas 29.71 33.75 on – Ratio Meas 5605 2340 2.395	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34 surement N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00 4.457 5.063	OHMM OHMM IN IN GAPI GAPI GAPI CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig – Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank) Thermal Far Corr. (Tank) CNTC/CFTC (Tank) High resolution Integrated Logging Tool-DTS W Master: 5-May-2008 7:56	3875 3830 3830 3830 'ellsite Calibration 8.000 12.00 'ellsite Calibration 2008 4:01 29.71 33.75 'ellsite Calibration 5800 2400 2.159 'ellsite Calibration 6800	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas 29.71 33.75 on – Ratio Meas 5605 2340 2.395 on – Accelerom	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34 surement N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A 15.72 15.00 4.457 5.063	OHMM OHMM IN IN GAPI GAPI GAPI CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig – Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank) Thermal Far Corr. (Tank) CNTC/CFTC (Tank) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank) Thermal Far Corr. (Tank)	3875 3830 3830 3830 'ellsite Calibration	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas 29.71 33.75 on – Ratio Meas 5605 2340 2.395	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34 surement N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00 4.457 5.063	OHMM OHMM IN IN GAPI GAPI GAPI CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank) Thermal Far Corr. (Tank) CNTC/CFTC (Tank) High resolution Integrated Logging Tool-DTS W Before: 5-May-2008 7:56 Z-Axis Acceleration High resolution Integrated Logging Tool-DTS M	3875 3830 3830 3830 'ellsite Calibration	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas 29.71 33.75 on – Ratio Meas 5605 2340 2.395 on – Accelerom N/A	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34 surement N/A N/A N/A N/A 9.798	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A 15.72 15.00 4.457 5.063	OHMM OHMM IN IN GAPI GAPI GAPI CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank) Thermal Far Corr. (Tank) CNTC/CFTC (Tank) High resolution Integrated Logging Tool-DTS W Before: 5-May-2008 7:56 Z-Axis Acceleration High resolution Integrated Logging Tool-DTS M Master: 16-Apr-2008 0:33	3875 3830 3830 3830 fellsite Calibration 8.000 12.00 fellsite Calibration 30.00 172.9 165.0 fellsite Calibration 29.71 33.75 fellsite Calibration 2400 2.159 fellsite Calibration 9.810 aster Calibration aster Calibration	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas 29.71 33.75 on – Ratio Meas 5605 2340 2.395 on – Accelerom N/A on – Inversion re	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34 surement N/A N/A N/A N/A 9.798	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A 15.72 15.00 4.457 5.063	OHMM OHMM IN IN IN GAPI GAPI CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank) Thermal Far Corr. (Tank) CNTC/CFTC (Tank) High resolution Integrated Logging Tool-DTS W Before: 5-May-2008 7:56 Z-Axis Acceleration High resolution Integrated Logging Tool-DTS M Master: 16-Apr-2008 0:33 Rho Aluminum	3875 3830 3830 3830 'ellsite Calibration 8.000 12.00 'ellsite Calibration 30.00 172.9 165.0 'ellsite Calibration 29.71 33.75 'ellsite Calibration 29.71 33.75 'ellsite Calibration 2400 2.159 'ellsite Calibration 9.810 aster Calibration 2.596	N/A N/A N/A on – HILT Calip N/A N/A on – Detector C N/A N/A N/A on – Zero Meas 29.71 33.75 on – Ratio Meas 5605 2340 2.395 on – Accelerom N/A on – Inversion re 2.595	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34 surement N/A N/A N/A N/A 9.798	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00 4.457 5.063 N/A N/A	OHMM OHMM IN IN IN GAPI GAPI GAPI CPS CPS CPS CPS CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank) Thermal Far Corr. (Tank) CNTC/CFTC (Tank) High resolution Integrated Logging Tool-DTS W Before: 5-May-2008 7:56 Z-Axis Acceleration High resolution Integrated Logging Tool-DTS M Master: 16-Apr-2008 0:33 Rho Aluminum Rho Magnesium	3875 3830 3830 3830 fellsite Calibration 8.000 12.00 fellsite Calibration 30.00 172.9 165.0 fellsite Calibration 2008 4:01 29.71 33.75 fellsite Calibration 5800 2400 2.159 fellsite Calibration 9.810 aster Calibration 2.596 1.686	N/A N/A N/A On – HILT Calip N/A N/A On – Detector C N/A N/A N/A On – Zero Meas 29.71 33.75 On – Ratio Meas 5605 2340 2.395 On – Accelerom N/A on – Inversion re 2.595 1.689	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34 surement N/A N/A N/A N/A 9.798	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A 15.72 15.00 4.457 5.063	OHMM OHMM IN IN IN GAPI GAPI CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank) Thermal Far Corr. (Tank) CNTC/CFTC (Tank) High resolution Integrated Logging Tool-DTS W Before: 5-May-2008 7:56 Z-Axis Acceleration High resolution Integrated Logging Tool-DTS M Master: 16-Apr-2008 0:33 Rho Aluminum Rho Magnesium Pe Aluminum	3875 3830 3830 3830 fellsite Calibration 8.000 12.00 fellsite Calibration 30.00 172.9 165.0 fellsite Calibration 2008 4:01 29.71 33.75 fellsite Calibration 5800 2400 2.159 fellsite Calibration 9.810 aster Calibration 2.596 1.686 2.570	N/A N/A N/A On – HILT Calip N/A N/A On – Detector C N/A N/A On – Zero Meas 29.71 33.75 On – Ratio Meas 5605 2340 2.395 On – Accelerom N/A On – Inversion re 2.595 1.689 2.542	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34 surement N/A N/A N/A N/A 9.798	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00 4.457 5.063 N/A N/A	OHMM OHMM IN IN IN GAPI GAPI GAPI CPS CPS CPS CPS CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank) Thermal Far Corr. (Tank) CNTC/CFTC (Tank) High resolution Integrated Logging Tool-DTS W Before: 5-May-2008 7:56 Z-Axis Acceleration High resolution Integrated Logging Tool-DTS M Master: 16-Apr-2008 0:33 Rho Aluminum Rho Magnesium	3875 3830 3830 3830 fellsite Calibration 8.000 12.00 fellsite Calibration 30.00 172.9 165.0 fellsite Calibration 2008 4:01 29.71 33.75 fellsite Calibration 5800 2400 2.159 fellsite Calibration 9.810 aster Calibration 2.596 1.686	N/A N/A N/A On – HILT Calip N/A N/A On – Detector C N/A N/A N/A On – Zero Meas 29.71 33.75 On – Ratio Meas 5605 2340 2.395 On – Accelerom N/A on – Inversion re 2.595 1.689	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34 surement N/A N/A N/A N/A 9.798	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00 4.457 5.063 N/A N/A	OHMM OHMM IN IN IN GAPI GAPI GAPI CPS CPS CPS CPS CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Before: 3-May-2 CNTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank) Thermal Far Corr. (Tank) CNTC/CFTC (Tank) High resolution Integrated Logging Tool-DTS W Before: 5-May-2008 7:56 Z-Axis Acceleration High resolution Integrated Logging Tool-DTS M Master: 16-Apr-2008 0:33 Rho Aluminum Rho Magnesium Pe Aluminum Pe Magnesium High resolution Integrated Logging Tool-DTS M	3875 3830 3830 3830 fellsite Calibration 8.000 12.00 fellsite Calibration 30.00 172.9 165.0 fellsite Calibration 29.71 33.75 fellsite Calibration 2400 2.159 fellsite Calibration 9.810 aster Calibration 2.596 1.686 2.570 2.650	N/A N/A N/A On – HILT Calip N/A N/A On – Detector C N/A N/A On – Zero Meas 29.71 33.75 On – Ratio Meas 5605 2340 2.395 On – Accelerom N/A On – Inversion re 2.595 1.689 2.542 2.638	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34 surement N/A N/A N/A N/A eter Calibration 9.798 sults	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00 4.457 5.063 N/A N/A	OHMM OHMM IN IN IN GAPI GAPI GAPI CPS CPS CPS CPS CPS CPS
Before: 3-May-2008 3:59 Raw B0 Resistivity Raw B1 Resistivity Raw B2 Resistivity High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 4:02 HILT Caliper Zero Measurement HILT Caliper Plus Measurement HILT Caliper Plus Measurement High resolution Integrated Logging Tool-DTS W Before: 3-May-2008 3:57 Gamma Ray Background Gamma Ray (Jig - Bkg) Gamma Ray (Calibrated) High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Ender Before: 3-May-2 CNTC Background CFTC Background CFTC Background High resolution Integrated Logging Tool-DTS W Master: 20-Feb-2008 23:21 Thermal Near Corr. (Tank) Thermal Far Corr. (Tank) CNTC/CFTC (Tank) High resolution Integrated Logging Tool-DTS W Before: 5-May-2008 7:56 Z-Axis Acceleration High resolution Integrated Logging Tool-DTS M Master: 16-Apr-2008 0:33 Rho Aluminum Rho Magnesium Pe Aluminum Pe Magnesium	3875 3830 3830 3830 fellsite Calibration 8.000 12.00 fellsite Calibration 30.00 172.9 165.0 fellsite Calibration 29.71 33.75 fellsite Calibration 2400 2.159 fellsite Calibration 9.810 aster Calibration 2.596 1.686 2.570 2.650	N/A N/A N/A On – HILT Calip N/A N/A On – Detector C N/A N/A On – Zero Meas 29.71 33.75 On – Ratio Meas 5605 2340 2.395 On – Accelerom N/A On – Inversion re 2.595 1.689 2.542 2.638	4140 4129 3987 er Calibration 8.099 12.26 alibration 6.524 172.9 165.0 urement 27.25 29.34 surement N/A N/A N/A N/A eter Calibration 9.798 sults	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 15.72 15.00 4.457 5.063 N/A N/A	OHMM OHMM IN IN IN GAPI GAPI GAPI CPS CPS CPS CPS CPS CPS

BS Max Deviation	0	1.236	 	 	%
SS Average Deviation	0	0.6460	 	 	%
SS Max Deviation	0	1.302	 	 	%
LS Average Deviation	0	0.6624	 	 	%
LS Max Deviation	0	1.762	 	 	%

The GLS-VJ source activity is acceptable.

The HGNS Neutron Master Calibration was done with the following parameters :

NCT-B Water Temperature 20.0 DEGC. Thermal Housing Size 3.376 IN. NSR-F serial number 5224

Digitizing Sonic Logging Tool / Equipment Identification

Primary Equipment:

DDBHC Sonde (3' 5' 7')

Digitizing Sonic Logging Cartridge

SLS – CB

DSLC – HA

8106

Auxiliary Equipment:

Electronics Cartridge Housing ECH – KH 8161

High Resolution Laterolog Array – B / Equipment Identification					
Primary Equipment: HRLT Sonde	HRLS – B	1745			
Auxiliary Equipment: HRLT lower Housing	HRLH – B	1792			
HRLT Lower Cartridge	HRLC – B	1745			
HRLT upper Housing	HRUH – B	1741			
HRLT Upper Cartridge	HRUC – B	1780			

	High Resolution Laterolog Array – B Wellsite Calibration								
		HI	RLT M01						
ldx	Phase	HRLT M0-M1 Voltage Plus UV	Value	Nominal	Maximum	Minimum			
0	Before		-318.4	-322.7	-280.7	-379.7			
1	Before		-348.5	-322.7	-280.7	-379.7			
2	Before		-355.0	-322.7	-280.7	-379.7			
3	Before		-342.6	-322.7	-280.7	-379.7			
4	Before		-323.0	-322.7	-280.7	-379.7			
5	Before		-330.4	-322.7	-280.7	-379.7			
6	Before		311.7	322.7	379.7	280.7			
7	Before	<u> </u>	-322.7	-322.7	-280.7	-379.7			
	(Minimum) (Nominal) (Maximum)								
Befo	re: 5-Ma	y-2008 10:46							

	High Resolution Laterolog Array – B Wellsite Calibration							
	HRLT M12							
ldx	Phase	HRLT M1-M2 Voltage Plus UV	Value	Nominal	Maximum	Minimum		
0	Before		1749	1781	2095	1549		
1	Before		1913	1781	2095	1549		
2	Before		1944	1781	2095	1549		
3	Before		1876	1781	2095	1549		
4	Before		1770	1781	2095	1549		

5	Before			1812	1781	2095	1549
6	Before			-1719	-1781	-1549	-2095
7	Before			1781	1781	2095	1549
	(Minir	mum) (Non	ominal) (Ma:	ximum)			
Before: 5-May-2008 10:46							
		_	_				

		High Resolution Laterolo	g Array – B We	ellsite Calibratio	n		
		Н	RLT M23				
ldx	Phase	HRLT M2-M3 Voltage Plus UV	Value	Nominal	Maximum	Minimum	
0	Before		1731	1781	2095	1549	
1	Before		1898	1781	2095	1549	
2	Before		1932	1781	2095	1549	
3	Before		1869	1781	2095	1549	
4	Before		1760	1781	2095	1549	
5	Before		1804	1781	2095	1549	
6	Before		-1695	-1781	-1549	-2095	
7	Before		1781	1781	2095	1549	
	(Minir	num) (Nominal) (Maxii	mum)				
Befo	Before: 5–May–2008 10:46						

	HRLT V34							
ldx	Phase	HRLT A3-A4 Voltage Plus UV	Value	Nominal	Maximum	Minimum		
0	Before		68570	70000	82360	60900		
1	Before		75520	70000	82360	60900		
2	Before		77060	70000	82360	60900		
3	Before		74690	70000	82360	60900		
4	Before		70130	70000	82360	60900		
5	Before		71800	70000	82360	60900		
6	Before		-66420	-70000	-60900	-82360		
7	Before		70000	70000	82360	60900		
	(Minir	mum) (Nominal) (Maxin	num)					
Befo	re: 5-Ma	ay-2008 10:46						
		•	•	•	•	•		

High Resolution Laterolog Array - B Wellsite Calibration

	High Resolution Laterolog Array – B Wellsite Calibration							
		Н	RLT V45					
ldx	Phase	HRLT A4-A5 Voltage Plus UV	Value	Nominal	Maximum	Minimum		
0	Before		68380	70000	82360	60900		
1	Before		75380	70000	82360	60900		
2	Before		76900	70000	82360	60900		
3	Before		74530	70000	82360	60900		
4	Before		69960	70000	82360	60900		
5	Before		71630	70000	82360	60900		
6	Before		-66300	-70000	-60900	-82360		
7	Before		70000	70000	82360	60900		
	(Minir	num) (Nominal) (Maxin	num)					
Befo	re: 5-Ma	ay-2008 10:46						

High Resolution Laterolog Array – B Wellsite Calibration HRLT V56

ldx	Phase	HRLT A5-A6 Voltage Plus UV	Value	Nominal	Maximum	Minimum					
0	Before		68530	70000	82360	60900					
1	Before		75670	70000	82360	60900					
2	Before		77170	70000	82360	60900					
3	Before		74750	70000	82360	60900					
4	Before		70110	70000	82360	60900					
5	Before		71760	70000	82360	60900					
6	Before		-66600	-70000	-60900	-82360					
7	Before		70000	70000	82360	60900					
	(Minii	mum) (Nominal) (Maxin	num)								
Befo	re: 5-Ma	ay-2008 10:46									
		High Resolution Laterolog		Ilsite Calibratio	n						
			RLT VTP								
ldx	Phase	HRLT Torpedo-M0 Voltage Plus UV	Value	Nominal	Maximum	Minimum					
0	Before		-68100	-70000	-60900	-82360					
1	Before		-75370	-70000	-60900	-82360					
2	Before		-76950	-70000	-60900	-82360					
3	Before		-74650	-70000	-60900	-82360					
4	Before		-70110	-70000	-60900	-82360					
5	Before		-71770	-70000	-60900	-82360					
6	Before		66260	70000	82360	60900					
7	Before		-70000	-70000	-60900	-82360					
	(Minii	mum) (Nominal) (Maxin	num)								
Befo	Before: 5-May-2008 10:46										
		High Resolution Laterolog	g Array – B We	Ilsite Calibratio	n						
		·	RLT VBD								
ldx	Phase	HRLT Bridle#9-M0 Voltage Plus UV	Value	Nominal	Maximum	Minimum					

		High Resolution Laterolog	g Array – B W	ellsite Calibratio	n								
	HRLT VBD												
ldx	Phase	HRLT Bridle#9-M0 Voltage Plus UV	Value	Nominal	Maximum	Minimum							
0	Before		-67680	-70000	-60900	-82360							
1	Before		-75750	-70000	-60900	-82360							
2	Before		-76880	-70000	-60900	-82360							
3	Before		-74400	-70000	-60900	-82360							
4	Before		-70870	-70000	-60900	-82360							
5	Before		-72260	-70000	-60900	-82360							
6	Before		66590	70000	82360	60900							
7	Before		-70000	-70000	-60900	-82360							
(Minimum) (Nominal) (Maximum)													
Befo	Before: 5-May-2008 10:46												
	The Board of the Control of the Cont												

Beto	Before: 5-May-2008 10:46											
		High Resolution Laterological	g Array – B We	Ilsite Calibratio	n							
	HRLT ISO											
ldx	Phase	HRLT Source Current Plus UA	Value	Nominal	Maximum	Minimum						
0	Before		283.9	284.0	334.1	247.0						
1	Before		281.1	281.1	330.7	244.4						
2	Before		281.1	281.1	330.7	244.4						
3	Before		281.1	281.1	330.7	244.4						
4	Before		281.1	281.1	330.7	244.4						
5	Before		281.1	281.1	330.7	244.4						

Befo	Before: 5-May-2008 10:46												
	High Resolution Laterolog Array – B Wellsite Calibration												
	HRLT MV												
ldx	dx Phase HRLT Vertical Voltage Plus UV Value Nominal Maximum Minimum												
0	Before		-320.1	-322.7	-280.7	-379.7							
1	Before		-343.3	-322.7	-280.7	-379.7							
2	Before		-348.2	-322.7	-280.7	-379.7							
3	Before		-334.2	-322.7	-280.7	-379.7							
4	Before		-311.8	-322.7	-280.7	-379.7							
5	Before		-334.3	-322.7	-280.7	-379.7							
6	Before		320.0	322.7	379.7	280.7							
7	Before		-322.7	-322.7	-280.7	-379.7							
	(Minimum) (Nominal) (Maximum)												
Before: 5-May-2008 10:46													
	201010. 0 May 2000 10.40												

281.1

281.1

(Maximum)

281.1

281.1

330.7

330.7

244.4

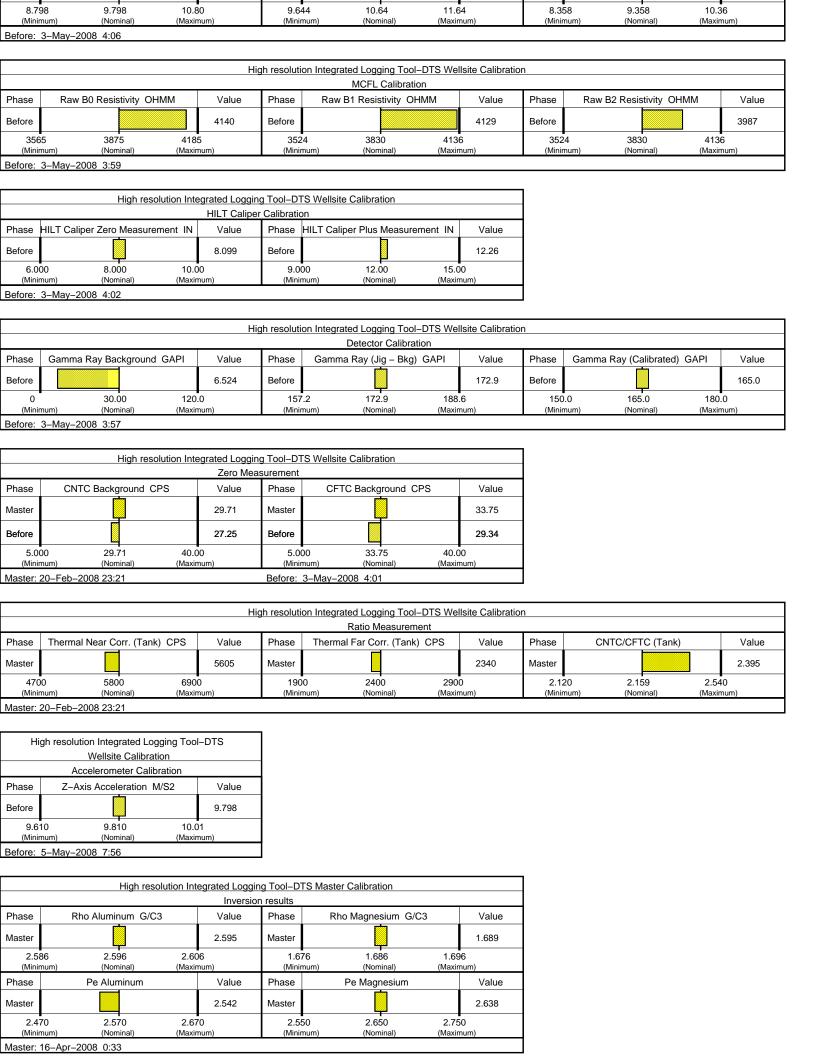
244.4

Before

Before

(Minimum)

(Nominal)


7

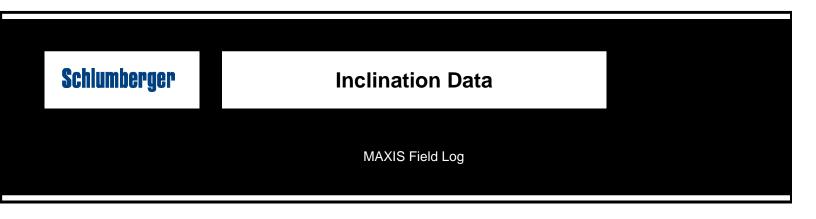
High resolution Integrated Logging	Tool-DTS / Equipment Identific	ation	
Primary Equipment:			
HILT high-Resolution Mechanical Sonde	HRMS – B	788	
HILT Rxo Gamma-ray Device	HRGD – BC	1806	
HILT Micro Cylindrically Focused Log Dev	MCFL -		
GR Logging Source	GLS – J	5334	
HILT High Res. Control Cartridge	HRCC – B	868	
HILT Gamma-Ray Neutron Sonde-DTS	HGNS – B	856	
HGNS Gamma-Ray Device	HGR –		
HGNS Neutron Detector with Alpha Source	HCNT -		
Auxiliary Equipment:			
Neutron Calibration Tank	NCT – B		
Gamma Source Radioactive	GSR – J	6750	
HGNS Housing	HGNH – H	3915	

	High resolution Integrated Logging Tool-DTS Wellsite Calibration											
	Stab Measurement Summary											
Phase	Phase BS Window Ratio Value Phase SS Window Ratio Value Phase LS Window Ratio Value											
Before		0.7656	Before			0.4901	Before			0.2976		
	0.7276											
Phase	BS Window Sum CPS	Value	Phase	SS Window Sum CPS		Value	Phase	LS Window Sum CPS		Value		
Before		10540	Before			10290	Before			1152		
100	10040 10570 11090 9808 10320 10840 1103 1161 1219											
(Minir	(Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum) (Minimum) (Mominal) (Maximum)											
Before:	efore: 3-May-2008 4:06											

	High resolution Integrated Logging Tool-DTS Wellsite Calibration										
Photo-multiplier High Voltages Calibrations											
Phase	hase BS PM High Voltage (Command) V Value Phase SS PM High Voltage (Command) V Value Phase LS PM High Voltage (Command) V Value										
Before		1249	Before			1932	Before			1406	
	1134 1234 1334 1826 1926 2026 1302 1402 1502 (Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum)										
Before:	Before: 3-May-2008 4:06										

	High resolution Integrated Logging Tool-DTS Wellsite Calibration											
	Crystal Quality Resolutions Calibration											
Phase	BS Crystal Resolution %	Value	Phase	SS Crystal Resolution %	Value	Phase	LS Crystal Resolution %	Value				
Before		9.751	Before		10.76	Before		9.342				

	High resolution Integrated Logging Tool-DTS Master Calibration											
	Deviation Summary											
Phase	hase BS Average Deviation % Value Phase SS Average Deviation % Value Phase LS Average Deviation % Value											
Master			0.5027	Master			0.6460	Master			0.6624	
	-0.6000 0 0.6000 -1.000 0 1.000 -1.500 0 1.500 (Minimum) (Nominal) (Maximum) (Mominal) (Maximum) (Mominal) (Maximum)											
Phase	BS Max De	eviation %	Value	Phase	SS Max De	eviation %	Value	Phase	LS Max De	viation %	Value	
Master	Master 1.236 Master 1.302 Master 1.762											
	-1.600 0 1.600 -2.500 0 2.500 -3.500 0 3.500											
(Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum) (Minimum) (Maximum)												
Master: '	16-Apr-2008 0:33	3										


	High resolution Integrated Logging Tool-DTS Master Calibration										
	Zero Measurement										
Phase	Phase CNTC Background CPS Value Phase CFTC Background CPS Value										
Master	Master 29.71 Master 33.75										
	5.000 29.71 40.00 5.000 33.75 40.00										
(Minimum) (Nominal) (Maximum) (Minimum) (Nominal) (Maximum)											
Master:	Master: 20-Feb-2008 23:21										

	High resolution Integrated Logging Tool-DTS Master Calibration											
	Tank Measurement											
Phase	Phase Thermal Near Corr. (Tank) CPS Value Phase Thermal Far Corr. (Tank) CPS Value Phase CNTC/CFTC (Tank) Value											
Master		5605	Master			2340	Master			2.395		
	4700 5800 6900 1900 2400 2900 2.120 2.159 2.540 (Minimum) (Nominal) (Maximum) (Minimum) (Mominal) (Maximum) (Minimum) (Mominal) (Maximum)											
Master: 2	Master: 20-Feb-2008 23:21											

DTS Telemetry Tool / Equipment Identification

Primary Equipment:
DTC-H Auxiliary Cartridge
DTC-H Telemetry Cartridge
DTCH - A

Auxiliary Equipment:
DTCH Telemetry Cartridge Housing
ECH - KC
DTCH Telemetry Cartridge Housing

WFTI INCLINOMETRY LIST | Meas. Tie Depth: 1094.4 M True Vert. Tie Depth: 1014.8 M |

Measured Depth	Deviation		th True Ve	ertical	
(M)	(DEG)	(DEG)			l
1094.4 1094.4 1094.4 1143.3 1155.2 1184.9 1214.5 1244.4 1273.7 1303.2 1333.1 1362.3 1392.5 1421.7 1451.6 1481.4 1511.2 1540.8 1570.5 1600.2 1629.9 1659.0 1688.3 1718.0 1747.5 1777.4	0.00 0.00 27.04 25.87 25.58 25.36 26.97 27.88 28.27 28.34 28.20 27.26 25.27 22.70 20.36 17.26 13.04 10.60 8.72 8.74 8.55 8.90 8.56 8.59 8.68 8.68	0.00 0.00 62.76 63.90 63.60 62.41 61.94 60.72 59.68 60.45 61.52 62.55 63.55 66.35 68.06 68.27 67.69 64.12 59.53 58.21 68.10 72.75 69.00 61.35 54.77 54.87	(M)		
1789.3 1810.0	8.75 8.75	55.97 55.97	1663.7 1684.1		
I	 	<u> </u>	_		

Company:	3D Oil Limited	Schlumberger
Well: Field: Rig: Country:	West Seahorse 3 West Seahorse West Triton Australia	
	BHC-HRLA-PEX-G Sonic-Resistivity-Density-Neutron-G Suite 1 Run 1 - Scale 1:500 (MD)	